/*
* Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* HZ is defined in RFC 1843
*
*/
#include <e32std.h>
#include <charconv.h>
#include "gb2312.h"
#include <ecom/implementationproxy.h>
#include <charactersetconverter.h>
const TInt KIsInGbBlock=CCnvCharacterSetConverter::KStateDefault+1;
#if defined(_DEBUG)
const TInt KLengthOfIntermediateBuffer=6;
#else
const TInt KLengthOfIntermediateBuffer=150;
#endif
#if defined(_DEBUG)
_LIT(KLitPanicText, "HZ");
enum TPanic
{
EPanicTooManyMatchingIndicesFound=1,
EPanicBadNumberOfBytesRequiredToBeAvailable,
EPanicBadNumberOfBytesAvailable,
EPanicBadNumberOfBytesThatCanBeMadeAvailable,
EPanicBadNumberOfBytesMadeAvailable1,
EPanicBadNumberOfBytesMadeAvailable2,
EPanicBadDescriptorSubDivision1,
EPanicBadDescriptorSubDivision2,
EPanicBadDescriptorSubDivision3,
EPanicBadDescriptorSubDivision4,
EPanicBadPointers1,
EPanicBadPointers2,
EPanicBadPointers3,
EPanicBadPointers4,
EPanicBadPointers5,
EPanicBadPointers6,
EPanicBadPointers7,
EPanicBadPointers8,
EPanicBadPointers9,
EPanicBadPointers10,
EPanicBadPointers11,
EPanicBadPointers12,
EPanicStillInGbBlock,
EPanicBadState,
EPanicSplitBoundaryIsNotAsLateAsPossible1,
EPanicSplitBoundaryIsNotAsLateAsPossible2,
EPanicBadGb2312Index,
EPanicBadHzIndex,
EPanicBadTildeSequence,
EPanicBadReturnValue1,
EPanicBadReturnValue2,
EPanicRemainderOfHzHasGotLonger
};
LOCAL_C void Panic(TPanic aPanic)
{
User::Panic(KLitPanicText, aPanic);
}
#endif
class CHZConverterImpl : public CCharacterSetConverterPluginInterface
{
public:
virtual const TDesC8& ReplacementForUnconvertibleUnicodeCharacters();
virtual TInt ConvertFromUnicode(
CCnvCharacterSetConverter::TEndianness aDefaultEndiannessOfForeignCharacters,
const TDesC8& aReplacementForUnconvertibleUnicodeCharacters,
TDes8& aForeign,
const TDesC16& aUnicode,
CCnvCharacterSetConverter::TArrayOfAscendingIndices& aIndicesOfUnconvertibleCharacters);
virtual TInt ConvertToUnicode(
CCnvCharacterSetConverter::TEndianness aDefaultEndiannessOfForeignCharacters,
TDes16& aUnicode,
const TDesC8& aForeign,
TInt& aState,
TInt& aNumberOfUnconvertibleCharacters,
TInt& aIndexOfFirstByteOfFirstUnconvertibleCharacter);
virtual TBool IsInThisCharacterSetL(
TBool& aSetToTrue,
TInt& aConfidenceLevel,
const TDesC8& aSample);
static CHZConverterImpl* NewL();
virtual ~CHZConverterImpl();
private:
CHZConverterImpl();
};
const TDesC8& CHZConverterImpl::ReplacementForUnconvertibleUnicodeCharacters()
{
return CnvGb2312::ReplacementForUnconvertibleUnicodeCharacters();
}
LOCAL_C void IncrementNumberOfUnicodeCharactersNotConverted(TInt aLengthOfUnicode, TInt& aNumberOfUnicodeCharactersNotConverted, CCnvCharacterSetConverter::TArrayOfAscendingIndices& aIndicesOfUnconvertibleCharacters) // these seemingly haphazard order of these paramters is to match the position of the second and third parameters with the caller
{
++aNumberOfUnicodeCharactersNotConverted;
const TInt indexOfUnicodeCharacterNowNotConverted=aLengthOfUnicode-aNumberOfUnicodeCharactersNotConverted;
#if defined(_DEBUG)
TInt numberOfMatchingIndicesFound=0;
