Fix for bug 1301. Added bld.inf to rootcertificates component for exporting the SWI certificate store.
/*
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* DSA Keypair implementation
* DSA keypair generation implementation
*
*/
/**
@file
*/
#include "dsakeypairgenimpl.h"
#include "pluginconfig.h"
#include "keypair.h"
#include "common/inlines.h" // For TClassSwap
#include "mont.h"
#include "sha1impl.h"
#include <random.h>
const TUint KShaSize = 20;
const TUint KMinPrimeLength = 512;
const TUint KMaxPrimeLength = 1024;
const TUint KPrimeLengthMultiple = 64;
using namespace SoftwareCrypto;
/* CDSAPrimeCertificate */
CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed, TUint aCounter)
{
CDSAPrimeCertificate* self = NewLC(aSeed, aCounter);
CleanupStack::Pop();
return self;
}
CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed, TUint aCounter)
{
CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter);
CleanupStack::PushL(self);
self->ConstructL(aSeed);
return self;
}
const TDesC8& CDSAPrimeCertificate::Seed() const
{
return *iSeed;
}
TUint CDSAPrimeCertificate::Counter() const
{
return iCounter;
}
CDSAPrimeCertificate::~CDSAPrimeCertificate()
{
delete const_cast<HBufC8*>(iSeed);
}
void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed)
{
iSeed = aSeed.AllocL();
}
CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter)
: iCounter(aCounter)
{
}
CDSAPrimeCertificate::CDSAPrimeCertificate()
{
}
/* CDSAKeyPairGenImpl */
CDSAKeyPairGenImpl::CDSAKeyPairGenImpl()
{
}
CDSAKeyPairGenImpl::~CDSAKeyPairGenImpl()
{
delete iPrimeCertificate;
}
CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewL()
{
CDSAKeyPairGenImpl* self = CDSAKeyPairGenImpl::NewLC();
CleanupStack::Pop(self);
return self;
}
CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewLC()
{
CDSAKeyPairGenImpl* self = new(ELeave) CDSAKeyPairGenImpl();
CleanupStack::PushL(self);
self->ConstructL();
return self;
}
void CDSAKeyPairGenImpl::ConstructL(void)
{
CKeyPairGenImpl::ConstructL();
}
CExtendedCharacteristics* CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL()
{
// All Symbian software plug-ins have unlimited concurrency, cannot be reserved
// for exclusive use and are not CERTIFIED to be standards compliant.
return CExtendedCharacteristics::NewL(KMaxTInt, EFalse);
}
const CExtendedCharacteristics* CDSAKeyPairGenImpl::GetExtendedCharacteristicsL()
{
return CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL();
}
TUid CDSAKeyPairGenImpl::ImplementationUid() const
{
return KCryptoPluginDsaKeyPairGenUid;
}
void CDSAKeyPairGenImpl::Reset()
{
// does nothing in this plugin
}
TBool CDSAKeyPairGenImpl::ValidPrimeLength(TUint aPrimeBits)
{
return (aPrimeBits >= KMinPrimeLength &&
aPrimeBits <= KMaxPrimeLength &&
aPrimeBits % KPrimeLengthMultiple == 0);
}
TBool CDSAKeyPairGenImpl::GeneratePrimesL(const TDesC8& aSeed,
TUint& aCounter,
RInteger& aP,
TUint aL,
RInteger& aQ,
TBool aUseInputCounter)
{
//This follows the steps in FIPS 186-2
//See DSS Appendix 2.2
//Note. Step 1 is performed prior to calling GeneratePrimesL, so that this
//routine can be used for both generation and validation.
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it
//SEED. Let g be the length of SEED in bits.
if(!ValidPrimeLength(aL))
{
User::Leave(KErrNotSupported);
}
CSHA1Impl* sha1 = CSHA1Impl::NewL();
CleanupStack::PushL(sha1);
HBufC8* seedBuf = aSeed.AllocLC();
TPtr8 seed = seedBuf->Des();
TUint gBytes = aSeed.Size();
//Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits
//in the seed.
//This function has made the assumption (for ease of computation) that g%8
//is 0. Ie the seed is a whole number of random bytes.
TBuf8<KShaSize> U;
TBuf8<KShaSize> temp;
const TUint n = (aL-1)/160;
const TUint b = (aL-1)%160;
HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * KShaSize);
TUint8* W = const_cast<TUint8*>(Wbuf->Ptr());
U.Copy(sha1->Final(seed));
//Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g]
for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--)
{
//!++(TUint) adds one to the current word which if it overflows to zero
//sets carry to 1 thus letting the loop continue. It's a poor man's
//multi-word addition. Swift eh?
carry = !++(seed[i]);
}
temp.Copy(sha1->Final(seed));
XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), KShaSize);
//Step 3. Form q from U by setting the most significant bit (2^159)
//and the least significant bit to 1.
U[0] |= 0x80;
U[KShaSize-1] |= 1;
aQ = RInteger::NewL(U);
CleanupStack::PushL(aQ);
//Step 4. Use a robust primality testing algo to test if q is prime
//The robust part is the calling codes problem. This will use whatever
//random number generator you set for the thread. To attempt FIPS 186-2
//compliance, set a FIPS 186-2 compliant RNG.
if( !aQ.IsPrimeL() )
{
//Step 5. If not exit and get a new seed
CleanupStack::PopAndDestroy(4, sha1);
return EFalse;
}
TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096;
//Step 6. Let counter = 0 and offset = 2
//Note 1. that the DSS speaks of SEED + offset + k because they always
//refer to a constant SEED. We update our seed as we go so the offset
//variable has already been added to seed in the previous iterations.
