	

	CONFIDENTIAL
	
	3 (13)

	TEF To STF Migration Guide
	
	
	

	
	
	
	2009-11-12

TEF to STF
Migraton Guide

Change history:

	Version
	Date
	Status
	Comments

	1.0
	19.03.2010
	Reviewed
	Updated after review

	0.1
	11.12.2009
	Original
	draft

41.
INTRODUCTION

41.1
STF Essence

41.2
Write STF Test Cases.

81.3
STF Event System

82.
MAGRATING FROM TEF TO STF

82.1
TEF TEST STEP/BLOCK to STF

92.2
Script Keywords Mapping

132.3
Script Keywords Mapping Table

133.
MIGARATION EXAMPLES

1. INTRODUCTION

As we know, TEF is a test harness for implementing test cases, as well as, an execution framework for running test cases. The same is for STF, which also can separate the actual test cases from test execution environment, and provide convenient automatic running platform for Symbian Testing. This guide describes the essential differences between TEF and STF and presents how to port test cases from TEF to STF.
If you wish to execute legacy TEF test cases directly on STF, please refer to <HOWTO_Execute_TEF_test_cases_on_STF>.

1.1 STF Essence
The following features are currently supported basically:

· Test module implements test cases

· Error , exception and panic handling

· Concurrent test case execution

· Test Module Template Wizard
· Memory leak detection

· Extensibility & Utilities
· File parsing with STIF Parser

· Logging facilities for test modules with STIF Logger

· Scripted test cases with Test Scripter

· Test case synchronization with STIF Event System

· Test case combining with Test Combiner

· Write once, test everywhere. For example, test cases made during the development phase can be used in system testing, automatic release testing, etc.

· Multiple test cases can be executed concurrently.

· All execution errors and exceptions are handled properly and reported to tester.

· Excellent support for test automation.
· Heap and stack configuring

· OOM test support

· Test Interference support

From user perspective, the rest part of this document will introduce STF Test Scripter test, Event System and other basic contents. Please refer to <STF User Guide> for more detailed information about STF.
1.2 Write STF Test Cases.
Implementing STF Test Scripter test cases is very similar with TEF test cases. User should provide both test script and test classes binding with the script.
1.2.1 STF Test Script
The STF TestScripter case is very similar with TEF test block, defining the commands to be executed in the test case with the scripting language. The test script file may contain multiple test cases, each starts with tag [Test] and ends with tag [Endtest]. Like TEF, the test case is executed sequentially line by line by default. The following example presents a simple test case:

[Test]

title Create, print, run DoSomething and delete

create ExampleTestclass testclass
print Call DoSomething method

testclass DoSomething pa ra me ters

print DoSomething method called, delete instance

delete testclass
[Endtest]

The test case itself is defined with lines. Each line consists of keywords and pairs of argument and value. For a test case, title must be given after the title keyword on the first line of the test case definition. In the example above, the create keyword creates a new instance of “ExampleTestclass”, which is named “testclass”. The print keyword is used to print information to UI. The fourth line of the example test case executes the “DoSomething” method of the test object with four parameters: “pa”, “ra”, “me” and “ters”. The delete keyword is used to delete the test object.
In the next paragraphs, the major keywords of STF scripter will be presented basically.

1.2.1.1 Creating an object

The keyword create is used to define an instance of a wrapped test class, following with the wrapped class name and the expected instance name. Like:

create ExampleTestclass testclass

1.2.1.2 Calling a method

No additional parameter is needed to call a method of the wrapped class; just simply placing the method name behind the instance is enough to run the method. Like:
testclass DoSomething pa ra me ters

A set of parameters can also be placed like the above example, which will be passed to the method.

1.2.1.3 Setting expected test result

The expected result of one test may be not simply “0” or “KErrNone”; instead, one or multiple expected results can be got. STF can accept the expected results set previously, and maintain the actual test result (Pass or Fail) according the expected results automatically. Like:
allownextresult –1 -5 -12

All the results including “-1”, “-5” and “-12” can be considered acceptable, resulting in a success of a test.

