usbdrv/peripheral/pdd/pil/src/descriptors.cpp
author hgs
Wed, 13 Oct 2010 18:04:14 +0800
changeset 55 3b97f0de7605
parent 33 089413cdde3c
child 59 bbdce6bffaad
permissions -rw-r--r--
201038_01

// Copyright (c) 2000-2010 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32/drivers/usbcc/descriptors.cpp
// Platform independent layer (PIL) of the USB Device controller driver:
// USB descriptor handling and management.
// 
//

/**
 @file descriptors.cpp
 @internalTechnology
*/

#include <kernel/kern_priv.h>
// #include <drivers/usbc.h>
#include <usb/usbc.h>


// Debug Support
static const char KUsbPanicCat[] = "USB PIL";


// --- TUsbcDescriptorBase

TUsbcDescriptorBase::TUsbcDescriptorBase()
    :
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
    iIndex(0),
#endif
    iBufPtr(NULL, 0)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorBase::TUsbcDescriptorBase()"));
    }


TUsbcDescriptorBase::~TUsbcDescriptorBase()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorBase::~TUsbcDescriptorBase()"));
    }


void TUsbcDescriptorBase::SetByte(TInt aPosition, TUint8 aValue)
    {
    iBufPtr[aPosition] = aValue;
    }


void TUsbcDescriptorBase::SetWord(TInt aPosition, TUint16 aValue)
    {
    *reinterpret_cast<TUint16*>(&iBufPtr[aPosition]) = SWAP_BYTES_16(aValue);
    }


TUint8 TUsbcDescriptorBase::Byte(TInt aPosition) const
    {
    return iBufPtr[aPosition];
    }


TUint16 TUsbcDescriptorBase::Word(TInt aPosition) const
    {
    return SWAP_BYTES_16(*reinterpret_cast<const TUint16*>(&iBufPtr[aPosition]));
    }


void TUsbcDescriptorBase::GetDescriptorData(TDes8& aBuffer) const
    {
    aBuffer = iBufPtr;
    }


TInt TUsbcDescriptorBase::GetDescriptorData(TUint8* aBuffer) const
    {
    memcpy(aBuffer, iBufPtr.Ptr(), Size());
    return Size();
    }


TInt TUsbcDescriptorBase::GetDescriptorData(TUint8* aBuffer, TUint aMaxSize) const
    {
    if (aMaxSize < Size())
        {
        // No use to copy only half a descriptor
        return 0;
        }
    return GetDescriptorData(aBuffer);
    }


const TDes8& TUsbcDescriptorBase::DescriptorData() const
    {
    return iBufPtr;
    }


TDes8& TUsbcDescriptorBase::DescriptorData()
    {
    return iBufPtr;
    }


TUint TUsbcDescriptorBase::Size() const
    {
    return iBufPtr.Size();
    }


TUint8 TUsbcDescriptorBase::Type() const
    {
    return iBufPtr[1];
    }


void TUsbcDescriptorBase::UpdateFs()
    {
    // virtual function can be overridden in derived classes.
    return;
    }


void TUsbcDescriptorBase::UpdateHs()
    {
    // virtual function can be overridden in derived classes.
    return;
    }


void TUsbcDescriptorBase::SetBufferPointer(const TDesC8& aDes)
    {
    iBufPtr.Set(const_cast<TUint8*>(aDes.Ptr()), aDes.Size(), aDes.Size());
    }


// --- TUsbcDeviceDescriptor

TUsbcDeviceDescriptor::TUsbcDeviceDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::TUsbcDeviceDescriptor()"));
    }


TUsbcDeviceDescriptor* TUsbcDeviceDescriptor::New(TUint8 aDeviceClass, TUint8 aDeviceSubClass,
                                                  TUint8 aDeviceProtocol, TUint8 aMaxPacketSize0,
                                                  TUint16 aVendorId, TUint16 aProductId,
                                                  TUint16 aDeviceRelease, TUint8 aNumConfigurations)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::New()"));
    TUsbcDeviceDescriptor* self = new TUsbcDeviceDescriptor();
    if (self)
        {
        if (self->Construct(aDeviceClass, aDeviceSubClass, aDeviceProtocol, aMaxPacketSize0, aVendorId,
                            aProductId, aDeviceRelease, aNumConfigurations) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcDeviceDescriptor::Construct(TUint8 aDeviceClass, TUint8 aDeviceSubClass, TUint8 aDeviceProtocol,
                                      TUint8 aMaxPacketSize0, TUint16 aVendorId, TUint16 aProductId,
                                      TUint16 aDeviceRelease, TUint8 aNumConfigurations)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::Construct()"));
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_Device;                            // bDescriptorType
    SetWord(2, KUsbcUsbVersion);                            // bcdUSB
    iBuf[4] = aDeviceClass;                                    // bDeviceClass
    iBuf[5] = aDeviceSubClass;                                // bDeviceSubClass
    iBuf[6] = aDeviceProtocol;                                // bDeviceProtocol
    iBuf[7] = aMaxPacketSize0;                                // bMaxPacketSize0
    SetWord(8, aVendorId);                                    // idVendor
    SetWord(10, aProductId);                                // idProduct
    SetWord(12, aDeviceRelease);                            // bcdDevice
    iBuf[14] = 0;                                            // iManufacturer
    iBuf[15] = 0;                                            // iProduct
    iBuf[16] = 0;                                            // iSerialNumber
    iBuf[17] = aNumConfigurations;                            // bNumConfigurations
    iEp0Size_Fs = aMaxPacketSize0;
    return KErrNone;
    }


void TUsbcDeviceDescriptor::UpdateFs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::UpdateFs()"));
    SetByte(7, iEp0Size_Fs);                                // bMaxPacketSize0
    }


void TUsbcDeviceDescriptor::UpdateHs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::UpdateHs()"));
    SetByte(7, 64);                                            // bMaxPacketSize0
    }


// --- TUsbcDeviceQualifierDescriptor

TUsbcDeviceQualifierDescriptor::TUsbcDeviceQualifierDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceDescriptor::TUsbcDeviceQualifierDescriptor()"));
    }


TUsbcDeviceQualifierDescriptor* TUsbcDeviceQualifierDescriptor::New(TUint8 aDeviceClass,
                                                                    TUint8 aDeviceSubClass,
                                                                    TUint8 aDeviceProtocol,
                                                                    TUint8 aMaxPacketSize0,
                                                                    TUint8 aNumConfigurations,
                                                                    TUint8 aReserved)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceQualifierDescriptor::New()"));
    TUsbcDeviceQualifierDescriptor* self = new TUsbcDeviceQualifierDescriptor();
    if (self)
        {
        if (self->Construct(aDeviceClass, aDeviceSubClass, aDeviceProtocol, aMaxPacketSize0,
                            aNumConfigurations, aReserved) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcDeviceQualifierDescriptor::Construct(TUint8 aDeviceClass, TUint8 aDeviceSubClass,
                                               TUint8 aDeviceProtocol, TUint8 aMaxPacketSize0,
                                               TUint8 aNumConfigurations, TUint8 aReserved)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceQualifierDescriptor::Construct()"));
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_DeviceQualifier;                    // bDescriptorType
    SetWord(2, KUsbcUsbVersion);                            // bcdUSB
    iBuf[4] = aDeviceClass;                                    // bDeviceClass
    iBuf[5] = aDeviceSubClass;                                // bDeviceSubClass
    iBuf[6] = aDeviceProtocol;                                // bDeviceProtocol
    iBuf[7] = aMaxPacketSize0;                                // bMaxPacketSize0
    iBuf[8] = aNumConfigurations;                            // bNumConfigurations
    if (aReserved) aReserved = 0;
    iBuf[9] = aReserved;                                    // Reserved for future use, must be zero
    iEp0Size_Fs = aMaxPacketSize0;
    return KErrNone;
    }


void TUsbcDeviceQualifierDescriptor::UpdateFs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceQualifierDescriptor::UpdateFs()"));
    // Here we do exactly the opposite of what's done in the Device descriptor (as this one's
    // documenting the 'other than the current speed').
    SetByte(7, 64);                                            // bMaxPacketSize0
    }


void TUsbcDeviceQualifierDescriptor::UpdateHs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDeviceQualifierDescriptor::UpdateHs()"));
    // Here we do exactly the opposite of what's done in the Device descriptor (as this one's
    // documenting the 'other than the current speed').
    SetByte(7, iEp0Size_Fs);                                // bMaxPacketSize0
    }


// --- TUsbcConfigDescriptor

TUsbcConfigDescriptor::TUsbcConfigDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfigDescriptor::TUsbcConfigDescriptor()"));
    }


TUsbcConfigDescriptor* TUsbcConfigDescriptor::New(TUint8 aConfigurationValue, TBool aSelfPowered,
                                                  TBool aRemoteWakeup, TUint16 aMaxPower)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfigDescriptor::New()"));
    TUsbcConfigDescriptor* self = new TUsbcConfigDescriptor();
    if (self)
        {
        if (self->Construct(aConfigurationValue, aSelfPowered, aRemoteWakeup, aMaxPower) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcConfigDescriptor::Construct(TUint8 aConfigurationValue, TBool aSelfPowered,
                                       TBool aRemoteWakeup, TUint16 aMaxPower)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfigDescriptor::Construct()"));
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_Config;                            // bDescriptorType
    SetWord(2, KUsbDescSize_Config);                        // wTotalLength
    iBuf[4] = 0;                                            // bNumInterfaces
    iBuf[5] = aConfigurationValue;                            // bConfigurationValue
    iBuf[6] = 0;                                            // iConfiguration
    iBuf[7] = 0x80 |
        (aSelfPowered ? KUsbDevAttr_SelfPowered : 0) |
        (aRemoteWakeup ? KUsbDevAttr_RemoteWakeup : 0);        // bmAttributes (bit 7 always 1)
    if (aMaxPower > 510)
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Invalid value for bMaxPower: %d", aMaxPower));
    iBuf[8] = aMaxPower / 2;                                // bMaxPower (2mA units!)
    return KErrNone;
    }


