diff -r f18401adf8e1 -r 641f389e9157 crypto/weakcrypto/source/bigint/algorithms.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/crypto/weakcrypto/source/bigint/algorithms.cpp Tue Aug 31 17:00:08 2010 +0300 @@ -0,0 +1,1160 @@ +/* +* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). +* All rights reserved. +* This component and the accompanying materials are made available +* under the terms of the License "Eclipse Public License v1.0" +* which accompanies this distribution, and is available +* at the URL "http://www.eclipse.org/legal/epl-v10.html". +* +* Initial Contributors: +* Nokia Corporation - initial contribution. +* +* Contributors: +* +* Description: +* +*/ + + +#include "words.h" +#include "algorithms.h" + +word Add(word *C, const word *A, const word *B, unsigned int N) +{ + assert (N%2 == 0); + word carry = 0; + for (unsigned int i = 0; i < N; i+=2) + { + dword u = (dword) carry + A[i] + B[i]; + C[i] = LOW_WORD(u); + u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1]; + C[i+1] = LOW_WORD(u); + carry = HIGH_WORD(u); + } + return carry; +} + +word Subtract(word *C, const word *A, const word *B, unsigned int N) +{ + assert (N%2 == 0); + word borrow=0; + for (unsigned i = 0; i < N; i+=2) + { + dword u = (dword) A[i] - B[i] - borrow; + C[i] = LOW_WORD(u); + u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u)); + C[i+1] = LOW_WORD(u); + borrow = 0-HIGH_WORD(u); + } + return borrow; +} + +int Compare(const word *A, const word *B, unsigned int N) +{ + while (N--) + if (A[N] > B[N]) + return 1; + else if (A[N] < B[N]) + return -1; + + return 0; +} + +// It is the job of the calling code to ensure that this won't carry. +// If you aren't sure, use the next version that will tell you if you need to +// grow your integer. +// Having two of these creates ever so slightly more code but avoids having +// ifdefs all over the rest of the code checking the following type stuff which +// causes warnings in certain compilers about unused parameters in release +// builds. We can't have that can we! +/* +Allows avoid this all over bigint.cpp and primes.cpp +ifdef _DEBUG + TUint carry = Increment(Ptr(), Size()); + assert(!carry); +else + Increment(Ptr(), Size()) +endif +*/ +void IncrementNoCarry(word *A, unsigned int N, word B) +{ + assert(N); + word t = A[0]; + A[0] = t+B; + if (A[0] >= t) + return; + for (unsigned i=1; i= t) + return 0; + for (unsigned i=1; i= A0) + if (B0 >= B1) + { + s = 0; + d = (dword)(A1-A0)*(B0-B1); + } + else + { + s = (A1-A0); + d = (dword)s*(word)(B0-B1); + } + else + if (B0 > B1) + { + s = (B0-B1); + d = (word)(A1-A0)*(dword)s; + } + else + { + s = 0; + d = (dword)(A0-A1)*(B1-B0); + } +*/ + // this segment is the branchless equivalent of above + word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; + unsigned int ai = A[1] < A[0]; + unsigned int bi = B[0] < B[1]; + unsigned int di = ai & bi; + dword d = (dword)D[di]*D[di+2]; + D[1] = D[3] = 0; + unsigned int si = ai + !bi; + word s = D[si]; + + dword A0B0 = (dword)A[0]*B[0]; + C[0] = LOW_WORD(A0B0); + + dword A1B1 = (dword)A[1]*B[1]; + dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1); + C[1] = LOW_WORD(t); + + t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s; + C[2] = LOW_WORD(t); + C[3] = HIGH_WORD(t); +} + +static