|
1 <?xml version="1.0" encoding="utf-8"?> |
|
2 <!-- Copyright (c) 2007-2010 Nokia Corporation and/or its subsidiary(-ies) All rights reserved. --> |
|
3 <!-- This component and the accompanying materials are made available under the terms of the License |
|
4 "Eclipse Public License v1.0" which accompanies this distribution, |
|
5 and is available at the URL "http://www.eclipse.org/legal/epl-v10.html". --> |
|
6 <!-- Initial Contributors: |
|
7 Nokia Corporation - initial contribution. |
|
8 Contributors: |
|
9 --> |
|
10 <!DOCTYPE concept |
|
11 PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd"> |
|
12 <concept id="GUID-6A4FE3A3-2E5D-51BB-8272-5995586291E9" xml:lang="en"><title>LCD |
|
13 Extension Implementation Tutorial</title><shortdesc/><prolog><metadata><keywords/></metadata></prolog><conbody> |
|
14 <p>This topic describes how to create an LCD Extension. </p> |
|
15 <p>The topic uses a reference board port named <filepath>template_variant</filepath> as |
|
16 an example implementation. </p> |
|
17 <section id="GUID-7DDD91D2-A69F-4940-AA58-74EB2A989E55"><title>Build environment</title> <p>In the template reference board |
|
18 port, the <filepath>.mmp</filepath> file for the LCD Extension is <filepath>...\template_variant\lcdtemplate.mmp</filepath>. |
|
19 This is one of the <codeph>PRJ_MMPFILES</codeph> referenced in the template |
|
20 variant's <filepath>bld.inf</filepath> file in the <filepath>...\template_variant\...</filepath> directory, |
|
21 and means that the LCD Extension is built as part of the Variant. </p> <p>The |
|
22 source for the driver is contained entirely within <filepath>...\template_variant\specific\lcd.cpp</filepath>. </p> <p>The |
|
23 driver is defined as a kernel extension and is loaded early in the boot sequence. </p> </section> |
|
24 <section id="GUID-FC49B296-5DFA-4C19-BEDE-F641D70E5ED9"><title>Initialization</title> <p>The driver functionality is almost |
|
25 entirely encapsulated by the <codeph>DLcdPowerHandler</codeph> class. This |
|
26 is a power handler class derived from <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita"><apiname>DPowerHandler</apiname></xref>. An |
|
27 instance of <codeph>DLcdPowerHandler</codeph> is created when the extension |
|
28 is loaded. </p> <p> <codeph>DLcdPowerHandler</codeph> is defined within the |
|
29 source file itself <filepath>...\template_variant\specific\lcd.cpp</filepath>. </p> <p>As |
|
30 the driver is a kernel extension, it must have a <codeph>DECLARE_STANDARD_EXTENSION()</codeph> statement. |
|
31 In the template port, this is implemented as follows: </p> <codeblock id="GUID-BB93E7E7-06DA-5A12-ABA1-D07AA246D6FC" xml:space="preserve">DECLARE_STANDARD_EXTENSION() |
|
32 { |
|
33 __KTRACE_OPT(KPOWER,Kern::Printf("Starting LCD power manager")); |
|
34 |
|
35 // create LCD power handler |
|
36 TInt r=KErrNoMemory; |
|
37 DLcdPowerHandler* pH=new DLcdPowerHandler; |
|
38 if (pH) |
|
39 r=pH->Create(); |
|
40 |
|
41 __KTRACE_OPT(KPOWER,Kern::Printf("Returns %d",r)); |
|
42 return r; |
|
43 } |
|
44 </codeblock> <p>This simply creates an instance of the <codeph>DLcdPowerHandler</codeph> class |
|
45 and then calls its <codeph>Create()</codeph> function which implements the |
|
46 display setup. This function should do the following: </p> <ul> |
|
47 <li id="GUID-4D3B36C6-C782-5B3F-8244-7FD33B9976C6"><p>map the video RAM </p> </li> |
|
48 <li id="GUID-B693BD2B-50FF-554D-AF2B-1992A472F586"><p>setup the video info |
|
49 structure </p> </li> |
|
50 <li id="GUID-1DF67FC0-90FA-5853-88C2-6DBA5C60F377"><p>install the HAL handler </p> </li> |