// --- TUsbcInterfaceDescriptor

TUsbcInterfaceDescriptor::TUsbcInterfaceDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceDescriptor::TUsbcInterfaceDescriptor()"));
    }


TUsbcInterfaceDescriptor* TUsbcInterfaceDescriptor::New(TUint8 aInterfaceNumber, TUint8 aAlternateSetting,
                                                        TInt aNumEndpoints, const TUsbcClassInfo& aClassInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceDescriptor::New()"));
    TUsbcInterfaceDescriptor* self = new TUsbcInterfaceDescriptor();
    if (self)
        {
        if (self->Construct(aInterfaceNumber, aAlternateSetting, aNumEndpoints, aClassInfo) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcInterfaceDescriptor::Construct(TUint8 aInterfaceNumber, TUint8 aAlternateSetting,
                                         TInt aNumEndpoints, const TUsbcClassInfo& aClassInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceDescriptor::Construct()"));
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_Interface;                        // bDescriptorType
    iBuf[2] = aInterfaceNumber;                                // bInterfaceNumber
    iBuf[3] = aAlternateSetting;                            // bAlternateSetting
    iBuf[4] = aNumEndpoints;                                // bNumEndpoints
    iBuf[5] = aClassInfo.iClassNum;                            // bInterfaceClass
    iBuf[6] = aClassInfo.iSubClassNum;                        // bInterfaceSubClass
    iBuf[7] = aClassInfo.iProtocolNum;                        // bInterfaceProtocol
    iBuf[8] = 0;                                            // iInterface
    return KErrNone;
    }


// --- TUsbcEndpointDescriptorBase

TUsbcEndpointDescriptorBase::TUsbcEndpointDescriptorBase()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptorBase::TUsbcEndpointDescriptorBase()"));
    }


TInt TUsbcEndpointDescriptorBase::Construct(const TUsbcEndpointInfo& aEpInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptorBase::Construct()"));
    //  Adjust FS/HS endpoint sizes
    if (aEpInfo.AdjustEpSizes(iEpSize_Fs, iEpSize_Hs) != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Unknown endpoint type: %d", aEpInfo.iType));
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Now set: iEpSize_Fs=%d iEpSize_Hs=%d (aEpInfo.iSize=%d)",
                                    iEpSize_Fs, iEpSize_Hs, aEpInfo.iSize));

    //  Adjust HS endpoint size for additional transactions
    if ((aEpInfo.iType == UsbShai::KUsbEpTypeIsochronous) || (aEpInfo.iType == UsbShai::KUsbEpTypeInterrupt))
        {
        if ((aEpInfo.iTransactions > 0) && (aEpInfo.iTransactions < 3))
            {
            // Bits 12..11 specify the number of additional transactions per microframe
            iEpSize_Hs |= (aEpInfo.iTransactions << 12);
            __KTRACE_OPT(KUSB, Kern::Printf("  Adjusted for add. transact.: iEpSize_Hs=0x%02x "
                                            "(aEpInfo.iTransactions=%d)",
                                            iEpSize_Hs, aEpInfo.iTransactions));
            }
        else if (aEpInfo.iTransactions != 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Invalid iTransactions value: %d (ignored)",
                                              aEpInfo.iTransactions));
            }
        }

    //  Adjust HS polling interval
    TUsbcEndpointInfo info(aEpInfo);                        // create local writeable copy
    if (info.AdjustPollInterval() != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Unknown ep type (%d) or invalid interval value (%d)",
                                          info.iType, info.iInterval));
        }
    iInterval_Fs = info.iInterval;
    iInterval_Hs = info.iInterval_Hs;
    __KTRACE_OPT(KUSB, Kern::Printf("  Now set: iInterval_Fs=%d iInterval_Hs=%d",
                                    iInterval_Fs, iInterval_Hs));
    return KErrNone;
    }


void TUsbcEndpointDescriptorBase::UpdateFs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptorBase::UpdateFs()"));
    // (TUsbcEndpointDescriptorBase's FS/HS endpoint sizes and interval values got
    //  adjusted in its Construct() method.)
    SetWord(4, iEpSize_Fs);                                    // wMaxPacketSize
    SetByte(6, iInterval_Fs);                                // bInterval
    }


void TUsbcEndpointDescriptorBase::UpdateHs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptorBase::UpdateHs()"));
    // (TUsbcEndpointDescriptorBase's FS/HS endpoint sizes and interval values get
    //  adjusted in its Construct() method.)
    SetWord(4, iEpSize_Hs);                                    // wMaxPacketSize
    SetByte(6, iInterval_Hs);                                // bInterval
    }


// --- TUsbcEndpointDescriptor

TUsbcEndpointDescriptor::TUsbcEndpointDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptor::TUsbcEndpointDescriptor()"));
    }


TUsbcEndpointDescriptor* TUsbcEndpointDescriptor::New(TUint8 aEndpointAddress,
                                                      const TUsbcEndpointInfo& aEpInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptor::New()"));
    TUsbcEndpointDescriptor* self = new TUsbcEndpointDescriptor();
    if (self)
        {
        if (self->Construct(aEndpointAddress, aEpInfo) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcEndpointDescriptor::Construct(TUint8 aEndpointAddress, const TUsbcEndpointInfo& aEpInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcEndpointDescriptor::Construct()"));
    (void) TUsbcEndpointDescriptorBase::Construct(aEpInfo);    // Init Base class
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_Endpoint;                        // bDescriptorType
    iBuf[2] = aEndpointAddress;                                // bEndpointAddress
    iBuf[3] = EpTypeMask2Value(aEpInfo.iType);                // bmAttributes
    SetWord(4, iEpSize_Fs);                                    // wMaxPacketSize (default is FS)
    iBuf[6] = iInterval_Fs;                                    // bInterval (default is FS)
    return KErrNone;
    }


// --- TUsbcAudioEndpointDescriptor

TUsbcAudioEndpointDescriptor::TUsbcAudioEndpointDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcAudioEndpointDescriptor::TUsbcAudioEndpointDescriptor()"));
    }


TUsbcAudioEndpointDescriptor* TUsbcAudioEndpointDescriptor::New(TUint8 aEndpointAddress,
                                                                const TUsbcEndpointInfo& aEpInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcAudioEndpointDescriptor::New()"));
    TUsbcAudioEndpointDescriptor* self = new TUsbcAudioEndpointDescriptor();
    if (self)
        {
        if (self->Construct(aEndpointAddress, aEpInfo) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcAudioEndpointDescriptor::Construct(TUint8 aEndpointAddress, const TUsbcEndpointInfo& aEpInfo)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcAudioEndpointDescriptor::Construct()"));
    (void) TUsbcEndpointDescriptorBase::Construct(aEpInfo);    // Init Base class
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBuf[0] = iBuf.Size();                                    // bLength
    iBuf[1] = KUsbDescType_Endpoint;                        // bDescriptorType
    iBuf[2] = aEndpointAddress;                                // bEndpointAddress
    iBuf[3] = EpTypeMask2Value(aEpInfo.iType);                // bmAttributes
    SetWord(4, iEpSize_Fs);                                    // wMaxPacketSize (default is FS)
    iBuf[6] = iInterval_Fs;                                    // bInterval (default is FS)
    iBuf[7] = 0;
    iBuf[8] = 0;
    return KErrNone;
    }


// --- TUsbcOtgDescriptor

TUsbcOtgDescriptor* TUsbcOtgDescriptor::New(TBool aHnpSupport, TBool aSrpSupport)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcOtgDescriptor::New()"));
    TUsbcOtgDescriptor* self = new TUsbcOtgDescriptor();
    if (self && (self->Construct(aHnpSupport, aSrpSupport) != KErrNone))
        {
        delete self;
        return NULL;
        }
    return self;
    }


TUsbcOtgDescriptor::TUsbcOtgDescriptor()
    : iBuf()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcOtgDescriptor::TUsbcOtgDescriptor()"));
    }


TInt TUsbcOtgDescriptor::Construct(TBool aHnpSupport, TBool aSrpSupport)
	{
	__KTRACE_OPT(KUSB, Kern::Printf("TUsbcOtgDescriptor::Construct()"));
	iBuf.SetMax();
	SetBufferPointer(iBuf);
	iBuf[0] = iBuf.Size();									// bLength
	iBuf[1] = KUsbDescType_Otg;								// bDescriptorType
  // B HNP not supported which is temporarily hard coded here. 
	iBuf[2] = ( aHnpSupport ? 0 : 0 ) | ( aSrpSupport ? KUsbOtgAttr_SrpSupp : 0 );			// bmAttributes			
	iBuf[3] = KUsbOtgDesc_bcdOTG & 0x00ff;
  iBuf[4] = ( KUsbOtgDesc_bcdOTG >> 8 ) & 0x00ff;
		
	return KErrNone;
    }


// --- TUsbcClassSpecificDescriptor

TUsbcClassSpecificDescriptor::TUsbcClassSpecificDescriptor()
    : iBuf(NULL)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcClassSpecificDescriptor::TUsbcClassSpecificDescriptor()"));
    }


TUsbcClassSpecificDescriptor::~TUsbcClassSpecificDescriptor()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcClassSpecificDescriptor::~TUsbcClassSpecificDescriptor()"));
    delete iBuf;
    }


TUsbcClassSpecificDescriptor* TUsbcClassSpecificDescriptor::New(TUint8 aType, TInt aSize)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcClassSpecificDescriptor::New()"));
    TUsbcClassSpecificDescriptor* self = new TUsbcClassSpecificDescriptor();
    if (self)
        {
        if (self->Construct(aType, aSize) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcClassSpecificDescriptor::Construct(TUint8 aType, TInt aSize)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcClassSpecificDescriptor::Construct()"));
    iBuf = HBuf8::New(aSize);
    if (!iBuf)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Allocation of CS desc buffer failed"));
        return KErrNoMemory;
        }
    iBuf->SetMax();
    SetBufferPointer(*iBuf);
    SetByte(1, aType);                                        // bDescriptorType
    return KErrNone;
    }


