/*
* Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* e32/drivers/usbcc/chapter9.cpp
* Platform independent layer (PIL) of the USB Device controller driver:
* Processing of USB spec chapter 9 standard requests.
*
*/
/**
@file chapter9.cpp
@internalTechnology
*/
#include <usb/usbc.h>
#include "controltransfersm.h"
//#define ENABLE_EXCESSIVE_DEBUG_OUTPUT
//
// === USB Controller member function implementation - PSL API (protected) ========================
//
/** Used to synchronize the Ep0 state machine between the PSL and PIL.
Accepts a SETUP packet and returns the next Ep0 state.
@param aSetupBuf The SETUP packet just received by the PSL.
@return The next Ep0 state.
@publishedPartner @released
*/
UsbShai::TControlStage DUsbClientController::EnquireEp0NextStage(const TUint8* aSetupBuf) const
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::EnquireEp0NextState()"));
// This function may be called by the PSL from within an ISR -- so we have
// to take care what we do here (and also in all functions that get called
// from here).
if (SWAP_BYTES_16((reinterpret_cast<const TUint16*>(aSetupBuf)[3])) == 0) // iLength
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EControlTransferStageStatusIn"));
return UsbShai::EControlTransferStageStatusIn; // No-data Control => Status_IN
}
else if ((aSetupBuf[0] & KUsbRequestType_DirMask) == KUsbRequestType_DirToDev)
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EControlTransferStageDataOut"));
return UsbShai::EControlTransferStageDataOut; // Control Write => Data_OUT
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" --> EControlTransferStageDataIn"));
return UsbShai::EControlTransferStageDataIn; // Control Read => Data_IN
}
}
//
// About iLastError.
// This member is used to remember the last error happend during a
// processXXX likewise function.
//
// Before entry of each ProcessXXX, iLastError will be cleared to KErrNone.
//
// --- The USB Spec Chapter 9 Standard Endpoint Zero Device Requests ---
// Record error happend with iLastError, the value already been set to zero
// before entering ProcessSetupPacket call.
void DUsbClientController::ProcessGetDeviceStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetDeviceStatus()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
// We always assume Device is bus-powered, even though mobile phone almost always
// has a battry there, because self-powered device can not required more then 100ma current
// which is not acceptable for Usb charging.
TBool selfPowered = EFalse;
/* FIXME: modify selfPowered to make it compilance with following rule.
1. If current draw exceeds 100mA, the device must report itself
as bus-powered during enumeration.
2. In all cases, the GetStatus(DEVICE) call must accurately report
whether the device is currently operating on self- or bus-power.
3. A device that is actively drawing more than 100mA from USB must
report itself as bus-powered in the GetStatus(DEVICE) call.
4. Peripherals that return "Self-powered" in the GetStatus(DEVICE)
call are prohibited from drawing more than 100mA at any time.
*/
/*
TBuf8<KUsbDescSize_Config> config;
if(iDescriptors.GetConfigurationDescriptorTC(&Kern::CurrentThread(),config) == KErrNone)
{
TUint8 maxPower = config[8];
if(maxPower <= 50)
{
selfPowered = EFalse;
}
}
*/
const TUint16 status = ((selfPowered ? KUsbDevStat_SelfPowered : 0) |
(iRmWakeupStatus_Enabled ? KUsbDevStat_RemoteWakeup : 0));
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting device status: 0x%02x", status));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (iConTransferMgr->SetupEndpointZeroWrite(iEp0_TxBuf, sizeof(status)) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
void DUsbClientController::ProcessGetInterfaceStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetInterfaceStatus()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
if (InterfaceExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Interface does not exist"));
iLastError = KErrGeneral;
}
else
{
const TUint16 status = 0x0000; // as of USB Spec 2.0
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting interface status: 0x%02x", status));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (iConTransferMgr->SetupEndpointZeroWrite(iEp0_TxBuf, sizeof(status)) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
}
void DUsbClientController::ProcessGetEndpointStatus(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetEndpointStatus()"));
if (
((iDeviceState < UsbShai::EUsbPeripheralStateAddress) ||
(iDeviceState == UsbShai::EUsbPeripheralStateAddress && (aPacket.iIndex & KUsbEpAddress_Portmask) != 0)))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
if (EndpointExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
iLastError = KErrGeneral;
}
else
{
const TInt ep = EpAddr2Idx(aPacket.iIndex);
const TUint16 status = (iRealEndpoints[ep].iHalt) ? KUsbEpStat_Halt : 0;
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting endpoint status 0x%02x for real endpoint %d",
status, ep));
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = SWAP_BYTES_16(status);
if (iConTransferMgr->SetupEndpointZeroWrite(iEp0_TxBuf, 2) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
}
void DUsbClientController::ProcessSetClearDevFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearDevFeature()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateDefault)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
return;
}
TInt test_sel = 0;
if (aPacket.iRequest == KUsbRequest_SetFeature)
{
switch (aPacket.iValue)
{
case KUsbFeature_RemoteWakeup:
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
iRmWakeupStatus_Enabled = ETrue;
}
break;
case KUsbFeature_TestMode:
if (!iHighSpeed)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported in High-Speed mode"));