1.2.1.4 Setting expected return error

The expected result returned by one method may be not simply “0” or “KErrNone”, instead, one or multiple expected error can be returned. STF can accept the expected error set previously, and maintain the actual test result (Pass or Fail) according the expected errors automatically. Like:

allowerrorcodes –1 -5 -12
All the errors including “-1”, “-5” and “-12” can be considered acceptable, resulting in a success of a method.

1.2.1.5 Setting expected test panic

Some test is used to test panic related components, and it’s correct to get the expected panic number during executing a test. STF allow user setting the expected panic previously. Like:

allowpanic 3
When and only when the panic “4” occurs, the test case is considered successful, or any other results will cause the test failed. For now STF only accepts panic code without categories.
Regarding more detailed information about STF scripter, please take <STF_Users_Guide> as reference.
1.2.1.6 OOM measuring
STF supports OOM measuring through the keywords oomignorefailure, oomheapfailnext, oomheapsetfail etc. With the feature, STF enable user to measure the issues during managing memory daynamically.

Regarding more detailed information about STF scripter, please take <STF_Users_Guide> as reference.

1.2.2 Binding Test Script Commands

Test Class should be implemented for binding script commands. STF provides friendly template to synthesize the test class inherited from CScriptBase. Following steps shows how to implement your test class binding with your test script.
Create a template
· Open command prompt and cd to \epoc32\tools\s60rndtools\stf\testmoduletemplates
· Input createtestmodule.bat
· Following the instruction to generate test template.

[image: image1]
Implement a case

· Go to \ExampleTestclass\src\ExampleTestClassBlocks.cpp file.

· Add your test case method to CExampleTestclass class.
	TInt CExampleTestclass::DoSomethingL(CStifItemParser& aItem)

{

 // Provide test case implementation

return KErrNone;

}

· Method should return KErrNone when everything went ok.

· Find CExampleTestclass::RunMethodL method and KFunctions table.

· Add you method using ENTRY macro. First literal stands for the name, which needs to be used from script level to call this method.
	static TStifFunctionInfo const KFunctions[] =

{

// Copy this line for every implemented function.

// First string is the function name used in TestScripter script file.

// Second is the actual implementation member function.

//ADD NEW ENTRY HERE

ENTRY("DoSomething", CExampleTestclass:: DoSomethingL),

// [test cases entries] - Do not remove

};

· Go to \ExampleTestclass\inc\ExampleTestclass.h file.

· Add declaration of the test class method.

· Test class module is ready. It can now be compiled.
1.2.3 Test Execution
Test can be executed via StfQtUI. Firstly modify file \epoc32\winscw\c\TestFramework\TestFramework.ini to add TestScripter module.
	[New_Module]

ModuleName= TestScripter

TestCaseFile= c:\testframework\myexample.cfg

[End_Module]

ModuleName should always be TestScripter.

TestCaseFile is the script file’s full name.
Then start emulator, click applications/StfQtUI to execute test cases.
1.3 STF Event System

STF event system handles synchronization in the test cases, by providing a set of convenient interfaces and two deferent types of events: state event and indication event. State event is used to indicate some state active or inactive, and they can be set and unset. Indication event is used to indicate that some event happened, and can only be set.
STF event system can be used to synchronize the test cases, so that the schedule of the test cases, which run concurrently, can be controlled accurately. STF provides both script and C++ interfaces for defining, setting, releasing event. The below is a scripter example:
[Test]

title OpenFile

create STIF_TestFileServer foobar

request Event1

wait Event1

foobar OpenFile c:\testfileserver.test

release Event1

delete foobar

[Endtest]

[Test]

title CreateFile

create STIF_TestFileServer foobar

allowerrorcodes -11

foobar CreateFile c:\testfileserver.test

set Event1 state

unset Event1

delete foobar

[Endtest]

Like the example, before waiting or setting an event, the event must be requested first, like:

request Event1

In the first test of the above example, the event “Event1” is requested and waited. Hence, all the commands behind “wait Event1” will not get executed until the event “Event1” is set in the second test of the example. The event must be released after using.

BTW, STF Event System can be used for various scenarios, the concurrent test cases, for instance, can be controlled even without the special keyword like CONCURRENT in TEF. Please take the example in MIGARATION EXAMPLES as example.

2. MAGRATING FROM TEF TO STF
2.1 TEF TEST STEP/BLOCK to STF
For TEF Test Step user, the TEF script would be like below format:
	START_TESTCASE TestStepCase-0001
PRINT Executing testcase TestStepCase-IniData-0001.