// --- TUsbcStringDescriptorBase

TUsbcStringDescriptorBase::TUsbcStringDescriptorBase()
    : /*iIndex(0),*/ iSBuf(0), iBufPtr(NULL, 0)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptorBase::TUsbcStringDescriptorBase()"));
    }


TUsbcStringDescriptorBase::~TUsbcStringDescriptorBase()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptorBase::~TUsbcStringDescriptorBase()"));
    }


TUint16 TUsbcStringDescriptorBase::Word(TInt aPosition) const
    {
    if (aPosition <= 1)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Word(%d) in string descriptor "
                                          "(TUsbcStringDescriptorBase::Word)", aPosition));
        return 0;
        }
    else
        {
        // since iBufPtr[0] is actually string descriptor byte index 2,
        // we have to subtract 2 from the absolute position.
        return SWAP_BYTES_16(*reinterpret_cast<const TUint16*>(&iBufPtr[aPosition - 2]));
        }
    }


void TUsbcStringDescriptorBase::SetWord(TInt aPosition, TUint16 aValue)
    {
    if (aPosition <= 1)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: SetWord(%d) in string descriptor "
                                          "(TUsbcStringDescriptorBase::SetWord)", aPosition));
        return;
        }
    else
        {
        // since iBufPtr[0] is actually string descriptor byte index 2,
        // we have to subtract 2 from the absolute position.
        *reinterpret_cast<TUint16*>(&iBufPtr[aPosition - 2]) = SWAP_BYTES_16(aValue);
        }
    }


TInt TUsbcStringDescriptorBase::GetDescriptorData(TUint8* aBuffer) const
    {
    aBuffer[0] = iSBuf[0];
    aBuffer[1] = iSBuf[1];
    memcpy(&aBuffer[2], iBufPtr.Ptr(), iBufPtr.Size());
    return Size();
    }


TInt TUsbcStringDescriptorBase::GetDescriptorData(TUint8* aBuffer, TUint aMaxSize) const
    {
    if (aMaxSize < Size())
        {
        // No use to copy only half a string
        return 0;
        }
    return GetDescriptorData(aBuffer);
    }


const TDes8& TUsbcStringDescriptorBase::StringData() const
    {
    return iBufPtr;
    }


TDes8& TUsbcStringDescriptorBase::StringData()
    {
    return iBufPtr;
    }


TUint TUsbcStringDescriptorBase::Size() const
    {
    return iSBuf[0];
    }


void TUsbcStringDescriptorBase::SetBufferPointer(const TDesC8& aDes)
    {
    iBufPtr.Set(const_cast<TUint8*>(aDes.Ptr()), aDes.Size(), aDes.Size());
    }


// --- TUsbcStringDescriptor

TUsbcStringDescriptor::TUsbcStringDescriptor()
    : iBuf(NULL)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptor::TUsbcStringDescriptor()"));
    }


TUsbcStringDescriptor::~TUsbcStringDescriptor()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptor::~TUsbcStringDescriptor()"));
    delete iBuf;
    }


TUsbcStringDescriptor* TUsbcStringDescriptor::New(const TDesC8& aString)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptor::New"));
    TUsbcStringDescriptor* self = new TUsbcStringDescriptor();
    if (self)
        {
        if (self->Construct(aString) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcStringDescriptor::Construct(const TDesC8& aString)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcStringDescriptor::Construct"));
    iBuf = HBuf8::New(aString.Size());                        // bytes, not UNICODE chars
    if (!iBuf)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Allocation of string buffer failed"));
        return KErrNoMemory;
        }
    iBuf->SetMax();
    SetBufferPointer(*iBuf);
    iBufPtr.Copy(aString);
    iSBuf.SetMax();
    iSBuf[0] = iBuf->Size() + 2;                            // Bytes
    iSBuf[1] = KUsbDescType_String;
    return KErrNone;
    }


// --- TUsbcLangIdDescriptor

TUsbcLangIdDescriptor::TUsbcLangIdDescriptor()
    : iBuf(NULL)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLangIdDescriptor::TUsbcLangIdDescriptor()"));
    }


TUsbcLangIdDescriptor::~TUsbcLangIdDescriptor()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLangIdDescriptor::~TUsbcLangIdDescriptor()"));
    }


TUsbcLangIdDescriptor* TUsbcLangIdDescriptor::New(TUint16 aLangId)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLangIdDescriptor::New"));
    TUsbcLangIdDescriptor* self = new TUsbcLangIdDescriptor();
    if (self)
        {
        if (self->Construct(aLangId) != KErrNone)
            {
            delete self;
            return NULL;
            }
        }
    return self;
    }


TInt TUsbcLangIdDescriptor::Construct(TUint16 aLangId)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLangIdDescriptor::Construct"));
    iBuf.SetMax();
    SetBufferPointer(iBuf);
    iBufPtr[0] = LowByte(SWAP_BYTES_16(aLangId));            // Language ID value
    iBufPtr[1] = HighByte(SWAP_BYTES_16(aLangId));
    iSBuf.SetMax();
    iSBuf[0] = iBuf.Size() + 2;                                // Bytes
    iSBuf[1] = KUsbDescType_String;
    return KErrNone;
    }


// --- TUsbcDescriptorPool

TUsbcDescriptorPool::TUsbcDescriptorPool(TUint8* aEp0_TxBuf)
//
//    The constructor for this class.
//
    : iDescriptors(), iStrings(), iIfcIdx(0), iEp0_TxBuf(aEp0_TxBuf), iHighSpeed(EFalse)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::TUsbcDescriptorPool()"));
    }


TUsbcDescriptorPool::~TUsbcDescriptorPool()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::~TUsbcDescriptorPool()"));
    // The destructor of each <class T> object is called before the objects themselves are destroyed.
    __KTRACE_OPT(KUSB, Kern::Printf("  iDescriptors.Count(): %d", iDescriptors.Count()));
    iDescriptors.ResetAndDestroy();
    __KTRACE_OPT(KUSB, Kern::Printf("  iStrings.Count(): %d", iStrings.Count()));
    iStrings.ResetAndDestroy();
    }


TInt TUsbcDescriptorPool::Init(TUsbcDeviceDescriptor* aDeviceDesc, TUsbcConfigDescriptor* aConfigDesc,
                               TUsbcLangIdDescriptor* aLangId, TUsbcStringDescriptor* aManufacturer,
                               TUsbcStringDescriptor* aProduct, TUsbcStringDescriptor* aSerialNum,
                               TUsbcStringDescriptor* aConfig, TUsbcOtgDescriptor* aOtgDesc)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::Init()"));
    if (!aDeviceDesc || !aConfigDesc)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Device or Config descriptor specified"));
        return KErrArgument;
        }
    for (TInt n = 0; n < KDescPosition_FirstAvailable; n++)
        {
        iDescriptors.Append(NULL);
        }
    __ASSERT_DEBUG((iDescriptors.Count() == KDescPosition_FirstAvailable),
                   Kern::Printf("  Error: iDescriptors.Count() (%d) != KDescPosition_FirstAvailable (%d)",
                                iDescriptors.Count(), KDescPosition_FirstAvailable));
    iDescriptors[KDescPosition_Device] = aDeviceDesc;
    iDescriptors[KDescPosition_Config] = aConfigDesc;
    if (aOtgDesc)
        {
        iDescriptors[KDescPosition_Otg] = aOtgDesc;
        // Update the config descriptor's wTotalLength field
        UpdateConfigDescriptorLength(KUsbDescSize_Otg);
        }
    if (!aLangId)
        {
        // USB spec 9.6.7 says: "String index zero for all languages returns a string descriptor
        // that contains an array of two-byte LANGID codes supported by the device. ...
        // USB devices that omit all string descriptors must not return an array of LANGID codes."
        // So if we have at least one string descriptor, we must also have a LANGID descriptor.
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: No LANGID string descriptor specified"));
        return KErrArgument;
        }
    iStrings.Insert(aLangId, KStringPosition_Langid);
    iStrings.Insert(aManufacturer, KStringPosition_Manufact);
    iStrings.Insert(aProduct, KStringPosition_Product);
    iStrings.Insert(aSerialNum, KStringPosition_Serial);
    iStrings.Insert(aConfig, KStringPosition_Config);
    __ASSERT_DEBUG((iStrings.Count() == 5),
                   Kern::Printf("  Error: iStrings.Count() != 5 (%d)", iStrings.Count()));
#ifdef _DEBUG
    for (TInt i = KStringPosition_Langid; i <= KStringPosition_Config; i++)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool.iStrings[%d] = 0x%x", i, iStrings[i]));
        }
#endif
    // Set string indices
    if (aManufacturer)
        iDescriptors[KDescPosition_Device]->SetByte(KUsbDescStringIndex_Manufact,
                                                    KStringPosition_Manufact);
    if (aProduct)
        iDescriptors[KDescPosition_Device]->SetByte(KUsbDescStringIndex_Product,
                                                    KStringPosition_Product);
    if (aSerialNum)
        iDescriptors[KDescPosition_Device]->SetByte(KUsbDescStringIndex_Serial,
                                                    KStringPosition_Serial);
    if (aConfig)
        iDescriptors[KDescPosition_Config]->SetByte(KUsbDescStringIndex_Config,
                                                    KStringPosition_Config);
    return KErrNone;
    }


TInt TUsbcDescriptorPool::InitHs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::InitHs()"));
    __ASSERT_DEBUG((iDescriptors.Count() >= KDescPosition_FirstAvailable),
                   Kern::Printf("  Error: Call Init() first)"));

    TUsbcDeviceQualifierDescriptor* const dq_desc = TUsbcDeviceQualifierDescriptor::New(
        iDescriptors[KDescPosition_Device]->Byte(4),        // aDeviceClass
        iDescriptors[KDescPosition_Device]->Byte(5),        // aDeviceSubClass
        iDescriptors[KDescPosition_Device]->Byte(6),        // aDeviceProtocol
        iDescriptors[KDescPosition_Device]->Byte(7),        // aMaxPacketSize0
        iDescriptors[KDescPosition_Device]->Byte(17));        // aNumConfigurations
    if (!dq_desc)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for dev qualif desc failed."));
        return KErrGeneral;
        }
    iDescriptors[KDescPosition_DeviceQualifier] = dq_desc;