iLastError = KErrGeneral;
}
else if (LowByte(aPacket.iIndex) != 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Lower byte of wIndex must be zero"));
iLastError = KErrGeneral;
}
else
{
test_sel = HighByte(aPacket.iIndex);
if ((test_sel < UsbShai::EUsbTestSelector_Test_J) || (test_sel > UsbShai::EUsbTestSelector_Test_Force_Enable))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid test selector: %d", test_sel));
iLastError = KErrGeneral;
}
}
break;
case KUsbFeature_B_HnpEnable:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
iLastError = KErrGeneral;
}
else if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
iLastError = KErrGeneral;
}
else
{
iOtgFuncMap |= KUsbOtgAttr_B_HnpEnable;
OtgFeaturesNotify();
}
break;
case KUsbFeature_A_HnpSupport:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
iLastError = KErrGeneral;
}
else if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
iLastError = KErrGeneral;
}
else
{
iOtgFuncMap |= KUsbOtgAttr_A_HnpSupport;
OtgFeaturesNotify();
}
break;
case KUsbFeature_A_AltHnpSupport:
if (!iOtgSupport)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only supported on a OTG device"));
iLastError = KErrGeneral;
}
else if (!(iOtgFuncMap & KUsbOtgAttr_HnpSupp))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Request only valid if OTG device supports HNP"));
iLastError = KErrGeneral;
}
else
{
iOtgFuncMap |= KUsbOtgAttr_A_AltHnpSupport;
OtgFeaturesNotify();
}
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
iLastError = KErrGeneral;
}
}
else // KUsbRequest_ClearFeature
{
switch (aPacket.iValue)
{
case KUsbFeature_RemoteWakeup:
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
iRmWakeupStatus_Enabled = EFalse;
}
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
iLastError = KErrGeneral;
}
}
if(iLastError == KErrNone)
{
// Sent out status packet if no error found.
iConTransferMgr->SendEp0ZeroByteStatusPacket(); // success: zero bytes data during status stage
// 9.4.9: "The transition to test mode of an upstream facing port must not happen until
// after the status stage of the request."
if (test_sel)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Entering HS Test Mode %d", test_sel));
iController.EnterTestMode((UsbShai::TUsbTestModeSelector)test_sel);
}
}
}
void DUsbClientController::ProcessSetClearIfcFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearIfcFeature()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
// No interface features defined in USB spec, thus
iLastError = KErrGeneral;
}
}
void DUsbClientController::ProcessSetClearEpFeature(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetClearEpFeature()"));
if (
((iDeviceState < UsbShai::EUsbPeripheralStateAddress) ||
(iDeviceState == UsbShai::EUsbPeripheralStateAddress && (aPacket.iIndex & KUsbEpAddress_Portmask) != 0)))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if (aPacket.iValue != KUsbFeature_EndpointHalt)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown feature requested"));
iLastError = KErrGeneral;
}
else if (EndpointExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
iLastError = KErrGeneral;
}
else
{
const TInt ep = EpAddr2Idx(aPacket.iIndex);
if (iRealEndpoints[ep].iLEndpoint->iInfo.iType == UsbShai::KUsbEpTypeControl ||
iRealEndpoints[ep].iLEndpoint->iInfo.iType == UsbShai::KUsbEpTypeIsochronous)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint is Control or Isochronous"));
iLastError = KErrGeneral;
}
else
{
SetClearHaltFeature(ep, aPacket.iRequest);
// success: zero bytes data during status stage
iConTransferMgr->SendEp0ZeroByteStatusPacket();
}
}
}
void DUsbClientController::ProcessSetAddress(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetAddress()"));
if ( iDeviceState > UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else
{
const TUint16 addr = aPacket.iValue;
if (addr > 127)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad address value: %d (>127)", addr));
iLastError = KErrGeneral;
}
else if (addr == 0)
{
// Enter Default state (from Default or Address)
NextDeviceState(UsbShai::EUsbPeripheralStateDefault);
}
__KTRACE_OPT(KUSB, Kern::Printf(" USB address: %d", addr));
// If controller support hw acceleration,call set address first and then status
if(iControllerProperties.iControllerCaps & UsbShai::KDevCapSetAddressAcceleration)
{
iController.SetDeviceAddress(addr);
}
// The spec says, under section 9.4.6:
// "Stages after the initial Setup packet assume the same device address as the Setup packet. The USB
// device does not change its device address until after the Status stage of this request is completed
// successfully. Note that this is a difference between this request and all other requests. For all other
// requests, the operation indicated must be completed before the Status stage."
// Therefore, here we first send the status packet and only then actually execute the request.
iConTransferMgr->SendEp0ZeroByteStatusPacket();
// If controller doesn't support hw acceleration, call set address after status
if((iControllerProperties.iControllerCaps & UsbShai::KDevCapSetAddressAcceleration) == 0)
{
iController.SetDeviceAddress(addr);
}
}
}
void DUsbClientController::ProcessGetDescriptor(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetDescriptor()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateDefault)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
return ;
}
// Make sure we assume the correct speed
__ASSERT_DEBUG((iHighSpeed == CurrentlyUsingHighSpeed()), Kern::Fault(KUsbPILPanicCat, __LINE__));
TInt size = 0;
const TInt result = iDescriptors.FindDescriptor(HighByte(aPacket.iValue), // Type
LowByte(aPacket.iValue), // Index
aPacket.iIndex, // Language ID
size);
if ((result != KErrNone) || (size == 0))
{
// This doesn't have to be an error - protocol-wise it's OK.