|
51 <li id="GUID-2B8080C4-2A9F-5AA2-B609-3DC8F5759DDE"><p>install the power handler. </p> </li> |
|
52 </ul> <p><b> Map |
|
53 the video RAM</b> </p> <p>The frame buffer is a <xref href="GUID-2A34A3DD-A7FE-34A0-B0B7-BB0A4F04B098.dita"><apiname>DPlatChunkHw</apiname></xref> object, |
|
54 and should be mapped as globally accessible, readable and writeable. It should <i>not</i> be |
|
55 mapped as writeback cached, it should be either not-cached or write-through. |
|
56 The advantage of write through is that it allows the use of the write buffer. </p> <codeblock id="GUID-148795D9-45A2-526B-A2F7-57B5B2AAC8AB" xml:space="preserve">TInt DLcdPowerHandler::Create() |
|
57 { |
|
58 ... |
|
59 |
|
60 // map the video RAM |
|
61 TInt vSize = ((TemplateAssp*)Arch::TheAsic())->VideoRamSize(); |
|
62 ivRamPhys = TTemplate::VideoRamPhys(); // EXAMPLE ONLY: assume TTemplate interface class |
|
63 TInt r = DPlatChunkHw::New(iChunk,ivRamPhys,vSize,EMapAttrUserRw|EMapAttrBufferedC); |
|
64 if ® != KErrNone) |
|
65 return r; |
|
66 ... |
|
67 </codeblock> <p>If the frame buffer resides in main RAM and there is no restriction |
|
68 on which physical addresses may be used for it, physical RAM for the frame |
|
69 buffer should be reserved by using <xref href="GUID-3DC7B5F2-512E-3FF3-BC08-945DDE2AE680.dita#GUID-3DC7B5F2-512E-3FF3-BC08-945DDE2AE680/GUID-B506D835-505D-3D89-A840-475F291908DC"><apiname>Epoc::AllocPhysicalRam()</apiname></xref>. </p> <p>If |
|
70 the frame buffer does not reside in main RAM, there is no problem about reserving |
|
71 it. </p> <p>If the frame buffer must reside at a specific address in main |
|
72 RAM, there are two strategies available for reserving it: </p> <ul> |
|
73 <li id="GUID-29D3BF5F-442B-5912-A8B9-4F1F76C1879E"><p>If no conflicts are |
|
74 permitted between the frame buffer and memory allocations made during the |
|
75 kernel boot (for example, if the frame buffer must reside at the end of main |
|
76 memory), simply use <xref href="GUID-3DC7B5F2-512E-3FF3-BC08-945DDE2AE680.dita#GUID-3DC7B5F2-512E-3FF3-BC08-945DDE2AE680/GUID-78F136DC-023B-30AB-A1AB-34D6BC4F1B3E"><apiname>Epoc::ClaimPhysicalRam()</apiname></xref>. This function |
|
77 just marks a region of physical RAM as allocated, returning an error if any |
|
78 part of the region has already been used. </p> </li> |
|
79 <li id="GUID-F2C5ED3A-767A-58CA-BDC6-78D3C1820C80"><p>The required physical |
|
80 RAM region can be reserved in the bootstrap. The correct place to do this |
|
81 is in the implementation of the boot table function <xref href="GUID-B3F6FC45-3BF0-5F92-8325-44C705BA47AE.dita#GUID-B3F6FC45-3BF0-5F92-8325-44C705BA47AE/GUID-B3C6ACE9-A803-59D4-8EBD-314363905427">BTF_Reserve</xref> when writing platform-specific source code for the bootstrap. |
|
82 See the Bootstrap <xref href="GUID-5EB03086-A87D-5588-8927-7A7F8DB38366.dita">Port |
|
83 Implementation Tutorial</xref> for more detail and look at <filepath>...\template_variant\bootstrap\template.s</filepath> for |
|
84 a concrete example. </p> </li> |
|
85 </ul> <p>Note that all Symbian platform base ports currently create a second |
|
86 frame buffer for a secure screen. However, as platform security is not yet |
|
87 implemented, this is wasteful of RAM and should be omitted. </p> <p id="GUID-57223C8C-0381-51AC-8E8A-771434136A5C"><b> Set up the video information |
|
88 structure</b> </p> <p>The video information structure is used to define several |
|
89 aspects of the display including display size, bits per pixel and address |
|