    TUsbcOtherSpeedConfigDescriptor* const osc_desc = TUsbcOtherSpeedConfigDescriptor::New(
        iDescriptors[KDescPosition_Config]->Byte(5),        // aConfigurationValue
        iDescriptors[KDescPosition_Config]->Byte(7) & KUsbDevAttr_SelfPowered, // aSelfPowered
        iDescriptors[KDescPosition_Config]->Byte(7) & KUsbDevAttr_RemoteWakeup,    // aRemoteWakeup
        iDescriptors[KDescPosition_Config]->Byte(8) * 2);    // aMaxPower (mA)
    if (!osc_desc)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for other speed conf desc failed."));
        return KErrGeneral;
        }

    // We need to set the bDescriptorType field manually, as that's the only one
    // that differs from a Configuration descriptor.
    osc_desc->SetByte(1, KUsbDescType_OtherSpeedConfig);

    // Also, initially we set the iConfiguration string index to the same value as
    // in the Configuration descriptor.
    osc_desc->SetByte(KUsbDescStringIndex_Config,
                      iDescriptors[KDescPosition_Config]->Byte(KUsbDescStringIndex_Config));

    iDescriptors[KDescPosition_OtherSpeedConfig] = osc_desc;

    return KErrNone;
    }


TInt TUsbcDescriptorPool::UpdateDescriptorsFs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::UpdateDescriptorsFs()"));
    const TInt count = iDescriptors.Count();
    for (TInt i = KDescPosition_FirstAvailable; i < count; i++)
        {
        TUsbcDescriptorBase* const ptr = iDescriptors[i];
        ptr->UpdateFs();
        }
    iHighSpeed = EFalse;
    return KErrNone;
    }


TInt TUsbcDescriptorPool::UpdateDescriptorsHs()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::UpdateDescriptorsHs()"));
    const TInt count = iDescriptors.Count();
    for (TInt i = KDescPosition_FirstAvailable; i < count; i++)
        {
        TUsbcDescriptorBase* const ptr = iDescriptors[i];
        ptr->UpdateHs();
        }
    iHighSpeed = ETrue;
    return KErrNone;
    }


//
// An error can be indicated by either a return value != KErrNone or by a descriptor size == 0.
//
TInt TUsbcDescriptorPool::FindDescriptor(TUint8 aType, TUint8 aIndex, TUint16 aLangid, TInt& aSize) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::FindDescriptor()"));
    TInt result = KErrGeneral;
    switch (aType)
        {
    case KUsbDescType_Device:
        if (aLangid != 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad langid: 0x%04x", aLangid));
            }
        else if (aIndex > 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad device index: %d", aIndex));
            }
        else
            {
            aSize = GetDeviceDescriptor(KDescPosition_Device);
            result = KErrNone;
            }
        break;
    case KUsbDescType_Config:
        if (aLangid != 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad langid: 0x%04x", aLangid));
            }
        else if (aIndex > 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad config index: %d", aIndex));
            }
        else
            {
            aSize = GetConfigurationDescriptor(KDescPosition_Config);
            result = KErrNone;
            }
        break;
    case KUsbDescType_DeviceQualifier:
        if (aLangid != 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad langid: 0x%04x", aLangid));
            }
        else if (aIndex > 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad device index: %d", aIndex));
            }
        else
            {
            aSize = GetDeviceDescriptor(KDescPosition_DeviceQualifier);
            result = KErrNone;
            }
        break;
    case KUsbDescType_OtherSpeedConfig:
        if (aLangid != 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad langid: 0x%04x", aLangid));
            }
        else if (aIndex > 0)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bad config index: %d", aIndex));
            }
        else
            {
            aSize = GetConfigurationDescriptor(KDescPosition_OtherSpeedConfig);
            result = KErrNone;
            }
        break;
    case KUsbDescType_Otg:
        aSize = GetOtgDescriptor();
        result = KErrNone;
        break;
    case KUsbDescType_String:
        if (aIndex == 0)                                    // 0 addresses the LangId array
            {
            if (AnyStringDescriptors())
                {
                aSize = GetStringDescriptor(aIndex);
                result = KErrNone;
                }
            else
                {
                __KTRACE_OPT(KUSB, Kern::Printf("  No string descriptors: not returning LANGID array"));
                }
            }
        else
            {
               if (!aLangid)
                   {
                   __KTRACE_OPT(KUSB,
                              Kern::Printf("  Strange: LANGID=0 for a $ descriptor (ignoring LANGID)"));
                // The USB spec doesn't really say what to do in this case, but as there are host apps
                // that fail if we return an error here, we choose to ignore the issue.
                   }
            else if (aLangid != iStrings[KStringPosition_Langid]->Word(2))
                {
                // We have only one (this) language
                __KTRACE_OPT(KUSB,
                             Kern::Printf("  Bad LANGID: 0x%04X requested, 0x%04X supported (ignoring LANGID)",
                                          aLangid, iStrings[KStringPosition_Langid]->Word(2)));
                // We could return an error here, but rather choose to ignore the discrepancy
                // (the USB spec is not very clear what to do in such a case anyway).
                }
            aSize = GetStringDescriptor(aIndex);
            result = KErrNone;
            }
        break;
    case KUsbDescType_CS_Interface:
        /* fall through */
    case KUsbDescType_CS_Endpoint:
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: finding of class specific descriptors not supported"));
        break;
    default:
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: unknown descriptor type requested: %d", aType));
        break;
        }
    return result;
    }


void TUsbcDescriptorPool::InsertDescriptor(TUsbcDescriptorBase* aDesc)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::InsertDescriptor()"));
    switch (aDesc->Type())
        {
    case KUsbDescType_Interface:
        InsertIfcDesc(aDesc);
        break;
    case KUsbDescType_Endpoint:
        InsertEpDesc(aDesc);
        break;
    default:
        __KTRACE_OPT(KUSB, Kern::Printf("  Error: unsupported descriptor type"));
        }
    }


void TUsbcDescriptorPool::SetIfcStringDescriptor(TUsbcStringDescriptor* aDesc, TInt aNumber, TInt aSetting)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetIfcDescriptor(%d, %d)", aNumber, aSetting));
    const TInt i = FindIfcDescriptor(aNumber, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Ifc descriptor not found (%d, %d)",
                                          aNumber, aSetting));
        return;
        }
    // Try to find available NULL postition
    TInt str_idx = FindAvailableStringPos();
    if (str_idx >= 0)
        {
        // Insert string descriptor for specified interface
        ExchangeStringDescriptor(str_idx, aDesc);
        }
    else
        {
        // No NULL found - expand array
        str_idx = iStrings.Count();
        if (str_idx > 0xff)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: $ descriptor array full (idx=%d)", str_idx));
            return;
            }
        while (str_idx < KStringPosition_FirstAvailable)
            {
            iStrings.Append(NULL);
            str_idx = iStrings.Count();
            }
        // Append string descriptor for specified interface
        iStrings.Append(aDesc);
        }
    // Update this ifc descriptor's string index field
    iDescriptors[i]->SetByte(8, str_idx);
    __KTRACE_OPT(KUSB, Kern::Printf("  String for ifc %d/%d (@ pos %d): \"%S\"", aNumber, aSetting, str_idx,
                                    &iStrings[str_idx]->StringData()));
    }


void TUsbcDescriptorPool::DeleteIfcDescriptor(TInt aNumber, TInt aSetting)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::DeleteIfcDescriptor(%d, %d)", aNumber, aSetting));
    const TInt i = FindIfcDescriptor(aNumber, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: DeleteIfcDescriptor - descriptor not found (%d, %d)",
                                          aNumber, aSetting));
        return;
        }
    // Delete (if necessary) specified interface's string descriptor
    const TInt si = iDescriptors[i]->Byte(8);
    if (si != 0)
        {
        ExchangeStringDescriptor(si, NULL);
        }
    // Delete specified ifc setting + all its cs descriptors + all its endpoints + all their cs descriptors:
    // find position of the next interface descriptor: we need to delete everything in between
    const TInt count = iDescriptors.Count();
    TInt j = i, n = 1;
    while (++j < count && iDescriptors[j]->Type() != KUsbDescType_Interface)
        ++n;
    DeleteDescriptors(i, n);
    // Update all the following interfaces' bInterfaceNumber field if required
    // (because those descriptors might have moved down by one position)
    UpdateIfcNumbers(aNumber);
    iIfcIdx = 0;                                            // ifc index no longer valid
    }


// The TC in many of the following functions stands for 'ThreadCopy',
// because that's what's happening there.