__KTRACE_OPT(KUSB, Kern::Printf(" Couldn't retrieve descriptor"));
iLastError = KErrGeneral;
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Descriptor found, size: %d (requested: %d)",
size, aPacket.iLength));
if (size > KUsbcBufSz_Ep0Tx)
{
// This should actually not be possible (i.e. we should never get here).
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Ep0_Tx buffer too small"));
}
if (size > aPacket.iLength)
{
// Send only as much data as requested by the host
size = aPacket.iLength;
}
#ifdef ENABLE_EXCESSIVE_DEBUG_OUTPUT
__KTRACE_OPT(KUSB,
Kern::Printf(" Data: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x ...",
iEp0_TxBuf[0], iEp0_TxBuf[1], iEp0_TxBuf[2], iEp0_TxBuf[3],
iEp0_TxBuf[4], iEp0_TxBuf[5], iEp0_TxBuf[6], iEp0_TxBuf[7]));
#endif
// If we're about to send less bytes than expected by the host AND our number is a
// multiple of the packet size, in order to indicate the end of the control transfer,
// we must finally send a zero length data packet (ZLP):
const TBool zlp = ((size < aPacket.iLength) && (size % iEp0MaxPacketSize == 0));
if (iConTransferMgr->SetupEndpointZeroWrite(iEp0_TxBuf, size, zlp) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
void DUsbClientController::ProcessSetDescriptor(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetDescriptor()"));
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
iLastError = KErrGeneral;
return;
#else
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
// Error: Invalid device state!
iLastError = KErrGeneral;
}
else if (aPacket.iLength > KUsbcBufSz_Ep0Rx)
{
// Error: Our Rx buffer is too small! (Raise a defect to make it larger)
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Ep0_Rx buffer too small"));
iLastError = KErrGeneral;
}
else
{
SetEp0DataOutVars();
iConTransferMgr->SetupEndpointZeroRead();
}
#endif
}
void DUsbClientController::ProcessGetConfiguration(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetConfiguration()"));
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if ( iDeviceState == UsbShai::EUsbPeripheralStateAddress && iCurrentConfig != 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: DeviceState Address && Config != 0"));
iLastError = KErrGeneral;
}
else if ( iDeviceState == UsbShai::EUsbPeripheralStateConfigured && iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: DeviceState Configured && Config == 0"));
iLastError = KErrGeneral;
}
else
{
if (aPacket.iLength != 1) // "unspecified behavior"
{
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: wLength != 1 (= %d)", aPacket.iLength));
}
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting configuration value %d", iCurrentConfig));
if (iConTransferMgr->SetupEndpointZeroWrite(&iCurrentConfig, sizeof(iCurrentConfig)) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
/** Changes the device's configuration value, including interface setup and/or
teardown and state change notification of higher-layer clients.
May also be called by the PSL in special cases - therefore publishedPartner.
@param aPacket The received Ep0 SET_CONFIGURATION setup request packet.
@return KErrGeneral in case of a protocol error, KErrNone otherwise.
@publishedPartner @released
*/
TInt DUsbClientController::ProcessSetConfiguration(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetConfiguration()"));
// This function may be called by the PSL from within an ISR -- so we have
// to take care what we do here (and also in all functions that get called
// from here).
const TInt value = aPacket.iValue;
if ( iDeviceState < UsbShai::EUsbPeripheralStateAddress)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if (value > 1) // we support only one configuration
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Configuration value too large: %d", value));
iLastError = KErrGeneral;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration value: %d", value));
ChangeConfiguration(value);
// In 9.4.5 under GET_STATUS we read, that after SET_CONFIGURATION the HALT feature
// for all endpoints is reset to zero.
TInt num = 0;
(TAny) DoForEveryEndpointInUse(&DUsbClientController::ClearHaltFeature, num);
__KTRACE_OPT(KUSB, Kern::Printf(" Called ClearHaltFeature() for %d endpoints", num));
// success: zero bytes data during status stage
iConTransferMgr->SendEp0ZeroByteStatusPacket();
}
return iLastError;
}
void DUsbClientController::ProcessGetInterface(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessGetInterface()"));
const TInt number = aPacket.iIndex;
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if (iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Device not configured"));
iLastError = KErrGeneral;
}
else if (!InterfaceExists(number))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad interface index: %d", number));
iLastError = KErrGeneral;
}
else
{
// Send alternate setting code of iCurrentInterface of Interface(set) <number> of the current
// config (iCurrentConfig).
const TUint8 setting = InterfaceNumber2InterfacePointer(number)->iCurrentInterface;
__KTRACE_OPT(KUSB, Kern::Printf(" Reporting interface setting %d", setting));
if (iConTransferMgr->SetupEndpointZeroWrite(&setting, 1) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
void DUsbClientController::ProcessSetInterface(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSetInterface()"));
const TInt number = aPacket.iIndex;
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if (iCurrentConfig == 0)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Device not configured"));
iLastError = KErrGeneral;
}
else if (!InterfaceExists(number))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Bad interface index: %d", number));
iLastError = KErrGeneral;
}
else
{
const TInt setting = aPacket.iValue;
TUsbcInterfaceSet* const ifcset_ptr = InterfaceNumber2InterfacePointer(number);
RPointerArray<TUsbcInterface>& ifcs = ifcset_ptr->iInterfaces;
if (setting >= ifcs.Count())
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Alt Setting >= bNumAltSettings: %d", setting));
iLastError = KErrGeneral;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Interface setting:: %d", setting));
// Set iCurrentInterface of Interface(set) <number> of the current config
// (iCurrentConfig) to alternate setting <setting>.