90 of the frame buffer. This structure is the class <xref href="GUID-C4712A78-6C58-39ED-AF84-11038DB8571D.dita"><apiname>TVideoInfoV01</apiname></xref> defined |
|
91 in the header file <filepath>...\eka\include\videodriver.h</filepath> and |
|
92 exported to <filepath>...\epoc32\include</filepath>. </p> <codeblock id="GUID-0680E467-9552-5FD6-BBDE-60AE95F0B941" xml:space="preserve">TInt DLcdPowerHandler::Create() |
|
93 { |
|
94 ... |
|
95 // setup the video info structure, this will be used to remember the video settings |
|
96 iVideoInfo.iDisplayMode = KConfigLcdInitialDisplayMode; |
|
97 iVideoInfo.iOffsetToFirstPixel = Lcd_Mode_Config[KConfigLcdInitialDisplayMode].iOffsetToFirstVideoBuffer; |
|
98 iVideoInfo.iIsPalettized = Lcd_Mode_Config[KConfigLcdInitialDisplayMode].iIsPalettized; |
|
99 iVideoInfo.iOffsetBetweenLines = Lcd_Mode_Config[KConfigLcdInitialDisplayMode].iOffsetBetweenLines; |
|
100 iVideoInfo.iBitsPerPixel = Lcd_Mode_Config[KConfigLcdInitialDisplayMode].iBitsPerPixel; |
|
101 |
|
102 iVideoInfo.iSizeInPixels.iWidth = KConfigLcdWidth; |
|
103 iVideoInfo.iSizeInPixels.iHeight = KConfigLcdHeight; |
|
104 iVideoInfo.iSizeInTwips.iWidth = KConfigLcdWidthInTwips; |
|
105 iVideoInfo.iSizeInTwips.iHeight = KConfigLcdHeightInTwips; |
|
106 iVideoInfo.iIsMono = KConfigLcdIsMono; |
|
107 iVideoInfo.iVideoAddress=(TInt)pV; |
|
108 iVideoInfo.iIsPixelOrderLandscape = KConfigLcdPixelOrderLandscape; |
|
109 iVideoInfo.iIsPixelOrderRGB = KConfigLcdPixelOrderRGB; |
|
110 ... |
|
111 }</codeblock> <p><b> Install |
|
112 the HAL handler</b> </p> <p>Control of the display is done by using the HAL, |
|
113 the Hardware Abstraction Layer. </p> <p>The <codeph>DLcdPowerHandler</codeph> class |
|
114 provides the implementation for the HAL handler for the HAL function group <xref href="GUID-7F299BFC-D8A5-3A5A-B8DA-39BF42C99DC6.dita"><apiname>EHalGroupDisplay</apiname></xref> and |
|
115 this needs to be registered with the kernel by calling <xref href="GUID-C6946ECB-775F-3EC2-A56F-78F25B9FBE3D.dita#GUID-C6946ECB-775F-3EC2-A56F-78F25B9FBE3D/GUID-8C8DCE9D-0094-3909-8FDA-2F3134D0BC88"><apiname>Kern::AddHalEntry()</apiname></xref>. </p> <codeblock id="GUID-F9E86404-742D-5931-BA77-DA246A3975E5" xml:space="preserve">TInt DLcdPowerHandler::Create() |
|
116 { |
|
117 ... |
|
118 // install the HAL function |
|
119 r=Kern::AddHalEntry(EHalGroupDisplay, halFunction, this); |
|
120 if (r!=KErrNone) |
|
121 return r; |
|
122 ... |
|
123 }</codeblock> <p>See <xref href="GUID-2D977A02-5928-5441-8AE7-42A722F2A4B8.dita#GUID-2D977A02-5928-5441-8AE7-42A722F2A4B8/GUID-4DA41221-40B9-5BC7-B2C6-7C6EB4522508">User-Side |
|
124 Hardware Abstraction</xref> for more detailed information on the HAL. </p> <p><b> Install the power handler</b> </p> <p>A call must be made to the <codeph>Add()</codeph> function, |
|
125 which is supplied by the <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita"><apiname>DPowerHandler</apiname></xref> base class of <codeph>DLcdPowerHandler</codeph>, |
|
126 to register the handler with the power manager. </p> <codeblock id="GUID-9286C3A2-DC2B-54F1-9F28-4EBE085AEE84" xml:space="preserve">TInt DLcdPowerHandler::Create() |
|
127 { |
|
128 ... |
|
129 // install the power handler |
|
130 // power up the screen |
|
131 Add(); |
|
132 ... |
|
133 }</codeblock> </section> |
|
134 <section id="GUID-85B93308-2EDF-462C-8F64-6AE40B8B16B6"><title>HAL handler implementation</title> <p>Requests to get and |
|