TInt TUsbcDescriptorPool::GetDeviceDescriptorTC(DThread* aThread, TDes8& aBuffer) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetDeviceDescriptorTC()"));
    return Kern::ThreadDesWrite(aThread, &aBuffer, iDescriptors[KDescPosition_Device]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetDeviceDescriptorTC(DThread* aThread, const TDes8& aBuffer)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetDeviceDescriptorTC()"));
    TBuf8<KUsbDescSize_Device> device;
    const TInt r = Kern::ThreadDesRead(aThread, &aBuffer, device, 0);
    if (r != KErrNone)
        {
        return r;
        }
    iDescriptors[KDescPosition_Device]->SetByte(2, device[2]); // bcdUSB
    iDescriptors[KDescPosition_Device]->SetByte(3, device[3]); // bcdUSB (part II)
    iDescriptors[KDescPosition_Device]->SetByte(4, device[4]); // bDeviceClass
    iDescriptors[KDescPosition_Device]->SetByte(5, device[5]); // bDeviceSubClass
    iDescriptors[KDescPosition_Device]->SetByte(6, device[6]); // bDeviceProtocol
    iDescriptors[KDescPosition_Device]->SetByte(8, device[8]); // idVendor
    iDescriptors[KDescPosition_Device]->SetByte(9, device[9]); // idVendor (part II)
    iDescriptors[KDescPosition_Device]->SetByte(10, device[10]); // idProduct
    iDescriptors[KDescPosition_Device]->SetByte(11, device[11]); // idProduct (part II)
    iDescriptors[KDescPosition_Device]->SetByte(12, device[12]); // bcdDevice
    iDescriptors[KDescPosition_Device]->SetByte(13, device[13]); // bcdDevice (part II)
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetConfigurationDescriptorTC(DThread* aThread, TDes8& aBuffer) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetConfigurationDescriptorTC()"));
    return Kern::ThreadDesWrite(aThread, &aBuffer, iDescriptors[KDescPosition_Config]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetConfigurationDescriptorTC(DThread* aThread, const TDes8& aBuffer)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetConfigurationDescriptorTC()"));
    TBuf8<KUsbDescSize_Config> config;
    const TInt r = Kern::ThreadDesRead(aThread, &aBuffer, config, 0);
    if (r != KErrNone)
        {
        return r;
        }
    iDescriptors[KDescPosition_Config]->SetByte(7, config[7]); // bmAttributes
    iDescriptors[KDescPosition_Config]->SetByte(8, config[8]); // bMaxPower
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetOtgDescriptorTC(DThread* aThread, TDes8& aBuffer) const
    {
    return Kern::ThreadDesWrite(aThread, &aBuffer, iDescriptors[KDescPosition_Otg]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetOtgDescriptor(const TDesC8& aBuffer)
    {
    iDescriptors[KDescPosition_Otg]->SetByte(2, aBuffer[2]); // bmAttributes
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetInterfaceDescriptorTC(DThread* aThread, TDes8& aBuffer,
                                                   TInt aInterface, TInt aSetting) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetInterfaceDescriptorTC()"));
    const TInt i = FindIfcDescriptor(aInterface, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return KErrNotFound;
        }
    return Kern::ThreadDesWrite(aThread, &aBuffer, iDescriptors[i]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetInterfaceDescriptor(const TDes8& aBuffer, TInt aInterface, TInt aSetting)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetInterfaceDescriptor()"));
    const TInt i = FindIfcDescriptor(aInterface, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return KErrNotFound;
        }
    iDescriptors[i]->SetByte(2, aBuffer[2]);                // bInterfaceNumber
    iDescriptors[i]->SetByte(5, aBuffer[5]);                // bInterfaceClass
    iDescriptors[i]->SetByte(6, aBuffer[6]);                // bInterfaceSubClass
    iDescriptors[i]->SetByte(7, aBuffer[7]);                // bInterfaceProtocol
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetEndpointDescriptorTC(DThread* aThread, TDes8& aBuffer,
                                                  TInt aInterface, TInt aSetting, TUint8 aEndpointAddress) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetEndpointDescriptorTC()"));
    const TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    return Kern::ThreadDesWrite(aThread, &aBuffer, iDescriptors[i]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetEndpointDescriptorTC(DThread* aThread, const TDes8& aBuffer,
                                                  TInt aInterface, TInt aSetting, TUint8 aEndpointAddress)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetEndpointDescriptorTC()"));
    const TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    TBuf8<KUsbDescSize_AudioEndpoint> ep;                    // it could be an audio endpoint
    const TInt r = Kern::ThreadDesRead(aThread, &aBuffer, ep, 0);
    if (r != KErrNone)
        {
        return r;
        }
    iDescriptors[i]->SetByte(3, ep[3]);                        // bmAttributes
    iDescriptors[i]->SetByte(6, ep[6]);                        // bInterval
    if (iDescriptors[i]->Size() == KUsbDescSize_AudioEndpoint)
        {
        iDescriptors[i]->SetByte(7, ep[7]);                    // bRefresh
        iDescriptors[i]->SetByte(8, ep[8]);                    // bSynchAddress
        }
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetEndpointDescriptorSize(TInt aInterface, TInt aSetting, TUint8 aEndpointAddress,
                                                    TInt& aSize) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetEndpointDescriptorSize()"));
    const TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    aSize = iDescriptors[i]->Size();
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetDeviceQualifierDescriptorTC(DThread* aThread, TDes8& aBuffer) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetDeviceQualifierDescriptorTC()"));
    if (iDescriptors[KDescPosition_DeviceQualifier] == NULL)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Device_Qualifier descriptor not supported"));
        return KErrNotSupported;
        }
    return Kern::ThreadDesWrite(aThread, &aBuffer,
                                iDescriptors[KDescPosition_DeviceQualifier]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetDeviceQualifierDescriptorTC(DThread* aThread, const TDes8& aBuffer)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetDeviceQualifierDescriptorTC()"));
    if (iDescriptors[KDescPosition_DeviceQualifier] == NULL)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Device_Qualifier descriptor not supported"));
        return KErrNotSupported;
        }
    TBuf8<KUsbDescSize_DeviceQualifier> device;
    const TInt r = Kern::ThreadDesRead(aThread, &aBuffer, device, 0);
    if (r != KErrNone)
        {
        return r;
        }
    iDescriptors[KDescPosition_DeviceQualifier]->SetByte(2, device[2]); // bcdUSB
    iDescriptors[KDescPosition_DeviceQualifier]->SetByte(3, device[3]); // bcdUSB (part II)
    iDescriptors[KDescPosition_DeviceQualifier]->SetByte(4, device[4]); // bDeviceClass
    iDescriptors[KDescPosition_DeviceQualifier]->SetByte(5, device[5]); // bDeviceSubClass
    iDescriptors[KDescPosition_DeviceQualifier]->SetByte(6, device[6]); // bDeviceProtocol
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetOtherSpeedConfigurationDescriptorTC(DThread* aThread, TDes8& aBuffer) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetOtherSpeedConfigurationDescriptorTC()"));
    if (iDescriptors[KDescPosition_OtherSpeedConfig] == NULL)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Other_Speed_Configuration descriptor not supported"));
        return KErrNotSupported;
        }
    return Kern::ThreadDesWrite(aThread, &aBuffer,
                                iDescriptors[KDescPosition_OtherSpeedConfig]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::SetOtherSpeedConfigurationDescriptorTC(DThread* aThread, const TDes8& aBuffer)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetOtherSpeedConfigurationDescriptorTC()"));
    if (iDescriptors[KDescPosition_OtherSpeedConfig] == NULL)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Other_Speed_Configuration descriptor not supported"));
        return KErrNotSupported;
        }
    TBuf8<KUsbDescSize_OtherSpeedConfig> config;
    const TInt r = Kern::ThreadDesRead(aThread, &aBuffer, config, 0);
    if (r != KErrNone)
        {
        return r;
        }
    iDescriptors[KDescPosition_OtherSpeedConfig]->SetByte(7, config[7]); // bmAttributes
    iDescriptors[KDescPosition_OtherSpeedConfig]->SetByte(8, config[8]); // bMaxPower
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetCSInterfaceDescriptorTC(DThread* aThread, TDes8& aBuffer,
                                                     TInt aInterface, TInt aSetting) const
    {
    // first find the interface
    TInt i = FindIfcDescriptor(aInterface, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return KErrNotFound;
        }
    TInt r = KErrNotFound;
    TInt offset = 0;
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Interface)
        {
        r = Kern::ThreadDesWrite(aThread, &aBuffer,
                                 iDescriptors[i]->DescriptorData(), offset);
        if (r != KErrNone)
            break;
        offset += iDescriptors[i]->Size();
        }
    return r;
    }


TInt TUsbcDescriptorPool::SetCSInterfaceDescriptorTC(DThread* aThread, const TDes8& aBuffer,
                                                     TInt aInterface, TInt aSetting, TInt aSize)
    {
    // First find the interface
    TInt i = FindIfcDescriptor(aInterface, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return KErrNotFound;
        }
    // Find a position where to insert the new class specific interface descriptor(s)
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Interface)
        ;
    // Create a new cs descriptor
    TUsbcClassSpecificDescriptor* desc = TUsbcClassSpecificDescriptor::New(KUsbDescType_CS_Interface, aSize);
    if (!desc)
        {
        return KErrNoMemory;
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  inserting descriptor at position %d", i));
    iDescriptors.Insert(desc, i);

    // Update the config descriptor's wTotalLength field
    UpdateConfigDescriptorLength(aSize);

    // Copy contents from the user side
    return Kern::ThreadDesRead(aThread, &aBuffer, iDescriptors[i]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::GetCSInterfaceDescriptorSize(TInt aInterface, TInt aSetting, TInt& aSize) const
    {
    // first find the interface
    TInt i = FindIfcDescriptor(aInterface, aSetting);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return KErrNotFound;
        }
    TInt r = KErrNotFound;
    TInt size = 0;
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Interface)
        {
        size += iDescriptors[i]->Size();
        r = KErrNone;
        }
    if (r == KErrNone)
        aSize = size;
    return r;
    }


TInt TUsbcDescriptorPool::GetCSEndpointDescriptorTC(DThread* aThread, TDes8& aBuffer, TInt aInterface,
                                                    TInt aSetting, TUint8 aEndpointAddress) const
    {
    // first find the endpoint
    TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    TInt r = KErrNotFound;
    TInt offset = 0;
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Endpoint)
        {
        r = Kern::ThreadDesWrite(aThread, &aBuffer,
                                 iDescriptors[i]->DescriptorData(), offset);
        if (r != KErrNone)
            break;
        offset += iDescriptors[i]->Size();
        }
    return r;
    }


TInt TUsbcDescriptorPool::SetCSEndpointDescriptorTC(DThread* aThread, const TDes8& aBuffer, TInt aInterface,
                                                    TInt aSetting, TUint8 aEndpointAddress, TInt aSize)
    {
    // first find the endpoint
    TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    // find a position where to insert the new class specific endpoint descriptor(s)
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Endpoint)
        ;
    // create a new cs descriptor
    TUsbcClassSpecificDescriptor* desc = TUsbcClassSpecificDescriptor::New(KUsbDescType_CS_Endpoint, aSize);
    if (!desc)
        {
        return KErrNoMemory;
        }
    iDescriptors.Insert(desc, i);
    // update the config descriptor's wTotalLength field
    UpdateConfigDescriptorLength(aSize);
    // copy contents from user side
    return Kern::ThreadDesRead(aThread, &aBuffer, iDescriptors[i]->DescriptorData(), 0);
    }