ChangeInterface(ifcs[setting]);
// In 9.4.5 under GET_STATUS we read, that after SET_INTERFACE the HALT feature
// for all endpoints (of the now current interface setting) is reset to zero.
RPointerArray<TUsbcLogicalEndpoint>& eps = ifcset_ptr->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt i = 0; i < num_eps; i++)
{
const TInt ep_num = EpAddr2Idx(eps[i]->iPEndpoint->iEndpointAddr);
(TAny) ClearHaltFeature(ep_num);
}
// success: zero bytes data during status stage
iConTransferMgr->SendEp0ZeroByteStatusPacket();
}
}
}
void DUsbClientController::ProcessSynchFrame(const TUsbcSetup& aPacket)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProcessSynchFrame()"));
const TInt ep = aPacket.iIndex;
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
iLastError = KErrGeneral;
}
else if (EndpointExists(ep) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint does not exist"));
iLastError = KErrGeneral;
}
else if (iRealEndpoints[EpAddr2Idx(ep)].iLEndpoint->iInfo.iType != UsbShai::KUsbEpTypeIsochronous)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint is not isochronous"));
iLastError = KErrGeneral;
}
else
{
// We always send 0:
*reinterpret_cast<TUint16*>(iEp0_TxBuf) = 0x00;
if (iConTransferMgr->SetupEndpointZeroWrite(iEp0_TxBuf, 2) == KErrNone)
{
iEp0WritePending = ETrue;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Wrong: Write to Ep0 Failed"));
}
}
}
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
void DUsbClientController::ProceedSetDescriptor()
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ProceedSetDescriptor()"));
// iEp0DataReceived already reflects the current buffer state
if (iEp0DataReceived < iConTransferMgr->PktParser().DataLength())
{
// Not yet all data received => proceed
return;
}
if (iEp0DataReceived > iConTransferMgr->PktParser().DataLength())
{
// Error: more data received than expected
// but we don't care...
}
const TUint8 type = HighByte(iConTransferMgr->PktParser().Value());
if (type == KUsbDescType_String)
{
// set/add new string descriptor
}
else
{
// set/add new ordinary descriptor
}
TUint8 index = LowByte(iConTransferMgr->PktParser().Value());
TUint16 langid = iConTransferMgr->PktParser().Index();
TUint16 length_total = iConTransferMgr->PktParser().DataLength();
iConTransferMgr->SendEp0ZeroByteStatusPacket();
}
#endif
// --- Secondary (Helper) Functions
void DUsbClientController::SetClearHaltFeature(TInt aRealEndpoint, TUint8 aRequest)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::SetClearHaltFeature()"));
if (aRequest == KUsbRequest_SetFeature)
{
if (iRealEndpoints[aRealEndpoint].iHalt)
{
// (This condition is not really an error)
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: HALT feature already set"));
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" setting HALT feature for real endpoint %d",
aRealEndpoint));
iController.StallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = ETrue;
}
else // KUsbRequest_ClearFeature
{
if (iRealEndpoints[aRealEndpoint].iHalt == EFalse)
{
// In this case, before we return, the data toggles are reset to DATA0.
__KTRACE_OPT(KUSB, Kern::Printf(" Warning: HALT feature already cleared"));
iController.ResetDataToggle(aRealEndpoint);
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" clearing HALT feature for real endpoint %d",
aRealEndpoint));
iController.ResetDataToggle(aRealEndpoint);
iController.ClearStallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = EFalse;
}
EpStatusNotify(aRealEndpoint); // only called if actually something changed
}
TInt DUsbClientController::ClearHaltFeature(TInt aRealEndpoint)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ClearHaltFeature()"));
if (iRealEndpoints[aRealEndpoint].iHalt != EFalse)
{
iController.ClearStallEndpoint(aRealEndpoint);
iRealEndpoints[aRealEndpoint].iHalt = EFalse;
}
return KErrNone;
}
void DUsbClientController::ChangeConfiguration(TUint16 aValue)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ChangeConfiguration()"));
// New configuration is the same as the old one: 0
if (iCurrentConfig == 0 && aValue == 0)
{
// no-op
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration: New == Old == 0 --> exiting"));
return;
}
// New configuration is the same as the old one (but not 0)
if (iCurrentConfig == aValue)
{
// no-op
__KTRACE_OPT(KUSB, Kern::Printf(" Configuration: New == Old == %d --> exiting", aValue));
return;
}
// Device is already configured
if (iCurrentConfig != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device was configured: %d", iCurrentConfig));
// Tear down all interface(set)s of the old configuration
RPointerArray<TUsbcInterfaceSet>& ifcsets = CurrentConfig()->iInterfaceSets;
for (TInt i = 0; i < ifcsets.Count(); ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Tearing down InterfaceSet %d", i));
InterfaceSetTeardown(ifcsets[i]);
}
iCurrentConfig = 0;
// Enter Address state (from Configured)
if (iDeviceState == UsbShai::EUsbPeripheralStateConfigured)
NextDeviceState(UsbShai::EUsbPeripheralStateAddress);
}
// Device gets a new configuration
if (aValue != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device gets new configuration..."));
// Setup all alternate settings 0 of all interfaces
// (Don't separate the next two lines of code.)