#endif
for (TInt i=aIndicesOfUnconvertibleCharacters.NumberOfIndices()-1; i>=0; --i) // must iterate backwards as items from aIndicesOfUnconvertibleCharacters may be deleted
{
if (aIndicesOfUnconvertibleCharacters[i]==indexOfUnicodeCharacterNowNotConverted)
{
aIndicesOfUnconvertibleCharacters.Remove(i);
#if defined(_DEBUG)
++numberOfMatchingIndicesFound;
#endif
}
}
__ASSERT_DEBUG(numberOfMatchingIndicesFound<=1, Panic(EPanicTooManyMatchingIndicesFound));
}
LOCAL_C void MakeAvailable(TInt aNumberOfBytesRequiredToBeAvailable, TInt& aNumberOfUnicodeCharactersNotConverted, CCnvCharacterSetConverter::TArrayOfAscendingIndices& aIndicesOfUnconvertibleCharacters, TInt aLengthOfUnicode, const TUint8*& aPointerToLastUsedByte, TInt& aNumberOfBytesAvailable, TInt aNumberOfBytesThatCanBeMadeAvailable) // these seemingly haphazard order of these paramters is to match the position of the second to fourth parameters (inclusive) with the caller
// makes available as much of aNumberOfBytesRequiredToBeAvailable as it can, even if the final value (i.e. value on returning) of aNumberOfBytesAvailable<aNumberOfBytesRequiredToBeAvailable (i.e. it doesn't initially give up straight away and do nothing if aNumberOfBytesRequiredToBeAvailable>aNumberOfBytesThatCanBeMadeAvailable+aNumberOfBytesAvailable)
{
__ASSERT_DEBUG(aNumberOfBytesRequiredToBeAvailable>0, Panic(EPanicBadNumberOfBytesRequiredToBeAvailable));
__ASSERT_DEBUG(aNumberOfBytesAvailable>=0, Panic(EPanicBadNumberOfBytesAvailable));
__ASSERT_DEBUG(aNumberOfBytesThatCanBeMadeAvailable>=0, Panic(EPanicBadNumberOfBytesThatCanBeMadeAvailable));
TInt numberOfBytesMadeAvailable=0;
FOREVER
{
if (aNumberOfBytesAvailable>=aNumberOfBytesRequiredToBeAvailable)
{
break; // no more needs to be done
}
__ASSERT_DEBUG(numberOfBytesMadeAvailable<=aNumberOfBytesThatCanBeMadeAvailable, Panic(EPanicBadNumberOfBytesMadeAvailable1));
if (numberOfBytesMadeAvailable>=aNumberOfBytesThatCanBeMadeAvailable)
{
break; // give up - no more can be done
}
const TInt numberOfBytesInCharacter=(*aPointerToLastUsedByte&0x80)? 2: 1;
aPointerToLastUsedByte-=numberOfBytesInCharacter;
aNumberOfBytesAvailable+=numberOfBytesInCharacter;
numberOfBytesMadeAvailable+=numberOfBytesInCharacter;
IncrementNumberOfUnicodeCharactersNotConverted(aLengthOfUnicode, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters);
}
__ASSERT_DEBUG(numberOfBytesMadeAvailable<=aNumberOfBytesThatCanBeMadeAvailable, Panic(EPanicBadNumberOfBytesMadeAvailable2));
}
LOCAL_C void ConvertFromGb2312ToHzInPlace(TDes8& aDescriptor, TInt& aNumberOfUnicodeCharactersNotConverted, CCnvCharacterSetConverter::TArrayOfAscendingIndices& aIndicesOfUnconvertibleCharacters, TInt aLengthOfUnicode)
{
// it is legal for aDescriptor to be of length 0
const TInt originalLengthOfDescriptor=aDescriptor.Length();
if (originalLengthOfDescriptor>0)
{
TInt numberOfBytesAvailable=aDescriptor.MaxLength()-originalLengthOfDescriptor;
TUint8* pointerToPreviousByte=CONST_CAST(TUint8*, aDescriptor.Ptr()-1);
const TUint8* pointerToLastUsedByte=pointerToPreviousByte+originalLengthOfDescriptor;