word AtomicMultiplyAdd(word *C, const word *A, const word *B) +{ + word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; + unsigned int ai = A[1] < A[0]; + unsigned int bi = B[0] < B[1]; + unsigned int di = ai & bi; + dword d = (dword)D[di]*D[di+2]; + D[1] = D[3] = 0; + unsigned int si = ai + !bi; + word s = D[si]; + + dword A0B0 = (dword)A[0]*B[0]; + dword t = A0B0 + C[0]; + C[0] = LOW_WORD(t); + + dword A1B1 = (dword)A[1]*B[1]; + t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1]; + C[1] = LOW_WORD(t); + + t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2]; + C[2] = LOW_WORD(t); + + t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3]; + C[3] = LOW_WORD(t); + return HIGH_WORD(t); +} + +static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B) +{ + dword t = (dword)A[0]*B[0]; + C[0] = LOW_WORD(t); + C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0]; +} + +#define MulAcc(x, y) \ + p = (dword)A[x] * B[y] + c; \ + c = LOW_WORD(p); \ + p = (dword)d + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e += HIGH_WORD(p); + +#define SaveMulAcc(s, x, y) \ + R[s] = c; \ + p = (dword)A[x] * B[y] + d; \ + c = LOW_WORD(p); \ + p = (dword)e + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e = HIGH_WORD(p); + +#define MulAcc1(x, y) \ + p = (dword)A[x] * A[y] + c; \ + c = LOW_WORD(p); \ + p = (dword)d + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e += HIGH_WORD(p); + +#define SaveMulAcc1(s, x, y) \ + R[s] = c; \ + p = (dword)A[x] * A[y] + d; \ + c = LOW_WORD(p); \ + p = (dword)e + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e = HIGH_WORD(p); + +#define SquAcc(x, y) \ + p = (dword)A[x] * A[y]; \ + p = p + p + c; \ + c = LOW_WORD(p); \ + p = (dword)d + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e += HIGH_WORD(p); + +#define SaveSquAcc(s, x, y) \ + R[s] = c; \ + p = (dword)A[x] * A[y]; \ + p = p + p + d; \ + c = LOW_WORD(p); \ + p = (dword)e + HIGH_WORD(p); \ + d = LOW_WORD(p); \ + e = HIGH_WORD(p); + +// VC60 workaround: MSVC 6.0 has an optimization problem that makes +// (dword)A*B where either A or B has been cast to a dword before +// very expensive. Revisit a CombaSquare4() function when this +// problem is fixed. + +// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware +// either. I've completely removed it. It may be worth looking into sometime +// in the future. +/*#ifndef __WINS__ +static void CombaSquare4(word *R, const word *A) +{ + dword p; + word c, d, e; + + p = (dword)A[0] * A[0]; + R[0] = LOW_WORD(p); + c = HIGH_WORD(p); + d = e = 0; + + SquAcc(0, 1); + + SaveSquAcc(1, 2, 0); + MulAcc1(1, 1); + + SaveSquAcc(2, 0, 3); + SquAcc(1, 2); + + SaveSquAcc(3, 3, 1); + MulAcc1(2, 2); + + SaveSquAcc(4, 2, 3); + + R[5] = c; + p = (dword)A[3] * A[3] + d; + R[6] = LOW_WORD(p); + R[7] = e + HIGH_WORD(p); +} +#endif */ + +static void CombaMultiply4(word *R, const word *A, const word *B) +{ + dword p; + word c, d, e; + + p = (dword)A[0] * B[0]; + R[0] = LOW_WORD(p); + c = HIGH_WORD(p); + d = e = 0; + + MulAcc(0, 1); + MulAcc(1, 0); + + SaveMulAcc(1, 2, 0); + MulAcc(1, 1); + MulAcc(0, 2); + + SaveMulAcc(2, 0, 3); + MulAcc(1, 2); + MulAcc(2, 1); + MulAcc(3, 0); + + SaveMulAcc(3, 3, 1); + MulAcc(2, 2); + MulAcc(1, 3); + + SaveMulAcc(4, 