iCurrentConfig = aValue;
RPointerArray<TUsbcInterfaceSet>& ifcsets = CurrentConfig()->iInterfaceSets;
const TInt n = ifcsets.Count();
for (TInt i = 0; i < n; ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting up InterfaceSet %d", i));
InterfaceSetup(ifcsets[i]->iInterfaces[0]);
}
// Enter Configured state (from Address or Configured)
NextDeviceState(UsbShai::EUsbPeripheralStateConfigured);
}
__KTRACE_OPT(KUSB, Kern::Printf(" New configuration: %d", iCurrentConfig));
return;
}
void DUsbClientController::InterfaceSetup(TUsbcInterface* aIfc)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::InterfaceSetup()"));
const TInt num_eps = aIfc->iEndpoints.Count();
for (TInt i = 0; i < num_eps; i++)
{
// Prepare this endpoint for I/O
TUsbcLogicalEndpoint* const ep = aIfc->iEndpoints[i];
// (TUsbcLogicalEndpoint's FS/HS endpoint sizes and interval values got
// adjusted in its constructor.)
if (iHighSpeed)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting Ep info size to %d (HS)", ep->iEpSize_Hs));
ep->iInfo.iSize = ep->iEpSize_Hs;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Setting Ep info size to %d (FS)", ep->iEpSize_Fs));
ep->iInfo.iSize = ep->iEpSize_Fs;
}
const TInt idx = EpAddr2Idx(ep->iPEndpoint->iEndpointAddr);
if (iController.ConfigureEndpoint(idx, ep->iInfo) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d configuration failed", idx));
continue;
}
// Should there be a problem with it then we could try resetting the ep
// data toggle at this point (or before the Configure) as well.
__KTRACE_OPT(KUSB, Kern::Printf(" Connecting real ep addr 0x%02x & logical ep #%d",
ep->iPEndpoint->iEndpointAddr, ep->iLEndpointNum));
ep->iPEndpoint->iLEndpoint = ep;
}
aIfc->iInterfaceSet->iCurrentInterface = aIfc->iSettingCode;
return;
}
void DUsbClientController::InterfaceSetTeardown(TUsbcInterfaceSet* aIfcSet)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::InterfaceSetTeardown()"));
if (aIfcSet->iInterfaces.Count() == 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" No interfaces exist - returning"));
return;
}
RPointerArray<TUsbcLogicalEndpoint>& eps = aIfcSet->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt i = 0; i < num_eps; i++)
{
TUsbcLogicalEndpoint* const ep = eps[i];
const TInt idx = EpAddr2Idx(ep->iPEndpoint->iEndpointAddr);
CancelTransferRequests(idx);
if (!ep->iPEndpoint->iLEndpoint)
{
__KTRACE_OPT(KUSB, Kern::Printf(" real ep %d not configured: skipping", idx));
continue;
}
if (iController.ResetDataToggle(idx) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d data toggle reset failed", idx));
}
if (iController.DeConfigureEndpoint(idx) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint %d de-configuration failed", idx));
}
__KTRACE_OPT(KUSB, Kern::Printf(" disconnecting real ep & logical ep"));
ep->iPEndpoint->iLEndpoint = NULL;
}
if (aIfcSet->CurrentInterface() != 0)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Resetting alternate interface setting to 0"));
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
aIfcSet->iCurrentInterface = 0;
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
}
return;
}
void DUsbClientController::ChangeInterface(TUsbcInterface* aIfc)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::ChangeInterface()"));
TUsbcInterfaceSet* ifcset = aIfc->iInterfaceSet;
const TUint8 setting = aIfc->iSettingCode;
if (ifcset->iCurrentInterface == setting)
{
__KTRACE_OPT(KUSB, Kern::Printf(" New Ifc == old Ifc: nothing to do"));
return;
}
__KTRACE_OPT(KUSB, Kern::Printf(" Setting new interface setting #%d", setting));
InterfaceSetTeardown(ifcset);
InterfaceSetup(aIfc);
StatusNotify(static_cast<UsbShai::TUsbPeripheralState>(KUsbAlternateSetting | setting), ifcset->iClientId);
}
// aFunction gets called, successively, with the endpoint index of every ep in-use as its argument.
// (BTW: The declaration "type (class::*name)(params)" makes <name> a "pointer to element function".)
//
TInt DUsbClientController::DoForEveryEndpointInUse(TInt (DUsbClientController::*aFunction)(TInt), TInt& aCount)
{
__KTRACE_OPT(KUSB, Kern::Printf("DUsbClientController::DoForEveryEndpointInUse()"));
aCount = 0;
TUsbcConfiguration* const config = CurrentConfig();
if (!config)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Device is not configured - returning"));
return KErrNone;
}
RPointerArray<TUsbcInterfaceSet>& ifcsets = config->iInterfaceSets;
const TInt num_ifcsets = ifcsets.Count();
for (TInt i = 0; i < num_ifcsets; i++)
{
RPointerArray<TUsbcLogicalEndpoint>& eps = ifcsets[i]->CurrentInterface()->iEndpoints;
const TInt num_eps = eps.Count();
for (TInt j = 0; j < num_eps; j++)
{
const TInt ep_num = EpAddr2Idx(eps[j]->iPEndpoint->iEndpointAddr);
const TInt result = (this->*aFunction)(ep_num);
++aCount;
if (result != KErrNone)
{
return result;
}
}
}
return KErrNone;
}
// Data Tx is done.