TInt TUsbcDescriptorPool::GetCSEndpointDescriptorSize(TInt aInterface, TInt aSetting,
                                                      TUint8 aEndpointAddress, TInt& aSize) const
    {
    // first find the endpoint
    TInt i = FindEpDescriptor(aInterface, aSetting, aEndpointAddress);
    if (i < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
        return KErrNotFound;
        }
    TInt r = KErrNotFound;
    TInt size = 0;
    const TInt count = iDescriptors.Count();
    while (++i < count && iDescriptors[i]->Type() == KUsbDescType_CS_Endpoint)
        {
        size += iDescriptors[i]->Size();
        r = KErrNone;
        }
    if (r == KErrNone)
        aSize = size;
    return r;
    }


TInt TUsbcDescriptorPool::GetStringDescriptorLangIdTC(DThread* aThread, TDes8& aLangId) const
    {
    const TUint16 id = iStrings[KStringPosition_Langid]->Word(2);
    const TPtrC8 id_des(reinterpret_cast<const TUint8*>(&id), sizeof(id));
    return Kern::ThreadDesWrite(aThread, &aLangId, id_des, 0);
    }


TInt TUsbcDescriptorPool::SetStringDescriptorLangId(TUint16 aLangId)
    {
    iStrings[KStringPosition_Langid]->SetWord(2, aLangId);
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetManufacturerStringDescriptorTC(DThread* aThread, TDes8& aString) const
    {
    return GetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Manufact,
                                       KStringPosition_Manufact);
    }


TInt TUsbcDescriptorPool::SetManufacturerStringDescriptorTC(DThread* aThread, const TDes8& aString)
    {
    return SetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Manufact,
                                       KStringPosition_Manufact);
    }


TInt TUsbcDescriptorPool::RemoveManufacturerStringDescriptor()
    {
    return RemoveDeviceStringDescriptor(KUsbDescStringIndex_Manufact, KStringPosition_Manufact);
    }


TInt TUsbcDescriptorPool::GetProductStringDescriptorTC(DThread* aThread, TDes8& aString) const
    {
    return GetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Product,
                                       KStringPosition_Product);
    }


TInt TUsbcDescriptorPool::SetProductStringDescriptorTC(DThread* aThread, const TDes8& aString)
    {
    return SetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Product,
                                       KStringPosition_Product);
    }


TInt TUsbcDescriptorPool::RemoveProductStringDescriptor()
    {
    return RemoveDeviceStringDescriptor(KUsbDescStringIndex_Product, KStringPosition_Product);
    }


TInt TUsbcDescriptorPool::GetSerialNumberStringDescriptorTC(DThread* aThread, TDes8& aString) const
    {
    return GetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Serial,
                                       KStringPosition_Serial);
    }


TInt TUsbcDescriptorPool::SetSerialNumberStringDescriptorTC(DThread* aThread, const TDes8& aString)
    {
    return SetDeviceStringDescriptorTC(aThread, aString, KUsbDescStringIndex_Serial,
                                       KStringPosition_Serial);
    }


TInt TUsbcDescriptorPool::RemoveSerialNumberStringDescriptor()
    {
    return RemoveDeviceStringDescriptor(KUsbDescStringIndex_Serial, KStringPosition_Serial);
    }


TInt TUsbcDescriptorPool::GetConfigurationStringDescriptorTC(DThread* aThread, TDes8& aString) const
    {
    const TInt str_idx = iDescriptors[KDescPosition_Config]->Byte(KUsbDescStringIndex_Config);
    if (str_idx)
        {
        __ASSERT_ALWAYS((str_idx == KStringPosition_Config), Kern::Fault(KUsbPanicCat, __LINE__));
        __KTRACE_OPT(KUSB, Kern::Printf("  String @ pos %d (conf $): \"%S\"",
                                        str_idx, &iStrings[str_idx]->StringData()));
        return Kern::ThreadDesWrite(aThread, &aString,
                                    iStrings[str_idx]->StringData(), 0);
        }
    else
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  No config string descriptor @ pos %d", str_idx));
        return KErrNotFound;
        }
    }


TInt TUsbcDescriptorPool::SetConfigurationStringDescriptorTC(DThread* aThread, const TDes8& aString)
    {
    // we don't know the length of the string, so we have to allocate memory dynamically
    TUint strlen = Kern::ThreadGetDesLength(aThread, &aString);
    if (strlen > KUsbStringDescStringMaxSize)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: config $ descriptor too long - will be truncated"));
        strlen = KUsbStringDescStringMaxSize;
        }
    HBuf8* const strbuf = HBuf8::New(strlen);
    if (!strbuf)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config $ desc string failed (1)"));
        return KErrNoMemory;
        }
    strbuf->SetMax();
    // the aString points to data that lives in user memory, so we have to copy it:
    const TInt r = Kern::ThreadDesRead(aThread, &aString, *strbuf, 0);
    if (r != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Thread read error"));
        delete strbuf;
        return r;
        }
    TUsbcStringDescriptor* sd = TUsbcStringDescriptor::New(*strbuf);
    if (!sd)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config $ desc failed (2)"));
        delete strbuf;
        return KErrNoMemory;
        }
    // Delete old string, put in new one
    ExchangeStringDescriptor(KStringPosition_Config, sd);
    // Update Config descriptor string index field
    iDescriptors[KDescPosition_Config]->SetByte(KUsbDescStringIndex_Config, KStringPosition_Config);
    // Update Other_Speed_Config descriptor string index field as well, if applicable
    if (iDescriptors[KDescPosition_OtherSpeedConfig])
        iDescriptors[KDescPosition_OtherSpeedConfig]->SetByte(KUsbDescStringIndex_Config,
                                                              KStringPosition_Config);
    delete strbuf;
    return KErrNone;
    }


TInt TUsbcDescriptorPool::RemoveConfigurationStringDescriptor()
    {
    if (iDescriptors[KDescPosition_Config]->Byte(KUsbDescStringIndex_Config) == 0)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  RemoveConfigurationStringDescriptor: no $ desc @ index %d",
                                        KUsbDescStringIndex_Config));
        return KErrNotFound;
        }
    // Delete old string, put in NULL pointer
    ExchangeStringDescriptor(KStringPosition_Config, NULL);
    // Update Config descriptor string index field
    iDescriptors[KDescPosition_Config]->SetByte(KUsbDescStringIndex_Config, 0);
    // Update Other_Speed_Config descriptor string index field as well, if applicable
    if (iDescriptors[KDescPosition_OtherSpeedConfig])
        iDescriptors[KDescPosition_OtherSpeedConfig]->SetByte(KUsbDescStringIndex_Config, 0);
    return KErrNone;
    }


TInt TUsbcDescriptorPool::GetStringDescriptorTC(DThread* aThread, TInt aIndex, TDes8& aString) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetStringDescriptorTC()"));
    if (!StringDescriptorExists(aIndex))
        {
        return KErrNotFound;
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  String @ pos %d: \"%S\"",
                                    aIndex, &iStrings[aIndex]->StringData()));
    return Kern::ThreadDesWrite(aThread, &aString, iStrings[aIndex]->StringData(), 0);
    }


TInt TUsbcDescriptorPool::SetStringDescriptorTC(DThread* aThread, TInt aIndex, const TDes8& aString)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetStringDescriptorTC()"));
    // we don't know the length of the string, so we have to allocate memory dynamically
    TUint strlen = Kern::ThreadGetDesLength(aThread, &aString);
    if (strlen > KUsbStringDescStringMaxSize)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: $ descriptor too long - will be truncated"));
        strlen = KUsbStringDescStringMaxSize;
        }
    HBuf8* strbuf = HBuf8::New(strlen);
    if (!strbuf)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Mem alloc for $ desc string failed (1)"));
        return KErrNoMemory;
        }
    strbuf->SetMax();
    // the aString points to data that lives in user memory, so we have to copy it over:
    const TInt r = Kern::ThreadDesRead(aThread, &aString, *strbuf, 0);
    if (r != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Thread read error"));
        delete strbuf;
        return r;
        }
    TUsbcStringDescriptor* const sd = TUsbcStringDescriptor::New(*strbuf);
    if (!sd)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Mem alloc for $ desc failed (2)"));
        delete strbuf;
        return KErrNoMemory;
        }
    if (aIndex < iStrings.Count())
        {
        ExchangeStringDescriptor(aIndex, sd);
        }
    else // if (aIndex >= iStrings.Count())
        {
        while (aIndex > iStrings.Count())
            {
            iStrings.Append(NULL);
            }
        iStrings.Append(sd);
        }
    delete strbuf;
    return KErrNone;
    }


TInt TUsbcDescriptorPool::RemoveStringDescriptor(TInt aIndex)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::RemoveStringDescriptor()"));
    if (!StringDescriptorExists(aIndex))
        {
        return KErrNotFound;
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Removing string @ pos %d: \"%S\"",
                                    aIndex, &iStrings[aIndex]->StringData()));
    ExchangeStringDescriptor(aIndex, NULL);

    // Make sure there's no $ after aIndex.
    const TInt n = iStrings.Count();
    for (TInt i = aIndex; i < n; i++)
        {
        if (iStrings[i] != NULL)
            {
            __KTRACE_OPT(KUSB, Kern::Printf("  Found $ @ idx %d - not compressing", i));
            return KErrNone;
            }
        }