TBool isInGbBlock=EFalse;
FOREVER
{
__ASSERT_DEBUG((pointerToLastUsedByte-(aDescriptor.Ptr()-1))+numberOfBytesAvailable==aDescriptor.MaxLength(), Panic(EPanicBadDescriptorSubDivision1));
__ASSERT_DEBUG(pointerToPreviousByte<pointerToLastUsedByte, Panic(EPanicBadPointers1));
const TUint currentByte=*(pointerToPreviousByte+1);
if (currentByte&0x80)
{
if (!isInGbBlock)
{
MakeAvailable(4, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters, aLengthOfUnicode, pointerToLastUsedByte, numberOfBytesAvailable, (pointerToLastUsedByte-pointerToPreviousByte)-2); // what's passed into the last parameter is not a typo - we do not want the two-byte character currently pointed to by (pointerToPreviousByte+1) to be made available
if (numberOfBytesAvailable<4) // 4 bytes are required for the "~{" "~}" escape sequences (thus ensuring that at least a single double-byte character can be put into the GB-block)
{
break;
}
isInGbBlock=ETrue;
Mem::Copy(pointerToPreviousByte+3, pointerToPreviousByte+1, pointerToLastUsedByte-pointerToPreviousByte);
++pointerToPreviousByte;
*pointerToPreviousByte='~';
++pointerToPreviousByte;
*pointerToPreviousByte='{';
numberOfBytesAvailable-=2;
pointerToLastUsedByte+=2;
}
++pointerToPreviousByte;
*pointerToPreviousByte&=~0x80;
__ASSERT_DEBUG(pointerToPreviousByte<pointerToLastUsedByte, Panic(EPanicBadPointers2));
++pointerToPreviousByte;
*pointerToPreviousByte&=~0x80;
}
else
{
if (isInGbBlock)
{
closeGbBlock:
isInGbBlock=EFalse;
MakeAvailable(2, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters, aLengthOfUnicode, pointerToLastUsedByte, numberOfBytesAvailable, pointerToLastUsedByte-pointerToPreviousByte);
if (numberOfBytesAvailable<2) // 2 bytes are required for the "~}" escape sequence
{
IncrementNumberOfUnicodeCharactersNotConverted(aLengthOfUnicode, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters);
*(pointerToPreviousByte-1)='~';
*pointerToPreviousByte='}';
break;
}
Mem::Copy(pointerToPreviousByte+3, pointerToPreviousByte+1, pointerToLastUsedByte-pointerToPreviousByte);
++pointerToPreviousByte;
*pointerToPreviousByte='~';
++pointerToPreviousByte;
*pointerToPreviousByte='}';
numberOfBytesAvailable-=2;
pointerToLastUsedByte+=2;
__ASSERT_DEBUG(pointerToPreviousByte<=pointerToLastUsedByte, Panic(EPanicBadPointers3));
if (pointerToPreviousByte>=pointerToLastUsedByte)
{
break;
}
}
if (currentByte=='~')
{
MakeAvailable(1, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters, aLengthOfUnicode, pointerToLastUsedByte, numberOfBytesAvailable, (pointerToLastUsedByte-pointerToPreviousByte)-1); // what's passed into the last parameter is not a typo - we do not want the "~" currently pointed to by (pointerToPreviousByte+1) to be made available
if (numberOfBytesAvailable<1) // 1 byte is required for the extra "~" character
{
break;
}
Mem::Copy(pointerToPreviousByte+2, pointerToPreviousByte+1, pointerToLastUsedByte-pointerToPreviousByte);
++pointerToPreviousByte;
*pointerToPreviousByte='~';
numberOfBytesAvailable-=1;
pointerToLastUsedByte+=1;
}
++pointerToPreviousByte;