void DUsbClientController::ProcessDataInPacket(TInt aCount,TInt aErrCode)
{
// Clear Error Code
iLastError = KErrNone;
// For tx, no premature end is allowed.
if(aErrCode != KErrNone)
{
// something wrong in hardware, we can do nothing as remedy
// just stall the endpoint.
iConTransferMgr->StallEndpoint(KEp0_In);
iConTransferMgr->SetupEndpointZeroRead();
// set err code to Error general if end point is stalled
iLastError = KErrGeneral;
}
else
{
// no longer a write pending
iEp0WritePending = EFalse;
// If it was a client who set up this transmission, we report to that client
if (iEp0ClientDataTransmitting)
{
iEp0ClientDataTransmitting = EFalse;
TUsbcRequestCallback* const p = iRequestCallbacks[KEp0_Tx];
if (p)
{
__ASSERT_DEBUG((p->iTransferDir == UsbShai::EControllerWrite), Kern::Fault(KUsbPILPanicCat, __LINE__));
p->iError = aErrCode;
p->iTxBytes = aCount;
// tell the client that the sending is done
// later, it is possible that a status out packet comes in,
// just ignore it.
ProcessDataTransferDone(*p);
}
else
{
// we should never goes here
iConTransferMgr->StallEndpoint(KEp0_In);
// request not found
iLastError = KErrNotFound;
}
}
// else
// it is our own who sending the data, no more action needed
}
}
// Status Rx is done
void DUsbClientController::ProcessStatusOutPacket(TInt aErrCode)
{
// Clear Error Code
iLastError = KErrNone;
// Dangdang, psl saying a status out packet recieved from
// host, but, we already completed user's writting request, just ignore it.
// any way, receiving this means no write is pending.
iEp0WritePending = EFalse;
}
// Data Rx is (partial) done
void DUsbClientController::ProcessDataOutPacket(TInt aCount,TInt aErrCode)
{
// Clear Error Code
iLastError = KErrNone;
if (aErrCode != KErrNone && aErrCode != KErrPrematureEnd)
{
// something wrong in hardware, we can do nothing as remedy
// just stall the endpoint.
iConTransferMgr->StallEndpoint(KEp0_Out);
iConTransferMgr->SetupEndpointZeroRead();
// set err code to Error general if end point is stalled
iLastError = KErrGeneral;
}
else
{
// Trim aCount with iEp0MaxPacketSize per packet
if (aCount > iEp0MaxPacketSize)
{
aCount = iEp0MaxPacketSize;
}
iEp0DataReceived += aCount;
if (iEp0ClientId == NULL)
{
// it is us( not an app), who owns this transaction
switch( iConTransferMgr->PktParser().Request())
{
#ifdef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
case KUsbRequest_SetDescriptor:
{
memcpy(iEp0_RxCollectionBuf + iEp0DataReceived, iEp0_RxBuf, aCount);
// Status will be sent in side this function
// if we had recieved enough bytes
ProceedSetDescriptor();
}
break;
#endif
default:
{
iConTransferMgr->StallEndpoint(KEp0_In);
ResetEp0DataOutVars();
// set err code to Error general if end point is stalled
iLastError = KErrGeneral;
}
break;
}
if (iEp0DataReceived >= iConTransferMgr->PktParser().DataLength())
{
// all data seems now to be here
ResetEp0DataOutVars();
}
}
else
{
// it is an application who is requesting this data
// pass the data on to a client
// it is the client's responsibility of sending a status
// packet back to host to indicate the whole transfer is
// done
// Find the client Request callback
TSglQueIter<TUsbcRequestCallback> iter(iEp0ReadRequestCallbacks);
TUsbcRequestCallback* p;
while ((p = iter++) != NULL)
{
if (p->Owner() == iEp0ClientId)
{
memcpy(p->iBufferStart, iEp0_RxBuf, aCount);
p->iError = KErrNone;
*(p->iPacketSize) = aCount;
p->iRxPackets = 1;
*(p->iPacketIndex) = 0;
break;
}
}
// pass data to client if found one.
if ( p != NULL)
{
ProcessDataTransferDone(*p);
if (iEp0DataReceived >= iConTransferMgr->PktParser().DataLength())
{
// all data seems now to be here
ResetEp0DataOutVars();
}
iLastError = KErrNone;
}
else
{
// that's bad, we found a client is request this data
// but no matching request callback found.
iEp0_RxExtraCount = aCount;
//iEp0_RxExtraData = ETrue;
//iEp0_RxExtraError = aErrCode;
iEp0DataReceived -= aCount;
// No status packet will be send to host since no client is reading this data,
// waiting client to send a status packet.
iLastError = KErrNotFound;
}
}
}
}
// Status Tx is done
void DUsbClientController::ProcessStatusInPacket(TInt aErrCode)
{
// Clear Error Code
iLastError = KErrNone;
// it is time to start a new read
iEp0WritePending = EFalse;
}
//
// Setup Rx is done
//
void DUsbClientController::ProcessSetupPacket(TInt aCount,TInt aErrCode)
{
if (aErrCode != KErrNone)
{
// something wrong in hardware, we can do nothing as remedy
// just stall the endpoint.