    __KTRACE_OPT(KUSB, Kern::Printf("  No $ found after idx %d - compressing array", aIndex));
    // Move aIndex back just before the first !NULL element.
    while (iStrings[--aIndex] == NULL)
        ;
    // Let aIndex point to first NULL.
    aIndex++;
    __KTRACE_OPT(KUSB, Kern::Printf("  Starting at index %d", aIndex));
    // Now remove NULL pointers until (Count() == aIndex).
    __KTRACE_OPT(KUSB, Kern::Printf("  iStrings.Count() before: %d", iStrings.Count()));
    do
        {
        iStrings.Remove(aIndex);
        __KTRACE_OPT(KUSB, Kern::Printf("  Removing $"));
        }
    while (iStrings.Count() > aIndex);
    __KTRACE_OPT(KUSB, Kern::Printf("  iStrings.Count() after: %d", iStrings.Count()));

    // Regain some memory.
    iStrings.Compress();

    return KErrNone;
    }


// ===================================================================
// --- private ---
// ===================================================================

//
// Insert an Interface descriptor into the descriptor array at the appropriate index.
//
void TUsbcDescriptorPool::InsertIfcDesc(TUsbcDescriptorBase* aDesc)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::InsertIfcDesc()"));

    const TInt count = iDescriptors.Count();
    TBool ifc_exists = EFalse;                                // set to 'true' if we're adding an alternate
                                                            // setting to an already existing interface
    TInt i = KDescPosition_FirstAvailable;
    while (i < count)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  already descriptors there (%d)...", count));
        if (iDescriptors[i]->Type() == KUsbDescType_Interface)
            {
            if (iDescriptors[i]->Byte(2) > aDesc->Byte(2))
                {
                // our interface number is less than the one's just found => insert before it (= here)
                break;
                }
            else if (iDescriptors[i]->Byte(2) == aDesc->Byte(2))
                {
                ifc_exists = ETrue;
                // same interface number => look at settings number
                if (iDescriptors[i]->Byte(3) > aDesc->Byte(3))
                    {
                    // our setting number is less than the one's found => insert before (= here)
                    break;
                    }
                else if (iDescriptors[i]->Byte(3) == aDesc->Byte(3))
                    {
                    __KTRACE_OPT(KPANIC, Kern::Printf("  Error: first delete old desc "
                                                      "(TUsbcDescriptorPool::InsertIfcDesc)"));
                    return;
                    }
                }
            }
        ++i;
        }
    // In any case: put the new descriptor at position i.
    __KTRACE_OPT(KUSB, Kern::Printf("  inserting descriptor at position %d", i));
    iDescriptors.Insert(aDesc, i);

    // Update the config descriptor's wTotalLength field.
    UpdateConfigDescriptorLength(KUsbDescSize_Interface);

    if (!ifc_exists)
        {
        // If this is the first setting for the interface, increment bNumInterfaces.
        UpdateConfigDescriptorNumIfcs(1);
        }

    iIfcIdx = i;
    }


//
// Insert an Endpoint descriptor into the descriptor array at the appropriate index.
//
void TUsbcDescriptorPool::InsertEpDesc(TUsbcDescriptorBase* aDesc)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::InsertEpDesc()"));
    if (iIfcIdx == 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: only after interface "
                                          "(TUsbcDescriptorPool::InsertEpDesc)"));
        return;
        }
    const TInt count = iDescriptors.Count();
    TInt i = iIfcIdx + 1;
    while (i < count)
        {
        if (iDescriptors[i]->Type() != KUsbDescType_Endpoint)
            break;
        ++i;
        }
    // put the new descriptor at position i
    iDescriptors.Insert(aDesc, i);
    // update the config descriptor's wTotalLength field
    UpdateConfigDescriptorLength(aDesc->Size());
    }


//
// Find the index of the Interface descriptor for a given interface setting.
//
TInt TUsbcDescriptorPool::FindIfcDescriptor(TInt aIfcNumber, TInt aIfcSetting) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::FindIfcDescriptor(%d, %d)",
                                    aIfcNumber, aIfcSetting));
    const TInt count = iDescriptors.Count();
    for (TInt i = KDescPosition_FirstAvailable; i < count; i++)
        {
        if ((iDescriptors[i]->Type() == KUsbDescType_Interface) &&
            (iDescriptors[i]->Byte(2) == aIfcNumber) &&
            (iDescriptors[i]->Byte(3) == aIfcSetting))
            {
            return i;
            }
        }
    __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
    return -1;
    }


//
// Find the index of the Endpoint descriptor for a given endpoint on a given interface setting.
//
TInt TUsbcDescriptorPool::FindEpDescriptor(TInt aIfcNumber, TInt aIfcSetting, TUint8 aEpAddress) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::FindEpDescriptor(%d, %d, 0x%02x)",
                                    aIfcNumber, aIfcSetting, aEpAddress));
    // first find the interface
    const TInt ifc = FindIfcDescriptor(aIfcNumber, aIfcSetting);
    if (ifc < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such interface"));
        return ifc;
        }
    const TInt count = iDescriptors.Count();
    // then, before the next interface, try to locate the endpoint
    for (TInt i = ifc + 1; i < count; i++)
        {
        if (iDescriptors[i]->Type() == KUsbDescType_Interface)
            {
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint before next interface"));
            return -1;
            }
        else if ((iDescriptors[i]->Type() == KUsbDescType_Endpoint) &&
                 (iDescriptors[i]->Byte(2) == aEpAddress))
            {
            // found
            return i;
            }
        }
    __KTRACE_OPT(KPANIC, Kern::Printf("  Error: no such endpoint"));
    return -1;
    }


//
// Delete n descriptors starting from aIndex and remove their pointers from the array.
//
void TUsbcDescriptorPool::DeleteDescriptors(TInt aIndex, TInt aCount)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::DeleteDescriptors()"));
    if (aIndex < KDescPosition_FirstAvailable)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: aIndex < KDescPosition_FirstAvailable"));
        return;
        }
    if (aCount <= 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: aCount <= 0"));
        return;
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Removing descriptors at index %d:", aIndex));
    // Try to update wTotalLength field in Config descriptor
    while (aCount--)
        {
        // In this loop we don't decrement aIndex, because after deleting an element
        // aIndex is already indexing the next one.
        TUsbcDescriptorBase* const ptr = iDescriptors[aIndex];
        switch (ptr->Type())
            {
        case KUsbDescType_Interface:
            __KTRACE_OPT(KUSB, Kern::Printf("  - an interface descriptor"));
            UpdateConfigDescriptorLength(-KUsbDescSize_Interface);
            break;
        case KUsbDescType_Endpoint:
            __KTRACE_OPT(KUSB, Kern::Printf("  - an endpoint descriptor"));
            UpdateConfigDescriptorLength(-ptr->Size());
            break;
        case KUsbDescType_CS_Interface:
            /* fall through */
        case KUsbDescType_CS_Endpoint:
            __KTRACE_OPT(KUSB, Kern::Printf("  - a class specific descriptor"));
            UpdateConfigDescriptorLength(-ptr->Size());
            break;
        default:
            __KTRACE_OPT(KUSB, Kern::Printf("  - an unknown descriptor"));
            __KTRACE_OPT(KPANIC, Kern::Printf("  Error: unknown descriptor type"));
            }
        iDescriptors.Remove(aIndex);
        delete ptr;
        }
    }


//
// Update the wTotalLength field in the Configuration descriptor (aLength can be negative).
//
void TUsbcDescriptorPool::UpdateConfigDescriptorLength(TInt aLength)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::UpdateConfigDescriptorLength(%d)", aLength));
    TUsbcDescriptorBase* const cnf = iDescriptors[KDescPosition_Config];
    __KTRACE_OPT(KUSB, Kern::Printf("  wTotalLength old: %d", cnf->Word(2)));
    // Update Config descriptor
    cnf->SetWord(2, cnf->Word(2) + aLength);
    __KTRACE_OPT(KUSB, Kern::Printf("  wTotalLength new: %d", cnf->Word(2)));
    // Update Other_Speed_Config descriptor as well, if applicable
    if (iDescriptors[KDescPosition_OtherSpeedConfig])
        iDescriptors[KDescPosition_OtherSpeedConfig]->SetWord(2, cnf->Word(2));
    }


//
// Update the bNumInterfaces field in the Configuration descriptor (aNumber can be negative).
//
void TUsbcDescriptorPool::UpdateConfigDescriptorNumIfcs(TInt aNumber)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::UpdateConfigDescriptorNumIfcs(%d)", aNumber));
    TUsbcDescriptorBase* const cnf = iDescriptors[KDescPosition_Config];
    __KTRACE_OPT(KUSB, Kern::Printf("  bNumInterfaces old: %d", cnf->Byte(4)));
    const TInt n = cnf->Byte(4) + aNumber;
    if (n < 0)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: bNumInterfaces + aNumber < 0"));
        return;
        }
    // Update Config descriptor
    cnf->SetByte(4, n);
    __KTRACE_OPT(KUSB, Kern::Printf("  bNumInterfaces new: %d", cnf->Byte(4)));
    // Update Other_Speed_Config descriptor as well, if applicable
    if (iDescriptors[KDescPosition_OtherSpeedConfig])
        iDescriptors[KDescPosition_OtherSpeedConfig]->SetByte(4, n);
    }


//
// Update the bNumInterfaces field in the Configuration descriptor if necessary.
//
void TUsbcDescriptorPool::UpdateIfcNumbers(TInt aNumber)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::UpdateIfcNumbers(%d)", aNumber));
    const TInt count = iDescriptors.Count();
    for (TInt i = KDescPosition_FirstAvailable; i < count; i++)
        {
        if ((iDescriptors[i]->Type() == KUsbDescType_Interface) &&
            (iDescriptors[i]->Byte(2) == aNumber))
            {
            // there's still an interface with 'number' so we don't need to update anything
            return;
            }
        }
    // if we haven't returned yet, we decrement bNumInterfaces
    UpdateConfigDescriptorNumIfcs(-1);
    }