RUN_TEST_STEP 100 SampleServer SampleStep1 c:\sampletest\sampleTest.ini SectionOne
END_TESTCASE ST-SYSLIBS-ECOM-SANITY-0001

For TEF Test Block user, the TEF script would be like below format:
START_TEST_BLOCK 100 SampleServer sampleTest.ini
 CREATE_OBJECT ExampleTestclass testclass
 COMMAND testclass New

 COMMAND testclass DoSomething MyParamsSection

END_TEST_BLOCK
Merged to STF TestScripter format, the script would be like:
[Test]

title Create, print, run DoSomething and delete

create ExampleTestclass testclass

print Call DoSomething method

testclass DoSomething pa ra me ters

print DoSomething method called, delete instance

delete testclass

[Endtest]

Test Class should be implemented for binding script commands. Please refer to [section 1.2.2] for more details.
2.2 Script Keywords Mapping

2.2.1 Creating a test

As the example of [section 2.1] shows, TEF Step starts with keyword START_TESTCASE, ends with END_TESTCASE, comparing with it, TEF Block starts with keyword START_TEST_BLOCK, ends with END_TEST_BLOCK. In the same case, STF test case is defined between [Test] and [Endtest].It should be indicated that the keyword Test and Endtest being contained with a pair of square bracket.
2.2.2 Creating an object

In the following TEF example, “testclass” represents an instance of the wrapper class “ExampleTestclass”. The case is similar with STF, with the only difference: TEF uses CREATE_OBJECT as keyword, but STF uses create. Referring to the STF example, the keyword create follows by “ExampleTestclass” and “testclass” which representing wrapper class name and instance respectively.

2.2.2.1 TEF

CREATE_OBJECT ExampleTestclass testclass
2.2.2.2 STF

create ExampleTestclass testclass
2.2.3 Running a method

In TEF Step, the keyword RUN_TEST_STEP begins an execution of a command. In TEF Block, after creating an instance of the wrapper class, the method wrapper class can be called with the function name following with the instance. Please refer to the following examples. In TEF BLOCK, the instruction COMMAND calls the method “DoSomething” of the instance “testclass” with parameters defined in “MyParamsSection”. Comparing with TEF, STF doesn’t use any keyword. In the example, “testclass” is the name of the instance, and “DoSomething” is the method name. Also, there is a difference in the way to pass parameters. Please refer to <STF Users Guide> for detailed information.
2.2.3.1 TEF STEP

RUN_TEST_STEP 100 SampleServer SampleStep1 c:\sampletest\sampleTest.ini SectionOne
2.2.3.2 TEF BLOCK

COMMAND testclass DoSomething MyParamsSection
2.2.3.3 STF

testclass DoSomething pa ra me ters
2.2.4 Data Binding

TEF STEP/BLOCK test cases support ini file binding test date. Referring to the example below, test data in sampleTest.ini is dynamically loaded in test execution and is easy to reuse for different test cases.
STF also supports data binding which is very similar with TEF.
2.2.4.1 TEF STEP

RUN_TEST_STEP 100 SampleServer SampleStep1 c:\sampletest\sampleTest.ini SectionOne
2.2.4.2 TEF BLOCK

START_TEST_BLOCK 100 SampleServer sampleTest.ini
……
COMMAND testclass DoSomething MyParamsSection
2.2.4.3 STF

script file:
[Data]

File
exaple_test_data.ini
data

Section
section_A

sa

[Enddata]

……

[Test]

title Create, print, run DoSomething and delete

create ExampleTestclass testclass

print Call DoSomething method

testclass DoSomething $data@sa#key1
print DoSomething method called, delete instance

delete testclass

[Endtest]

exaple_test_data.ini file:
#filename = exaple_test_data.ini
[section_A]

key1=value1

key2=value2
In script file, [Data] section defines the data file and a short name of data section. To use it, “$data@sa#key1” means to get data from file “data”, section “sa” and key “key1”. In this example, “$data@sa#key1” will get”value1” from exaple_test_data.ini file.

For more detail information of data binding, please refer to <STF Users Guide>.
2.2.5 Handling Expected Error

The feature is used to add expected return value for a method. STF can receive multiple expected error code, but TEF can’t.