135 set hardware attributes are made through calls to <xref href="GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8.dita#GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8/GUID-573C49D6-7763-37AE-B2B2-4C8FB1327E21"><apiname>HAL::Get()</apiname></xref> and <xref href="GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8.dita#GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8/GUID-9454F1B2-D525-3D6D-A872-C6457CACD4FC"><apiname>HAL::Set()</apiname></xref>. |
|
136 These two HAL functions take a value that identifies a hardware attribute, |
|
137 one of the <xref href="GUID-8BE90160-2C60-3582-82C8-4A108C7C0317.dita#GUID-8BE90160-2C60-3582-82C8-4A108C7C0317/GUID-1959915A-BA99-3F94-AFD4-FD1AA540BFBF"><apiname>HALData::TAttribute</apiname></xref> values. </p> <p>For the |
|
138 LCD Extension, the relevant hardware attributes are: <codeph>EDisplayMode</codeph>, <codeph>EDisplayBitsPerPixel</codeph>, <codeph>EDisplayIsPalettized</codeph>, <codeph>EDisplayIsMono</codeph>, <codeph>EDisplayMemoryAddress</codeph>, <codeph>EDisplayMemoryHandle</codeph>, <codeph>EDisplayOffsetToFirstPixel</codeph>, <codeph>EDisplayOffsetBetweenLines</codeph>, <codeph>EDisplayXPixels</codeph>, <codeph>EDisplayYPixels</codeph>, <codeph>EDisplayPaletteEntry</codeph> and <codeph>EDisplayOffsetBetweenLines</codeph>. </p> <p>The HAL handler |
|
139 is registered with the kernel as the handler for the <xref href="GUID-66A851A0-2A0C-3624-AEC1-22F6629FABF7.dita#GUID-66A851A0-2A0C-3624-AEC1-22F6629FABF7/GUID-950EA0D3-747F-305E-92EA-1579023A111E"><apiname>THalFunctionGroup::EHalGroupDisplay</apiname></xref> group. |
|
140 The HAL handler itself takes a function ID, which is one of the <xref href="GUID-BB011D9B-105F-345C-9FC0-39B0BA509394.dita"><apiname>TDisplayHalFunction</apiname></xref> enumerators. </p> <p>A |
|
141 call to <xref href="GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8.dita#GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8/GUID-573C49D6-7763-37AE-B2B2-4C8FB1327E21"><apiname>HAL::Get()</apiname></xref> and <xref href="GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8.dita#GUID-BD00E7FC-C234-3111-87A5-10F79EB0F2B8/GUID-9454F1B2-D525-3D6D-A872-C6457CACD4FC"><apiname>HAL::Set()</apiname></xref> that |
|
142 takes one of the hardware attributes relevant to the LCD Extension is ultimately |
|
143 routed to a call to this HAL handler function passing an appropriate function |
|
144 ID. The association between the hardware attribute and the function ID is |
|
145 the responsibility of the accessor functions. </p> <p>See <xref href="GUID-2D977A02-5928-5441-8AE7-42A722F2A4B8.dita#GUID-2D977A02-5928-5441-8AE7-42A722F2A4B8/GUID-4DA41221-40B9-5BC7-B2C6-7C6EB4522508">User-Side Hardware Abstraction</xref> for more information on the way this |
|
146 works in general. </p> <p>The HAL handler is implemented as a case statement, |
|
147 switching on the function ID. For example, the following code fragment taken |
|
148 from <codeph>DLcdPowerHandler::HalFunction()</codeph> gets and sets the brightness: </p> <codeblock id="GUID-41D5153A-107A-5FCC-9E51-C6250857F3AC" xml:space="preserve">TInt DLcdPowerHandler::HalFunction(TInt aFunction, TAny* a1, TAny* a2) |
|
149 { |
|
150 TInt r=KErrNone; |
|
151 switch(aFunction) |
|
152 { |
|
153 |
|
154 ... |
|
155 case EDisplayHalSetDisplayBrightness: |
|
156 if(!Kern::CurrentThreadHasCapability(ECapabilityWriteDeviceData, |
|
157 __PLATSEC_DIAGNOSTIC_STRING("Checked by Hal function EDisplayHalSetDisplayBrightness"))) |
|
158 return KErrPermissionDenied; |
|
159 r=SetBrightness(TInt(a1)); |
|
160 break; |
|
161 |
|
162 case EDisplayHalDisplayBrightness: |
|
163 kumemput32(a1,&iBrightness,sizeof(iBrightness)); |
|
164 break; |
|