//
// Put the current Device or Device_Qualifier descriptor in the Ep0 Tx buffer.
// Only used for Ep0 standard requests, so target buffer can be hard-wired.
//
TInt TUsbcDescriptorPool::GetDeviceDescriptor(TInt aIndex) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetDeviceDescriptor()"));
    __ASSERT_DEBUG((aIndex == KDescPosition_Device) || (aIndex == KDescPosition_DeviceQualifier),
                   Kern::Printf("  Error: invalid descriptor index: %d", aIndex));
    if (iDescriptors[aIndex] == NULL)
        {
        // This doesn't have to be an error - we might get asked here for the Device_Qualifier descriptor
        // on a FS-only device.
        __KTRACE_OPT(KUSB, Kern::Printf("  Descriptor #%d requested but not available", aIndex));
        return 0;
        }
    return iDescriptors[aIndex]->GetDescriptorData(iEp0_TxBuf, KUsbcBufSz_Ep0Tx);
    }


//
// Put the current Configuration or Other_Speed_Configuration descriptor + all the following
// descriptors in the Ep0 Tx buffer.
// Only used for Ep0 standard requests, so target buffer can be hard-wired.
//
TInt TUsbcDescriptorPool::GetConfigurationDescriptor(TInt aIndex) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetConfigDescriptor(%d)", aIndex));
    __ASSERT_DEBUG((aIndex == KDescPosition_Config) || (aIndex == KDescPosition_OtherSpeedConfig),
                   Kern::Printf("  Error: invalid descriptor index: %d", aIndex));
    if (iDescriptors[aIndex] == NULL)
        {
        // This is always an error: We should always have a Configuration descriptor and we should never
        // get asked for the Other_Speed_Configuration descriptor if we don't have one (9.6.2).
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Descriptor %d requested but not available", aIndex));
        return 0;
        }
    const TInt count = iDescriptors.Count();
    TInt copied = 0;
    TUint8* buf = iEp0_TxBuf;
    for (TInt i = aIndex; i < count; i++)
        {
        TUsbcDescriptorBase* const ptr = iDescriptors[i];
        if ((aIndex == KDescPosition_OtherSpeedConfig) && (i == KDescPosition_Config))
            {
            // Skip Config descriptor when returning Other_Speed_Config
            continue;
            }
        if ((i == KDescPosition_Otg) && (iDescriptors[i] == NULL))
            {
            __KTRACE_OPT(KUSB, Kern::Printf("  no OTG descriptor -> next"));
            continue;
            }
        // We need to edit endpoint descriptors on the fly because we have only one copy
        // of each and that copy has to contain different information, depending on the
        // current speed and the type of descriptor requested.
        if (ptr->Type() == KUsbDescType_Endpoint)
            {
            if ((iHighSpeed && (aIndex == KDescPosition_Config)) ||
                (!iHighSpeed && (aIndex == KDescPosition_OtherSpeedConfig)))
                {
                ptr->UpdateHs();
                }
            else
                {
                ptr->UpdateFs();
                }
            }
        __KTRACE_OPT(KUSB, Kern::Printf("  desc[%02d]: type = 0x%02x size = %d ",
                                        i, ptr->Type(), ptr->Size()));
        const TInt size = ptr->GetDescriptorData(buf, KUsbcBufSz_Ep0Tx - copied);
        if (size == 0)
            {
            __KTRACE_OPT(KPANIC,
                         Kern::Printf("  Error: No Tx buffer space to copy this descriptor -> exiting"));
            break;
            }
        copied += size;
        if (copied >= KUsbcBufSz_Ep0Tx)
            {
            __KTRACE_OPT(KPANIC,
                         Kern::Printf("  Error: No Tx buffer space left -> stopping here"));
            break;
            }
        buf += size;
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  copied %d bytes", copied));
    return copied;
    }


//
// Put the current OTG descriptor in the Ep0 Tx buffer.
// Only used for Ep0 standard requests, so target buffer can be hard-wired.
//
TInt TUsbcDescriptorPool::GetOtgDescriptor() const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetOtgDescriptor()"));
    if (iDescriptors[KDescPosition_Otg] == NULL)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  OTG Descriptor not set"));
        return 0;
        }
    return iDescriptors[KDescPosition_Otg]->GetDescriptorData(iEp0_TxBuf, KUsbcBufSz_Ep0Tx);
    }


//
// Put a specific String descriptor in the Ep0 Tx buffer.
// Only used for Ep0 standard requests, so target buffer can be hard-wired.
//
TInt TUsbcDescriptorPool::GetStringDescriptor(TInt aIndex) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetStringDescriptor(%d)", aIndex));
    // I really would have liked to display the descriptor contents here, but without trailing zero
    // we got a problem: how can we tell printf where the string ends? We would have to
    // dynamically allocate memory (since we don't know the size in advance), copy the descriptor
    // contents there, append a zero, and give this to printf. That's a bit too much effort...
    if (!StringDescriptorExists(aIndex))
        {
        return 0;
        }
    return iStrings[aIndex]->GetDescriptorData(iEp0_TxBuf, KUsbcBufSz_Ep0Tx);
    }


//
// Write a String descriptor pointed to by the Device descriptor to the user side
// (one of Manufacturer, Product, SerialNumber).
//
TInt TUsbcDescriptorPool::GetDeviceStringDescriptorTC(DThread* aThread, TDes8& aString,
                                                      TInt aIndex, TInt aPosition) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::GetDeviceStringDescriptorTC()"));
    const TInt str_idx = iDescriptors[KDescPosition_Device]->Byte(aIndex);
    if (str_idx)
        {
        __ASSERT_ALWAYS((str_idx == aPosition), Kern::Fault(KUsbPanicCat, __LINE__));
        __KTRACE_OPT(KUSB, Kern::Printf("  String @ pos %d (device $): \"%S\"",
                                        str_idx, &iStrings[str_idx]->StringData()));
        return Kern::ThreadDesWrite(aThread, &aString,
                                    iStrings[str_idx]->StringData(), 0);
        }
    else
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  No string descriptor @ pos %d", aIndex));
        return KErrNotFound;
        }
    }


//
// Read a Device String descriptor from the user side and put in the descriptor arrays
// (one of Manufacturer, Product, SerialNumber).
//
TInt TUsbcDescriptorPool::SetDeviceStringDescriptorTC(DThread* aThread, const TDes8& aString,
                                                      TInt aIndex, TInt aPosition)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::SetDeviceStringDescriptorTC()"));
    // we don't know the length of the string, so we have to allocate memory dynamically
    TUint strlen = Kern::ThreadGetDesLength(aThread, &aString);
    if (strlen > KUsbStringDescStringMaxSize)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: $ descriptor too long - will be truncated"));
        strlen = KUsbStringDescStringMaxSize;
        }
    HBuf8* const strbuf = HBuf8::New(strlen);
    if (!strbuf)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for dev $ desc string failed (1)"));
        return KErrNoMemory;
        }
    strbuf->SetMax();
    // the aString points to data that lives in user memory, so we have to copy it:
    const TInt r = Kern::ThreadDesRead(aThread, &aString, *strbuf, 0);
    if (r != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Thread read error"));
        delete strbuf;
        return r;
        }
    TUsbcStringDescriptor* const sd = TUsbcStringDescriptor::New(*strbuf);
    if (!sd)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for dev $ desc failed (2)"));
        delete strbuf;
        return KErrNoMemory;
        }
    ExchangeStringDescriptor(aPosition, sd);
    iDescriptors[KDescPosition_Device]->SetByte(aIndex, aPosition);
    delete strbuf;
    return r;
    }


//
// Remove a Device String descriptor from the descriptor arrays
// (one of Manufacturer, Product, SerialNumber).
//
TInt TUsbcDescriptorPool::RemoveDeviceStringDescriptor(TInt aIndex, TInt aPosition)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::RemoveDeviceStringDescriptor()"));
    if (iDescriptors[KDescPosition_Device]->Byte(aIndex) == 0)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  RemoveDeviceStringDescriptor: no $ desc @ index %d", aIndex));
        return KErrNotFound;
        }
    ExchangeStringDescriptor(aPosition, NULL);
    iDescriptors[KDescPosition_Device]->SetByte(aIndex, 0);
    return KErrNone;
    }


//
// Puts aDesc at postion aIndex in the string descriptor array, after deleting what was (possibly) there.
//
void TUsbcDescriptorPool::ExchangeStringDescriptor(TInt aIndex, const TUsbcStringDescriptor* aDesc)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::ExchangeStringDescriptor()"));
    TUsbcStringDescriptorBase* const ptr = iStrings[aIndex];
    __KTRACE_OPT(KUSB, Kern::Printf("  Deleting string descriptor at index %d: 0x%x", aIndex, ptr));
    iStrings.Remove(aIndex);
    delete ptr;
    __KTRACE_OPT(KUSB, Kern::Printf("  Inserting string descriptor at index %d: 0x%x", aIndex, aDesc));
    iStrings.Insert(aDesc, aIndex);
    }


//
// Checks whether there are any string descriptors in the array (apart from LangID).
//
TBool TUsbcDescriptorPool::AnyStringDescriptors() const
    {
    const TInt n = iStrings.Count();
    for (TInt i = 1; i < n; i++)
        {
        if (iStrings[i] != NULL)
            return ETrue;
        }
    return EFalse;
    }


//
// Returns true if aIndex exists and what is at that positition is not a NULL pointer.
//
TBool TUsbcDescriptorPool::StringDescriptorExists(TInt aIndex) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::StringDescriptorExists()"));
    if (aIndex >= iStrings.Count())
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Bad string index: %d", aIndex));
        return EFalse;
        }
    else if (iStrings[aIndex] == NULL)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: No $ descriptor @ pos %d", aIndex));
        return EFalse;
        }
    return ETrue;
    }


//
//
//
TInt TUsbcDescriptorPool::FindAvailableStringPos() const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcDescriptorPool::FindAvailableStringPos()"));
    const TInt n = iStrings.Count();
    // We don't start from 0 because the first few locations are 'reserved'.
    for (TInt i = KStringPosition_FirstAvailable; i < n; i++)
        {
        if (iStrings[i] == NULL)
            {
            __KTRACE_OPT(KUSB, Kern::Printf(" Found available NULL position: %d", i));
            return i;
            }
        }
    return -1;
    }


// -eof-