2.2.5.1 TEF
COMMAND !Error=-222 MyInstanceNameIniSection DoSomeRiskyStuff

2.2.5.2 STF

allowerrorcodes -222
Multiple error code is also supported by STF, for example

allowerrorcodes –1 -5 -12

2.2.6 Handling Expected Result

The feature is used to add expected result for a test. STF can receive multiple expected error code, but TEF can’t.

2.2.6.1 TEF

END_TEST_BLOCK !Result=-3
2.2.6.2 STF

Allownextresult -3

Or expect multiple results.
Allownextresult -1 -5 -12
2.2.7 Handling Expected Panic

The feature is used to add expected panic for a test.
2.2.7.1 TEF

END_TEST_BLOCK !PanicString=MY_PANIC !PanicCode=3

2.2.7.2 STF

expectedpanic 3
2.2.8 CONCURRENT

2.2.8.1 TEF

All test cases are executed one by one by default. But after using CONCURRENT keyword, all the test case behind the keyword will be executed concurrently.

2.2.8.2 STF

STF provides the opportunity to accurately control the test cases running concurrently, by using event system. In script, user can define, set and release an event. The detailed information please refers to <STF Users Guide>. For example:

[Test]

title OpenFile

create STF_TestFileServer foobar

request Event1

wait Event1

foobar OpenFile c:\testfileserver.test

release Event1

delete foobar

[Endtest]

[Test]

title CreateFile

create STF_TestFileServer foobar

allowerrorcodes -11

foobar CreateFile c:\testfileserver.test

set Event1 state

unset Event1

delete foobar

[Endtest]

2.2.9 CONSECUTIVE

2.2.9.1 TEF

All test cases are executed one by one by default. But after using CONCURRENT keyword, all test cases behind the keyword will be executed concurrently. The keyword CONSECUTIVE enforces test framework to execute test cases consecutively.

2.2.9.2 STF

By default, all test cases in the same script are executed consecutively.
2.2.10 LOOP

Both STF and TEF support the keyword loop, and the usage is similar. As the following STF example:

loop 5

// execute this 5 times

print LOOP_COUNTER //prints loop counter value, from 0 to <loop times>-1.

End loop

2.3 Script Keywords Mapping Table

	Command
	STF

	Create test
	[Test]…[Endtest]

	Create object
	create TestClassName InstanceName

	Run method
	Instancename Methodname parameters

	Handle expected error
	allowerrorcodes -1 -2 -11

	Handle expected result
	allownextresult -1 -2 -11

	Handle expected panic
	expectedpanic 3

	CONCURRENT
	using STF event

	CONSECUTIVE
	default

	Repeat test
	loop

	Print
	Print

	OOM
	oomigorefailure oomheapfailnext oomheapsetfail oomheapnoraml

	DELAY
	pause or event

3. MIGARATION EXAMPLES

For demonstrating the migration from TEF to STF, one sample demonstration is provided. The demo includes test cases written on STF, TEF BLOCK and TEF STEP respectively, but all the test cases are based on one common scenario: operations regarding file server.

The project can be gotten from \epoc32\tools\s60rndtools\stf\Example\MigrationExample

All the test code was presented in folder FileStore, including STF, TEF_BLOCK and TEF_STEP sub-folder. Each test case follows the corresponding test harnesses. TEF_BLOCK, for instance, is organized as a normal BLOCK test, which contains server, data and scripts. Regarding the same scenario, one test is written on STF, which is utilized to test the same functions that are tested on both TEF_BLOCK and TEF_STEP.

[image: image2.png]\epoc32\tools\s6Brndtools\stf\testmoduletemplates dereatetestmoduls

nter ModuleType

<h) hardeoded
<£) testelass

at

creates test module that uses hardcoded test cases.
creates test class which is used with TestScripter,

QO kerneltest = creates kernel test class uhich is used with TestScripter
{c) capsmodifier - creates capability modification module

o> exit

= Exit.

Chame/short cut): testelass
Sname/sho Lesselass
uhich has to be a valid C++ variable name.

Cor exit): ExampleTestelass

nter path [default is drive root] Cor exit): xi\workspace:

_935227290.doc