2, 3); + MulAcc(3, 2); + + R[5] = c; + p = (dword)A[3] * B[3] + d; + R[6] = LOW_WORD(p); + R[7] = e + HIGH_WORD(p); +} + +static void CombaMultiply8(word *R, const word *A, const word *B) +{ + dword p; + word c, d, e; + + p = (dword)A[0] * B[0]; + R[0] = LOW_WORD(p); + c = HIGH_WORD(p); + d = e = 0; + + MulAcc(0, 1); + MulAcc(1, 0); + + SaveMulAcc(1, 2, 0); + MulAcc(1, 1); + MulAcc(0, 2); + + SaveMulAcc(2, 0, 3); + MulAcc(1, 2); + MulAcc(2, 1); + MulAcc(3, 0); + + SaveMulAcc(3, 0, 4); + MulAcc(1, 3); + MulAcc(2, 2); + MulAcc(3, 1); + MulAcc(4, 0); + + SaveMulAcc(4, 0, 5); + MulAcc(1, 4); + MulAcc(2, 3); + MulAcc(3, 2); + MulAcc(4, 1); + MulAcc(5, 0); + + SaveMulAcc(5, 0, 6); + MulAcc(1, 5); + MulAcc(2, 4); + MulAcc(3, 3); + MulAcc(4, 2); + MulAcc(5, 1); + MulAcc(6, 0); + + SaveMulAcc(6, 0, 7); + MulAcc(1, 6); + MulAcc(2, 5); + MulAcc(3, 4); + MulAcc(4, 3); + MulAcc(5, 2); + MulAcc(6, 1); + MulAcc(7, 0); + + SaveMulAcc(7, 1, 7); + MulAcc(2, 6); + MulAcc(3, 5); + MulAcc(4, 4); + MulAcc(5, 3); + MulAcc(6, 2); + MulAcc(7, 1); + + SaveMulAcc(8, 2, 7); + MulAcc(3, 6); + MulAcc(4, 5); + MulAcc(5, 4); + MulAcc(6, 3); + MulAcc(7, 2); + + SaveMulAcc(9, 3, 7); + MulAcc(4, 6); + MulAcc(5, 5); + MulAcc(6, 4); + MulAcc(7, 3); + + SaveMulAcc(10, 4, 7); + MulAcc(5, 6); + MulAcc(6, 5); + MulAcc(7, 4); + + SaveMulAcc(11, 5, 7); + MulAcc(6, 6); + MulAcc(7, 5); + + SaveMulAcc(12, 6, 7); + MulAcc(7, 6); + + R[13] = c; + p = (dword)A[7] * B[7] + d; + R[14] = LOW_WORD(p); + R[15] = e + HIGH_WORD(p); +} + +static void CombaMultiplyBottom4(word *R, const word *A, const word *B) +{ + dword p; + word c, d, e; + + p = (dword)A[0] * B[0]; + R[0] = LOW_WORD(p); + c = HIGH_WORD(p); + d = e = 0; + + MulAcc(0, 1); + MulAcc(1, 0); + + SaveMulAcc(1, 2, 0); + MulAcc(1, 1); + MulAcc(0, 2); + + R[2] = c; + R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0]; +} + +static void CombaMultiplyBottom8(word *R, const word *A, const word *B) +{ + dword p; + word c, d, e; + + p = (dword)A[0] * B[0]; + R[0] = LOW_WORD(p); + c = HIGH_WORD(p); + d = e = 0; + + MulAcc(0, 1); + MulAcc(1, 0); + + SaveMulAcc(1, 2, 0); + MulAcc(1, 1); + MulAcc(0, 2); + + SaveMulAcc(2, 0, 3); + MulAcc(1, 2); + MulAcc(2, 1); + MulAcc(3, 0); + + SaveMulAcc(3, 0, 4); + MulAcc(1, 3); + MulAcc(2, 2); + MulAcc(3, 1); + MulAcc(4, 0); + + SaveMulAcc(4, 0, 5); + MulAcc(1, 4); + MulAcc(2, 3); + MulAcc(3, 2); + MulAcc(4, 1); + MulAcc(5, 0); + + SaveMulAcc(5, 0, 6); + MulAcc(1, 5); + MulAcc(2, 4); + MulAcc(3, 3); + MulAcc(4, 2); + MulAcc(5, 1); + MulAcc(6, 0); + + R[6] = c; + R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] + + A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0]; +} + +#undef MulAcc +#undef SaveMulAcc +static void AtomicInverseModPower2(word *C, word A0, word A1) +{ + assert(A0%2==1); + + dword A=MAKE_DWORD(A0, A1), R=A0%8; + + for (unsigned i=3; i<2*WORD_BITS; i*=2) + R = R*(2-R*A); + + assert(R*A==1); + + C[0] = LOW_WORD(R); + C[1] = HIGH_WORD(R); +} +// ******************************************************** + +#define A0 A +#define A1 (A+N2) +#define B0 B +#define B1 (B+N2) + +#define T0 T +#define T1 (T+N2) +#define T2 (T+N) +#define T3 (T+N+N2) + +#define R0 R +#define R1 (R+N2) +#define R2 (R+N) +#define R3 (R+N+N2) + +// R[2*N] - result = A*B +// T[2*N] - temporary work space +// A[N] --- multiplier +// B[N] --- multiplicant + +void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N) +{ + assert(N>=2 && N%2==0); + + if (N==2) + AtomicMultiply(R, A, B); + else if (N==4) + CombaMultiply4(R, A, B); + else if (N==8) + CombaMultiply8(R, A, B); + else + { + const unsigned int N2 = N/2; + int carry; + + int aComp = Compare(A0, A1, N2); + int bComp = Compare(B0, B1, N2); + + switch (2*aComp + aComp + bComp) + { + case -4: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + Subtract(T1, T1, R0, N2); + carry = -1; + break; + case -2: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + carry = 0; + break; + case 2: + Subtract(R0, A0, A1, N2); + Subtract(R1, B1, B0, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + carry = 0; + break; + case 4: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + Subtract(T1, T1, R1, N2); + carry = -1; + break; + default: + SetWords(T0, 0, N); + carry = 0; + } + + RecursiveMultiply(R0, T2, A0, B0, N2); + RecursiveMultiply(R2, T2, A1, B1, N2); + + // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1 + + carry += Add(T0, T0, R0, N); + carry += Add(T0, T0, R2, N); + carry += Add(R1, R1, T0, N); + + assert (carry >= 0 && carry <= 2); + Increment(R3, N2, carry); + } +} + +// R[2*N] - result = A*A +// T[2*N] - temporary work space +// A[N] --- number to be squared + +void RecursiveSquare(word *R, word *T, const word *A, unsigned int N) +{ + assert(N && N%2==0); + + if (N==2) + AtomicMultiply(R, A, A); + else if (N==4) + { + // VC60 workaround: MSVC 6.0 has an optimization problem that makes + // (dword)A*B where either A or B has been cast to a dword before + // very expensive. Revisit a CombaSquare4() function when this + // problem is fixed. + +// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware +// either. I've completely removed it. It may be worth looking into sometime +// in the future. Therefore, we use the CombaMultiply4 on all targets. +//#ifdef __WINS__ + CombaMultiply4(R, A, A); +/*#else + CombaSquare4(R, A); +#endif*/ + } + else + { + const unsigned int N2 = N/2; + + RecursiveSquare(R0, T2, A0, N2); + RecursiveSquare(R2, T2, A1, N2); + RecursiveMultiply(T0, T2, A0, A1, N2); + + word carry = Add(R1, R1, T0, N); + carry += Add(R1, R1, T0, N); + Increment(R3, N2, carry); + } +} +// R[N] - bottom half of A*B +// T[N] - temporary work space +// A[N] - multiplier +// B[N] - multiplicant + +void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N) +{ + assert(N>=2 && N%2==0); + + if (N==2) + AtomicMultiplyBottom(R, A, B); + else if (N==4) + CombaMultiplyBottom4(R, A, B); + else if (N==8) + CombaMultiplyBottom8(R, A, B); + else + { + const unsigned int N2 = N/2; + + RecursiveMultiply(R, T, A0, B0, N2); + RecursiveMultiplyBottom(T0, T1, A1, B0, N2); + Add(R1, R1, T0, N2); + RecursiveMultiplyBottom(T0, T1, A0, B1, N2); + Add(R1, R1, T0, N2); + } +} + +// R[N] --- upper half of A*B +// T[2*N] - temporary work space +// L[N] --- lower half of A*B +// A[N] --- multiplier +// B[N] --- multiplicant + +void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N) +{ + assert(N>=2 && N%2==0); + + if (N==2) + { + AtomicMultiply(T, A, B); + ((dword *)R)[0] = ((dword *)T)[1]; + } + else if (N==4) + { + CombaMultiply4(T, A, B); + ((dword *)R)[0] = ((dword *)T)[2]; + ((dword *)R)[1] = ((dword *)T)[3]; + } + else + { + const unsigned int N2 = N/2; + int carry; + + int aComp = Compare(A0, A1, N2); + int bComp = Compare(B0, B1, N2); + + switch (2*aComp + aComp + bComp) + { + case -4: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + Subtract(T1, T1, R0, N2); + carry = -1; + break; + case -2: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + carry = 0; + break; + case 2: + Subtract(R0, A0, A1, N2); + Subtract(R1, B1, B0, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + carry = 0; + break; + case 4: + Subtract(R0, A1, A0, N2); + Subtract(R1, B0, B1, N2); + RecursiveMultiply(T0, T2, R0, R1, N2); + Subtract(T1, T1, R1, N2); + carry = -1; + break; + default: + SetWords(T0, 0, N); + carry = 0; + } + + RecursiveMultiply(T2, R0, A1, B1, N2); + + // now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1 + + CopyWords(R0, L+N2, N2); + word c2 = Subtract(R0, R0, L, N2); + c2 += Subtract(R0, R0, T0, N2); + word t = (Compare(R0, T2, N2) == -1); + + carry += t; + carry += Increment(R0, N2, c2+t); + carry += Add(R0, R0, T1, N2); + carry += Add(R0, R0, T3, N2); + + CopyWords(R1, T3, N2); + assert (carry >= 0 && carry <= 2); + Increment(R1, N2, carry); + } +} + +// R[NA+NB] - result = A*B +// T[NA+NB] - temporary work space +// A[NA] ---- multiplier +// B[NB] ---- multiplicant + +void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) +{ + if (NA == NB) + { + if (A == B) + RecursiveSquare(R, T, A, NA); + else + RecursiveMultiply(R, T, A, B, NA); + + return; + } + + if (NA > NB) + { + TClassSwap(A, B); + TClassSwap(NA, NB); + //std::swap(A, B); + //std::swap(NA, NB); + } + + assert(NB % NA == 0); + assert((NB/NA)%2 == 0); // NB is an even multiple of NA + + if (NA==2 && !A[1]) + { + switch (A[0]) + { + case 0: + SetWords(R, 0, NB+2); + return; + case 1: + CopyWords(R, B, NB); + R[NB] = R[NB+1] = 0; + return; + default: + R[NB] = LinearMultiply(R, B, A[0], NB); + R[NB+1] = 0; + return; + } + } + + RecursiveMultiply(R, T, A, B, NA); + CopyWords(T+2*NA, R+NA, NA); + + unsigned i; + + for (i=2*NA; i B1 || (A[1]==B1 && A[0]>=B0)) + { + u = (dword) A[0] - B0; + A[0] = LOW_WORD(u); + u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u)); + A[1] = LOW_WORD(u); + A[2] += HIGH_WORD(u); + Q++; + assert(Q); // shouldn't overflow + } + + return Q; +} + +// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1 +static inline void AtomicDivide(word *Q, const word *A, const word *B) +{ + if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS) + { + Q[0] = A[2]; + Q[1] = A[3]; + } + else + { + word T[4]; + T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3]; + Q[1] = SubatomicDivide(T+1, B[0], B[1]); + Q[0] = SubatomicDivide(T, B[0], B[1]); + +#ifdef _DEBUG + // multiply quotient and divisor and add remainder, make sure it equals dividend + assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]= 0) + { + R[N] -= Subtract(R, R, B, N); + Q[1] += (++Q[0]==0); + assert(Q[0] || Q[1]); // no overflow + } +} + +// R[NB] -------- remainder = A%B +// Q[NA-NB+2] --- quotient = A/B +// T[NA+2*NB+4] - temp work space +// A[NA] -------- dividend +// B[NB] -------- divisor + +void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) +{ + assert(NA && NB && NA%2==0 && NB%2==0); + assert(B[NB-1] || B[NB-2]); + assert(NB <= NA); + + // set up temporary work space + word *const TA=T; + word *const TB=T+NA+2; + word *const TP=T+NA+2+NB; + + // copy B into TB and normalize it so that TB has highest bit set to 1 + unsigned shiftWords = (B[NB-1]==0); + TB[0] = TB[NB-1] = 0; + CopyWords(TB+shiftWords, B, NB-shiftWords); + unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]); + assert(shiftBits < WORD_BITS); + ShiftWordsLeftByBits(TB, NB, shiftBits); + + // copy A into TA and normalize it + TA[0] = TA[NA] = TA[NA+1] = 0; + CopyWords(TA+shiftWords, A, NA); + ShiftWordsLeftByBits(TA, NA+2, shiftBits); + + if (TA[NA+1]==0 && TA[NA] <= 1) + { + Q[NA-NB+1] = Q[NA-NB] = 0; + while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0) + { + TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB); + ++Q[NA-NB]; + } + } + else + { + NA+=2; + assert(Compare(TA+NA-NB, TB, NB) < 0); + } + + word BT[2]; + BT[0] = TB[NB-2] + 1; + BT[1] = TB[NB-1] + (BT[0]==0); + + // start reducing TA mod TB, 2 words at a time + for (unsigned i=NA-2; i>=NB; i-=2) + { + AtomicDivide(Q+i-NB, TA+i-2, BT); + CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB); + } + + // copy TA into R, and denormalize it + CopyWords(R, TA+shiftWords, NB); + ShiftWordsRightByBits(R, NB, shiftBits); +} + +static inline unsigned int EvenWordCount(const word *X, unsigned int N) +{ + while (N && X[N-2]==0 && X[N-1]==0) + N-=2; + return N; +} + +// return k +// R[N] --- result = A^(-1) * 2^k mod M +// T[4*N] - temporary work space +// A[NA] -- number to take inverse of +// M[N] --- modulus + +unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N) +{ + assert(NA<=N && N && N%2==0); + + word *b = T; + word *c = T+N; + word *f = T+2*N; + word *g = T+3*N; + unsigned int bcLen=2, fgLen=EvenWordCount(M, N); + unsigned int k=0, s=0; + + SetWords(T, 0, 3*N); + b[0]=1; + CopyWords(f, A, NA); + CopyWords(g, M, N); + + FOREVER + { + word t=f[0]; + while (!t) + { + if (EvenWordCount(f, fgLen)==0) + { + SetWords(R, 0, N); + return 0; + } + + ShiftWordsRightByWords(f, fgLen, 1); + if (c[bcLen-1]) bcLen+=2; + assert(bcLen <= N); + ShiftWordsLeftByWords(c, bcLen, 1); + k+=WORD_BITS; + t=f[0]; + } + + unsigned int i=0; + while (t%2 == 0) + { + t>>=1; + i++; + } + k+=i; + + if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2) + { + if (s%2==0) + CopyWords(R, b, N); + else + Subtract(R, M, b, N); + return k; + } + + ShiftWordsRightByBits(f, fgLen, i); + t=ShiftWordsLeftByBits(c, bcLen, i); + if (t) + { + c[bcLen] = t; + bcLen+=2; + assert(bcLen <= N); + } + + if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0) + fgLen-=2; + + if (Compare(f, g, fgLen)==-1) + { + TClassSwap(f,g); + TClassSwap(b,c); + s++; + } + + Subtract(f, f, g, fgLen); + + if (Add(b, b, c, bcLen)) + { + b[bcLen] = 1; + bcLen+=2; + assert(bcLen <= N); + } + } +} + +// R[N] - result = A/(2^k) mod M +// A[N] - input +// M[N] - modulus + +void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N) +{ + CopyWords(R, A, N); + + while (k--) + { + if (R[0]%2==0) + ShiftWordsRightByBits(R, N, 1); + else + { + word carry = Add(R, R, M, N); + ShiftWordsRightByBits(R, N, 1); + R[N-1] += carry<<(WORD_BITS-1); + } + } +} +