}
__ASSERT_DEBUG(pointerToPreviousByte<=pointerToLastUsedByte, Panic(EPanicBadPointers4));
if (pointerToPreviousByte>=pointerToLastUsedByte)
{
if (isInGbBlock)
{
goto closeGbBlock; // this is to share the code for closing the GB-block
}
break;
}
}
__ASSERT_DEBUG(pointerToPreviousByte<=pointerToLastUsedByte, Panic(EPanicBadPointers5));
if (pointerToPreviousByte<pointerToLastUsedByte)
{
__ASSERT_DEBUG((pointerToPreviousByte==pointerToLastUsedByte-1) || (pointerToPreviousByte==pointerToLastUsedByte-2), Panic(EPanicBadPointers6));
numberOfBytesAvailable+=(pointerToLastUsedByte-pointerToPreviousByte);
pointerToLastUsedByte=pointerToPreviousByte;
IncrementNumberOfUnicodeCharactersNotConverted(aLengthOfUnicode, aNumberOfUnicodeCharactersNotConverted, aIndicesOfUnconvertibleCharacters);
}
//if it gets out from FOREVER, isInGbBlock could not be ETrue ~~~ so wouldn't need the assert
//__ASSERT_DEBUG(!isInGbBlock, Panic(EPanicStillInGbBlock));
aDescriptor.SetLength(aDescriptor.MaxLength()-numberOfBytesAvailable);
__ASSERT_DEBUG(aDescriptor.Length()==pointerToLastUsedByte-(aDescriptor.Ptr()-1), Panic(EPanicBadDescriptorSubDivision2));
}
}
TInt CHZConverterImpl::ConvertFromUnicode(
CCnvCharacterSetConverter::TEndianness aDefaultEndiannessOfForeignCharacters,
const TDesC8& aReplacementForUnconvertibleUnicodeCharacters,
TDes8& aForeign,
const TDesC16& aUnicode,
CCnvCharacterSetConverter::TArrayOfAscendingIndices& aIndicesOfUnconvertibleCharacters)
{
TInt returnValue=CCnvCharacterSetConverter::DoConvertFromUnicode(CnvGb2312::ConversionData(), aDefaultEndiannessOfForeignCharacters, aReplacementForUnconvertibleUnicodeCharacters, aForeign, aUnicode, aIndicesOfUnconvertibleCharacters);
if (returnValue<0)
{
return returnValue; // this is an error-code
}
ConvertFromGb2312ToHzInPlace(aForeign, returnValue, aIndicesOfUnconvertibleCharacters, aUnicode.Length());
return returnValue;
}
LOCAL_C TInt ConvertFromHzToHomogeneousGb2312(TBuf8<KLengthOfIntermediateBuffer>& aGb2312, TPtrC8& aHzBeingConsumed, TPtrC8& aRemainderOfHz, TInt& aState, TUint& aOutputConversionFlags)
{
// this function panics if aRemainderOfHz is of length 0
TUint8* pointerToPreviousGb2312Byte=CONST_CAST(TUint8*, aGb2312.Ptr()-1);
const TUint8* pointerToCurrentHzByte=aRemainderOfHz.Ptr();
const TUint8* const pointerToLastHzByte=pointerToCurrentHzByte+(aRemainderOfHz.Length()-1);
const TUint8* const pointerToLastHzByteToConvertThisTime=Min(pointerToLastHzByte, pointerToCurrentHzByte+(KLengthOfIntermediateBuffer-1));
FOREVER
{
const TUint currentHzByte=*pointerToCurrentHzByte;
if (currentHzByte=='~')
{
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByte, Panic(EPanicBadPointers7));
if (pointerToCurrentHzByte>=pointerToLastHzByte)
{
aOutputConversionFlags|=CCnvCharacterSetConverter::EOutputConversionFlagInputIsTruncated;
--pointerToCurrentHzByte;
break;
}
++pointerToCurrentHzByte;
const TUint nextHzByte=*pointerToCurrentHzByte;
switch (nextHzByte)
{
case '{':
if (aState==KIsInGbBlock)
{
return CCnvCharacterSetConverter::EErrorIllFormedInput;