//Note 2. We've already added 1 to our seed, so the first time through this
//the offset in DSS speak will be 2.
for(TUint counter=0; counter < counterEnd; counter++)
{
//Step 7. For k=0, ..., n let
// Vk = SHA-1[(SEED + offset + k) mod 2^g]
//I'm storing the Vk's inside of a big W buffer.
for(TUint k=0; k<=n; k++)
{
for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--)
{
carry = !++(seed[i]);
}
if(!aUseInputCounter || counter == aCounter)
{
TPtr8 Wptr(W+(n-k)*KShaSize, gBytes);
Wptr.Copy(sha1->Final(seed));
}
}
if(!aUseInputCounter || counter == aCounter)
{
//Step 8. Let W be the integer... and let X = W + 2^(L-1)
const_cast<TUint8&>((*Wbuf)[KShaSize - 1 - b/8]) |= 0x80;
TPtr8 Wptr(W + KShaSize - 1 - b/8, aL/8, aL/8);
RInteger X = RInteger::NewL(Wptr);
CleanupStack::PushL(X);
//Step 9. Let c = X mod 2q and set p = X - (c-1)
RInteger twoQ = aQ.TimesL(TInteger::Two());
CleanupStack::PushL(twoQ);
RInteger c = X.ModuloL(twoQ);
CleanupStack::PushL(c);
--c;
aP = X.MinusL(c);
CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X
CleanupStack::PushL(aP);
//Step 10 and 11: if p >= 2^(L-1) and p is prime
if( aP.Bit(aL-1) && aP.IsPrimeL() )
{
aCounter = counter;
CleanupStack::Pop(2, &aQ);
CleanupStack::PopAndDestroy(3, sha1);
return ETrue;
}
CleanupStack::PopAndDestroy(&aP);
}
}
CleanupStack::PopAndDestroy(4, &sha1);
return EFalse;
}
void CDSAKeyPairGenImpl::GenerateKeyPairL(TInt aKeySize,
const CCryptoParams& aKeyParameters,
CKeyPair*& aKeyPair)
{
//This is the first step of DSA prime generation. The remaining steps are
//performed in CDSAParameters::GeneratePrimesL
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it
//SEED. Let g be the length of SEED in bits.
TBuf8<KShaSize> seed(KShaSize);
TUint c;
RInteger p;
RInteger q;
do
{
GenerateRandomBytesL(seed);
}
while(!GeneratePrimesL(seed, c, p, aKeySize, q));
//Double PushL will not fail as GeneratePrimesL uses the CleanupStack
//(at least one push and pop ;)
CleanupStack::PushL(p);
CleanupStack::PushL(q);
iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c);
// aKeyParameters isn't const here anymore
CCryptoParams& paramRef=const_cast<CCryptoParams&>(aKeyParameters);
paramRef.AddL(c, KDsaKeyGenerationCounterUid);
paramRef.AddL(seed, KDsaKeyGenerationSeedUid);
CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p);
--p;
// e = (p-1)/q
RInteger e = p.DividedByL(q);
CleanupStack::PushL(e);
--p; //now it's p-2 :)
RInteger h;
const TInteger* g = 0;
do
{
// find a random h | 1 < h < p-1
h = RInteger::NewRandomL(TInteger::Two(), p);
CleanupStack::PushL(h);
// g = h^e mod p
g = &(montP->ExponentiateL(h, e));
CleanupStack::PopAndDestroy(&h);
}
while( *g <= TInteger::One() );
CleanupStack::PopAndDestroy(&e);
++p; //reincrement p to original value
++p;
RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g
CleanupStack::PushL(g1);
--q;
// select random x | 0 < x < q
RInteger x = RInteger::NewRandomL(TInteger::One(), q);
CleanupStack::PushL(x);
++q;
//
// create the keys parameters
CCryptoParams* privateKeyParameters = CCryptoParams::NewLC();
privateKeyParameters->AddL(p, KDsaKeyParameterPUid);
privateKeyParameters->AddL(q, KDsaKeyParameterQUid);
privateKeyParameters->AddL(g1, KDsaKeyParameterGUid);
privateKeyParameters->AddL(x, KDsaKeyParameterXUid);
TKeyProperty privateKeyProperties = {KDSAKeyPairGeneratorUid,
KCryptoPluginDsaKeyPairGenUid,
KDsaPrivateKeyUid,
KNonEmbeddedKeyUid};
CCryptoParams* publicKeyParameters = CCryptoParams::NewLC();
publicKeyParameters->AddL(p, KDsaKeyParameterPUid);
publicKeyParameters->AddL(q, KDsaKeyParameterQUid);
publicKeyParameters->AddL(g1, KDsaKeyParameterGUid);
RInteger y = RInteger::NewL(montP->ExponentiateL(*g, x));
CleanupStack::PushL(y);
publicKeyParameters->AddL(y, KDsaKeyParameterYUid);
TKeyProperty publicKeyProperties = {KDSAKeyPairGeneratorUid,
KCryptoPluginDsaKeyPairGenUid,
KDsaPublicKeyUid,
KNonEmbeddedKeyUid};
//
// create the private key
//
CKey* privateKey = CKey::NewL(privateKeyProperties, *privateKeyParameters);
CleanupStack::PushL(privateKey);
//
// create the public key
//
CKey* publicKey = CKey::NewL(publicKeyProperties, *publicKeyParameters);
CleanupStack::PushL(publicKey);
aKeyPair = CKeyPair::NewL(publicKey, privateKey);
//publicKey, publicKeyParameters, y, privateKey, privateKeyParameters, x, g1, montP, q, p
CleanupStack::Pop(2, privateKey);
CleanupStack::PopAndDestroy(8, &p);
}