iConTransferMgr->StallEndpoint(KEp0_Out);
iConTransferMgr->SetupEndpointZeroRead();
// set err code to Error general if end point is stalled
iLastError = KErrGeneral;
}
TUsbcSetup packet;
Buffer2Setup(iEp0_RxBuf, packet);
// Clear Error Code
iLastError = KErrNone;
// If this is a standard request, we can handle it here
// not need to bother app layer
if ((packet.iRequestType & KUsbRequestType_TypeMask) == KUsbRequestType_TypeStd)
{
// Fixme: this may not needed any more
iEp0ReceivedNonStdRequest = EFalse;
ProcessStandardRequest(aCount,packet);
}
else
{
// Fixme: This may not needed anymore
iEp0ReceivedNonStdRequest = ETrue;
ProcessNonStandardRequest(aCount,packet);
}
}
#define USB_PROCESS_REQUEST(request,param) \
do \
{ \
Process ## request(param); \
if (iLastError != KErrNone) \
{ \
__KTRACE_OPT(KUSB, \
Kern::Printf(" ProcessEp0SetupReceived: Stalling Ep0")); \
iConTransferMgr->StallEndpoint(KEp0_In); \
} \
}while(0)
//
// Standard request
// Please note that:Macro USB_PROCESS_REQUEST(xxx) will stall endpoint
// if anything wrong during the process, in which case status packet is
// not needed.
//
void DUsbClientController::ProcessStandardRequest(TInt /*aCount*/,const TUsbcSetup& aPacket)
{
switch (aPacket.iRequest)
{
case KUsbRequest_GetStatus:
switch (aPacket.iRequestType & KUsbRequestType_DestMask)
{ // Recipient
case KUsbRequestType_DestDevice:
USB_PROCESS_REQUEST(GetDeviceStatus,aPacket);
break;
case KUsbRequestType_DestIfc:
USB_PROCESS_REQUEST(GetInterfaceStatus,aPacket);
break;
case KUsbRequestType_DestEp:
USB_PROCESS_REQUEST(GetEndpointStatus,aPacket);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: GET STATUS - Other or Unknown recipient"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> DUsbClientController::ProcessEp0SetupReceived: "
"Stalling Ep0"));
iConTransferMgr->StallEndpoint(KEp0_In);
iLastError = KErrGeneral;
break;
}
break;
case KUsbRequest_ClearFeature:
case KUsbRequest_SetFeature:
switch (aPacket.iRequestType & KUsbRequestType_DestMask)
{ // Recipient
case KUsbRequestType_DestDevice:
USB_PROCESS_REQUEST(SetClearDevFeature,aPacket);
break;
case KUsbRequestType_DestIfc:
// will 100% stall endpoint
USB_PROCESS_REQUEST(SetClearIfcFeature,aPacket);
break;
case KUsbRequestType_DestEp:
USB_PROCESS_REQUEST(SetClearEpFeature,aPacket);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: SET/CLEAR FEATURE - "
"Other or Unknown recipient"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> Stalling Ep0"));
iConTransferMgr->StallEndpoint(KEp0_In);
iLastError = KErrGeneral;
break;
}
break;
case KUsbRequest_SetAddress:
USB_PROCESS_REQUEST(SetAddress,aPacket);
break;
case KUsbRequest_GetDescriptor:
USB_PROCESS_REQUEST(GetDescriptor,aPacket);
break;
case KUsbRequest_SetDescriptor:
USB_PROCESS_REQUEST(SetDescriptor,aPacket);
break;
case KUsbRequest_GetConfig:
USB_PROCESS_REQUEST(GetConfiguration,aPacket);
break;
case KUsbRequest_SetConfig:
USB_PROCESS_REQUEST(SetConfiguration,aPacket);
break;
case KUsbRequest_GetInterface:
USB_PROCESS_REQUEST(GetInterface,aPacket);
break;
case KUsbRequest_SetInterface:
USB_PROCESS_REQUEST(SetInterface,aPacket);
break;
case KUsbRequest_SynchFrame:
USB_PROCESS_REQUEST(SynchFrame,aPacket);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown/unsupported Std Setup Request"));
__KTRACE_OPT(KPANIC, Kern::Printf(" -> Stalling Ep0"));
iConTransferMgr->StallEndpoint(KEp0_In);
iLastError = KErrGeneral;
break;
}
}
#undef USB_PROCESS_REQUEST
//
// class- or vendor-specific request
// we dont send back any status to host in PIL for class- or vendor-specific request
// if no client is waiting, stall the endpoint
// if client is not ready, just record them and waiting for client to read them
// (and, send a status packet)
//
void DUsbClientController::ProcessNonStandardRequest(TInt aCount,const TUsbcSetup& aPacket)
{
// Find out which client can handle this request
const DBase* client = FindNonStandardRequestClient(aPacket.iRequestType & KUsbRequestType_DestMask,aPacket);
// If client is valide
if (client != NULL)
{
// Try to relay aPacket to the real recipient
TSglQueIter<TUsbcRequestCallback> iter(iEp0ReadRequestCallbacks);
TUsbcRequestCallback* p;
// Find out the request callback with match the client
// returned from last FindNonStandardRequestClient().