}
aState=KIsInGbBlock;
break;
case '}':
if (aState==CCnvCharacterSetConverter::KStateDefault)
{
return CCnvCharacterSetConverter::EErrorIllFormedInput;
}
aState=CCnvCharacterSetConverter::KStateDefault;
break;
case '~':
++pointerToPreviousGb2312Byte;
*pointerToPreviousGb2312Byte=STATIC_CAST(TUint8, currentHzByte);
break;
case 0x0a:
break;
default:
return CCnvCharacterSetConverter::EErrorIllFormedInput;
}
}
else
{
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByte, Panic(EPanicBadPointers8));
if (pointerToCurrentHzByte>pointerToLastHzByteToConvertThisTime)
{
--pointerToCurrentHzByte;
break;
}
if (aState==CCnvCharacterSetConverter::KStateDefault)
{
++pointerToPreviousGb2312Byte;
*pointerToPreviousGb2312Byte=STATIC_CAST(TUint8, currentHzByte);
}
else
{
__ASSERT_DEBUG(aState==KIsInGbBlock, Panic(EPanicBadState));
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByteToConvertThisTime, Panic(EPanicBadPointers9));
if (pointerToCurrentHzByte>=pointerToLastHzByteToConvertThisTime)
{
aOutputConversionFlags|=CCnvCharacterSetConverter::EOutputConversionFlagInputIsTruncated;
--pointerToCurrentHzByte;
break;
}
++pointerToCurrentHzByte;
++pointerToPreviousGb2312Byte;
*pointerToPreviousGb2312Byte=STATIC_CAST(TUint8, currentHzByte|0x80);
++pointerToPreviousGb2312Byte;
*pointerToPreviousGb2312Byte=STATIC_CAST(TUint8, *pointerToCurrentHzByte|0x80);
}
}
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByte, Panic(EPanicBadPointers10));
if (pointerToCurrentHzByte>=pointerToLastHzByte)
{
break;
}
++pointerToCurrentHzByte;
}
aGb2312.SetLength((pointerToPreviousGb2312Byte+1)-aGb2312.Ptr());
const TInt numberOfHzBytesBeingConsumed=(pointerToCurrentHzByte+1)-aRemainderOfHz.Ptr();
aHzBeingConsumed.Set(aRemainderOfHz.Left(numberOfHzBytesBeingConsumed));
aRemainderOfHz.Set(aRemainderOfHz.Mid(numberOfHzBytesBeingConsumed));
#if defined(_DEBUG)
// AAA: check that if the split occurs on a boundary between some one-byte and some two-byte text, then aState corresponds to the state *after* the split (the code marked "BBB" relies on this)
if (aRemainderOfHz.Length()>=2)
{
__ASSERT_DEBUG(aRemainderOfHz.Left(2)!=_L8("~{"), Panic(EPanicSplitBoundaryIsNotAsLateAsPossible1));
__ASSERT_DEBUG(aRemainderOfHz.Left(2)!=_L8("~}"), Panic(EPanicSplitBoundaryIsNotAsLateAsPossible2));
}
#endif
return 0;
}
LOCAL_C TInt Gb2312IndexToHzIndex(const TDesC8& aHz, TInt aGb2312Index, TBool aReturnMaximalHzIndex)
{
// this function panics if aHz is of length 0
// aHz may start in either KIsInGbBlock or CCnvCharacterSetConverter::KStateDefault state, but it must *not* have any truncated sequences (i.e. "tilde <something>" sequence that is not complete, or part of a 2-byte character sequence) at either its start or its end
__ASSERT_DEBUG(aGb2312Index>=0, Panic(EPanicBadGb2312Index));
TInt hzIndex=0;
TInt offsetFromGb2312IndexToHzIndex=0;
const TUint8* const pointerToFirstHzByte=aHz.Ptr();
const TUint8* pointerToCurrentHzByte=pointerToFirstHzByte;
const TUint8* const pointerToLastHzByte=pointerToFirstHzByte+(aHz.Length()-1);
FOREVER
{
const TInt newHzIndex=pointerToCurrentHzByte-pointerToFirstHzByte;
const TInt candidateHzIndex=aGb2312Index+offsetFromGb2312IndexToHzIndex;
__ASSERT_DEBUG(hzIndex<=candidateHzIndex, Panic(EPanicBadHzIndex));
if (aReturnMaximalHzIndex? (newHzIndex>candidateHzIndex): (hzIndex>=candidateHzIndex))
{
break;
}
hzIndex=newHzIndex;
if (*pointerToCurrentHzByte=='~')
{
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByte, Panic(EPanicBadPointers11));
if (pointerToCurrentHzByte>=pointerToLastHzByte)
{
break;
}
++pointerToCurrentHzByte;
const TUint currentHzByte=*pointerToCurrentHzByte;
if (currentHzByte=='~')
{
++offsetFromGb2312IndexToHzIndex;
}
else
{
__ASSERT_DEBUG((currentHzByte=='{') || (currentHzByte=='}') || (currentHzByte==0x0a), Panic(EPanicBadTildeSequence));
offsetFromGb2312IndexToHzIndex+=2;
}
}
__ASSERT_DEBUG(pointerToCurrentHzByte<=pointerToLastHzByte, Panic(EPanicBadPointers12));
if (pointerToCurrentHzByte>=pointerToLastHzByte)
{
break;
}
++pointerToCurrentHzByte;
}
return hzIndex;
}
TInt CHZConverterImpl::ConvertToUnicode(
CCnvCharacterSetConverter::TEndianness aDefaultEndiannessOfForeignCharacters,
TDes16& aUnicode,
const TDesC8& aForeign,
TInt& aState,
TInt& aNumberOfUnconvertibleCharacters,
TInt& aIndexOfFirstByteOfFirstUnconvertibleCharacter)
{
aUnicode.SetLength(0);
TPtrC8 remainderOfHz(aForeign);
TInt numberOfHzBytesConsumed=0;
TUint outputConversionFlags=0;
TUint inputConversionFlags=CCnvCharacterSetConverter::EInputConversionFlagAppend;
const SCnvConversionData& gb2312ConversionData=CnvGb2312::ConversionData();
FOREVER
{
__ASSERT_DEBUG(numberOfHzBytesConsumed+remainderOfHz.Length()==aForeign.Length(), Panic(EPanicBadDescriptorSubDivision3));
#if defined(_DEBUG)
const TInt oldLengthOfRemainderOfHz=remainderOfHz.Length();
#endif
TBuf8<KLengthOfIntermediateBuffer> gb2312;
TPtrC8 hzBeingConsumed;
const TInt returnValue1=ConvertFromHzToHomogeneousGb2312(gb2312, hzBeingConsumed, remainderOfHz, aState, outputConversionFlags);
if (returnValue1<0)
{
return returnValue1; // this is an error-code
}
__ASSERT_DEBUG(returnValue1==0, Panic(EPanicBadReturnValue1));
__ASSERT_DEBUG(hzBeingConsumed.Length()+remainderOfHz.Length()==oldLengthOfRemainderOfHz, Panic(EPanicRemainderOfHzHasGotLonger));
if (hzBeingConsumed.Length()==0)
{
break;
}
TInt numberOfUnconvertibleCharacters;
TInt indexOfFirstByteOfFirstUnconvertibleCharacter;
const TInt returnValue2=CCnvCharacterSetConverter::DoConvertToUnicode(gb2312ConversionData, aDefaultEndiannessOfForeignCharacters, aUnicode, gb2312, numberOfUnconvertibleCharacters, indexOfFirstByteOfFirstUnconvertibleCharacter, outputConversionFlags, inputConversionFlags);
if (returnValue2<0)
{
return returnValue2; // this is an error-code
}
if (numberOfUnconvertibleCharacters>0)
{
if (aNumberOfUnconvertibleCharacters==0)
{
aIndexOfFirstByteOfFirstUnconvertibleCharacter=numberOfHzBytesConsumed+Gb2312IndexToHzIndex(hzBeingConsumed, indexOfFirstByteOfFirstUnconvertibleCharacter, EFalse);
}
aNumberOfUnconvertibleCharacters+=numberOfUnconvertibleCharacters;
}
if (returnValue2>0)
{