while ((p = iter++) != NULL)
{
if (p->Owner() == client)
{
__ASSERT_DEBUG((p->iEndpointNum == 0), Kern::Fault(KUsbPILPanicCat, __LINE__));
__ASSERT_DEBUG((p->iTransferDir == UsbShai::EControllerRead), Kern::Fault(KUsbPILPanicCat, __LINE__));
__KTRACE_OPT(KUSB, Kern::Printf(" Found Ep0 read request"));
if (aPacket.iLength != 0)
{
if ((aPacket.iRequestType & KUsbRequestType_DirMask) == KUsbRequestType_DirToDev)
{
// Data transfer & direction OUT => there'll be a DATA_OUT stage
__KTRACE_OPT(KUSB, Kern::Printf(" Next is DATA_OUT: setting up DataOutVars"));
SetEp0DataOutVars(client);
}
else if ((aPacket.iRequestType & KUsbRequestType_DirMask) == KUsbRequestType_DirToHost)
{
// For possible later use (ZLP).
iEp0_TxNonStdCount = aPacket.iLength;
}
}
// Found the request callback, jump out now
break;
}
}
// if a request callback matching the client is found,
// complete the request
if( p != NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Ep0 read request completed to client"));
memcpy(p->iBufferStart, iEp0_RxBuf, aCount);
p->iError = KErrNone;
*(p->iPacketSize) = aCount;
p->iRxPackets = 1;
*(p->iPacketIndex) = 0;
ProcessDataTransferDone(*p);
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" Ep0 read request not found: setting RxExtra vars (Setup)"));
iEp0_RxExtraCount = aCount;
//iEp0_RxExtraData = ETrue;
//iEp0_RxExtraError = aErrCode;
iSetupPacketPending = ETrue;
// For setup packet,a zero bytes status is always needed
iLastError = KErrNotFound;
}
}
else // if (client == NULL)
{
// Pil don't know how to deal with non-standard request, stall endpoint
__KTRACE_OPT(KPANIC, Kern::Printf(" Ep0 request error: Stalling Ep0"));
iConTransferMgr->StallEndpoint(KEp0_In);
iLastError = KErrGeneral;
}
}
const DBase* DUsbClientController::FindNonStandardRequestClient(TUint8 aPacketTypeDestination,const TUsbcSetup& aPacket)
{
const DBase* client = NULL;
switch (aPacketTypeDestination)
{ // Recipient
case KUsbRequestType_DestDevice:
{
client = iEp0DeviceControl;
}
break;
case KUsbRequestType_DestIfc:
{
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
}
else
{
const TUsbcInterfaceSet* const ifcset_ptr =
InterfaceNumber2InterfacePointer(aPacket.iIndex);
//In some rare case, ifcset_ptr is not NULL but the ifcset_ptr->iInterfaces.Count() is 0,
//so panic will happen when excute the following line. so I add the conditon
//0 != ifcset_ptr->iInterfaces.Count() here.
if (ifcset_ptr && 0 != ifcset_ptr->iInterfaces.Count())
{
if (ifcset_ptr->CurrentInterface()->iNoEp0Requests)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Recipient says: NoEp0RequestsPlease"));
}
else
{
client = ifcset_ptr->iClientId;
}
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Interface 0x%02x does not exist",
aPacket.iIndex));
}
}
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
}
break;
case KUsbRequestType_DestEp:
{
//Add this mutex to protect the interface set data structure
if (NKern::CurrentContext() == EThread)
{
NKern::FMWait(&iMutex);
}
if ( iDeviceState < UsbShai::EUsbPeripheralStateConfigured)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Invalid device state"));
}
else if (EndpointExists(aPacket.iIndex) == EFalse)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint 0x%02x does not exist",
aPacket.iIndex));
}
else
{
const TInt idx = EpAddr2Idx(aPacket.iIndex);
const TUsbcInterfaceSet* const ifcset_ptr =
iRealEndpoints[idx].iLEndpoint->iInterface->iInterfaceSet;
if (ifcset_ptr->CurrentInterface()->iNoEp0Requests)
{
__KTRACE_OPT(KUSB, Kern::Printf(" Recipient says: NoEp0RequestsPlease"));
}
else
{
client = ifcset_ptr->iClientId;
}
}
if (NKern::CurrentContext() == EThread)
{
NKern::FMSignal(&iMutex);
}
}
break;
default:
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Other or Unknown recipient"));
break;
}
}
return client;
}
TInt DUsbClientController::ProcessSetupEndpointZeroRead()
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: Read EP0 Issued"));
return iController.SetupEndpointZeroRead();
}
TInt DUsbClientController::ProcessSetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: Write EP0 Issued"));
return iController.SetupEndpointZeroWrite(aBuffer,aLength,aZlpReqd);
}
TInt DUsbClientController::ProcessSendEp0ZeroByteStatusPacket()
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: Zero Status to EP0 Issued"));
return iController.SendEp0ZeroByteStatusPacket();
}
TInt DUsbClientController::ProcessStallEndpoint(TInt aRealEndpoint)
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: EP0(%d) Stall Issued",aRealEndpoint));
return iController.StallEndpoint(aRealEndpoint);
}
void DUsbClientController::ProcessEp0SetupPacketProceed()
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: Missed setup packet procced"));
iController.Ep0ReadSetupPktProceed();
}
void DUsbClientController::ProcessEp0DataPacketProceed()
{
__KTRACE_OPT(KPANIC, Kern::Printf("DUsbClientController:: Missed data packet procced"));
iController.Ep0ReadDataPktProceed();
}
// -eof-