const TInt numberOfGb2312BytesConverted=gb2312.Length()-returnValue2;
__ASSERT_DEBUG(numberOfGb2312BytesConverted>=0, Panic(EPanicBadReturnValue2));
// don't call gb2312.SetLength(numberOfGb2312BytesConverted) as we want to access gb2312[numberOfGb2312BytesConverted] - in any case, gb2312's length is never going to be used again
// don't bother re-setting remainderOfHz as it won't be used again
numberOfHzBytesConsumed+=Gb2312IndexToHzIndex(hzBeingConsumed, numberOfGb2312BytesConverted, ETrue);
aState=(gb2312[numberOfGb2312BytesConverted]&0x80)? KIsInGbBlock: CCnvCharacterSetConverter::KStateDefault; // BBB: if the split (between the text that was converted and the text that wasn't converted) occurs on a boundary between some one-byte and some two-byte text, then aState corresponds to the state *after* the split (the code marked "AAA" checks this) - this means that we set aState according to gb2312[numberOfGb2312BytesConverted] rather than gb2312[numberOfGb2312BytesConverted-1]
break;
}
numberOfHzBytesConsumed+=hzBeingConsumed.Length();
remainderOfHz.Set(aForeign.Mid(numberOfHzBytesConsumed));
__ASSERT_DEBUG(numberOfHzBytesConsumed+remainderOfHz.Length()==aForeign.Length(), Panic(EPanicBadDescriptorSubDivision4));
if (remainderOfHz.Length()==0)
{
break;
}
if (numberOfHzBytesConsumed>0)
{
inputConversionFlags|=CCnvCharacterSetConverter::EInputConversionFlagAllowTruncatedInputNotEvenPartlyConsumable;
}
}
// N.B. remainderOfHz is in an undefined state by this point
if ((numberOfHzBytesConsumed==0) && (outputConversionFlags&CCnvCharacterSetConverter::EOutputConversionFlagInputIsTruncated))
{
return CCnvCharacterSetConverter::EErrorIllFormedInput;
}
return aForeign.Length()-numberOfHzBytesConsumed;
}
TBool CHZConverterImpl::IsInThisCharacterSetL(
TBool& aSetToTrue,
TInt& aConfidenceLevel,
const TDesC8& aSample)
{
aSetToTrue=ETrue;
TInt sampleLength = aSample.Length();
TInt pairOfTilde=0;
TInt occrenceOfNonHz=0;
aConfidenceLevel = 50;
// Hz encoding uses escape sequences...
for (TInt i = 0; i < sampleLength; ++i)
{
if (aSample[i]>0x7e)
occrenceOfNonHz++;
if (aSample[i]==0x7e)
{
TInt increment1 = i+1;
if (increment1 >= sampleLength)
break;
if ((aSample[increment1] == 0x7b)||(aSample[increment1] == 0x7d)||(aSample[increment1] == 0x7e))
{
pairOfTilde++;
i++;
}
}
}//for
if (sampleLength)
{
TInt occurrenceOftilde =2*pairOfTilde*100/sampleLength;
aConfidenceLevel=aConfidenceLevel-Max(0,(4-occurrenceOftilde));
aConfidenceLevel += occurrenceOftilde;
aConfidenceLevel -= ((occrenceOfNonHz*100)/sampleLength);
}
return ETrue;
}
CHZConverterImpl* CHZConverterImpl::NewL()
{
CHZConverterImpl* self = new(ELeave) CHZConverterImpl();
return self;
}
CHZConverterImpl::~CHZConverterImpl()
{
}
CHZConverterImpl::CHZConverterImpl()
{
}
const TImplementationProxy ImplementationTable[] =
{
IMPLEMENTATION_PROXY_ENTRY(0x10006065, CHZConverterImpl::NewL)
};
EXPORT_C const TImplementationProxy* ImplementationGroupProxy(TInt& aTableCount)
{
aTableCount = sizeof(ImplementationTable) / sizeof(TImplementationProxy);
return ImplementationTable;
}