165 ... |
|
166 </codeblock> <p>where <codeph>SetBrightness()</codeph> is implemented as: </p> <codeblock id="GUID-82F38251-19A9-54BC-A066-80ED5AC549AF" xml:space="preserve">TInt DLcdPowerHandler::SetBrightness(TInt aValue) |
|
167 { |
|
168 __KTRACE_OPT(KEXTENSION,Kern::Printf("SetBrightness(%d)", aValue)); |
|
169 |
|
170 if (aValue >= KConfigLcdMinDisplayBrightness && aValue <= KConfigLcdMaxDisplayBrightness) |
|
171 { |
|
172 iBrightness=aValue; |
|
173 |
|
174 // TO DO: (mandatory) |
|
175 // set the brightness |
|
176 // |
|
177 return KErrNone; |
|
178 } |
|
179 return KErrArgument; |
|
180 } |
|
181 </codeblock> <p>If an attribute does not have an implementation, the HAL handler |
|
182 function should return <xref href="GUID-F89DA3F0-2A48-3F9B-8F08-29350E92D0E4.dita"><apiname>KErrNotSupported</apiname></xref>. </p> <p>For platform |
|
183 security, the code only allows the attribute to be set if the current thread |
|
184 has been authorized to write system data. Otherwise, it returns <xref href="GUID-213DE05E-24F7-3E94-9B35-F4A72B3EBFD8.dita"><apiname>KErrPermissionDenied</apiname></xref>. </p> <p><b>Switch on and switch off operations</b> </p> <p>All of the HAL operations |
|
185 are seen to be synchronous by the user side. However there are some operations |
|
186 such as turning the display on and off which may need to be implemented asynchronously. </p> <p>The |
|
187 display on/off code is implemented using synchronous kernel-side messages. |
|
188 There is only one message per thread and the thread always blocks while a |
|
189 message is outstanding. This means it is possible to make an asynchronous |
|
190 operation appear synchronous. </p> <p>When turning on the screen the kernel-side |
|
191 message is queued and this thread is blocked until the message is completed, |
|
192 which happens when the display has been turned on. </p> <p>If a display needs |
|
193 to be turned on and off truly asynchronously (for example, if millisecond |
|
194 timer waits are required during the process of turning on the display), the |
|
195 above functionality must be changed so that the complete occurs when the display |
|
196 is truly on. </p> <p><b>Accessing |
|
197 the video information structure</b> </p> <p>When any part of the <xref href="GUID-6A4FE3A3-2E5D-51BB-8272-5995586291E9.dita#GUID-6A4FE3A3-2E5D-51BB-8272-5995586291E9/GUID-57223C8C-0381-51AC-8E8A-771434136A5C">video information structure</xref> is read or written to, this must be done |
|
198 within a critical section to prevent potential collisions with other threads |
|
199 attempting to access the structure concurrently. A fast mutex is used to ensure |
|
200 that only one thread can access the video information at any one time, as |
|
201 the code segment below shows. </p> <codeblock id="GUID-E30D9790-109C-541F-A534-C92CBD4E1706" xml:space="preserve">TInt DLcdPowerHandler::GetCurrentDisplayModeInfo(TVideoInfoV01& aInfo, TBool aSecure) |
|
202 { |
|
203 __KTRACE_OPT(KEXTENSION,Kern::Printf("GetCurrentDisplayModeInfo")); |
|
204 NKern::FMWait(&iLock); |
|
205 if (aSecure) |
|
206 aInfo = iSecureVideoInfo; |
|
207 else |
|
208 aInfo = iVideoInfo; |
|
209 NKern::FMSignal(&iLock); |
|
210 return KErrNone; |
|
211 } |
|
212 </codeblock> </section> |
|
213 <section id="GUID-04C06DAE-EE8E-4EE9-940F-807F82FBACD1"><title>Power handler implementation</title> <p>The <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita"><apiname>DPowerHandler</apiname></xref> class |
|
214 defines the interface that the driver must implement to provide power handling |
|
215 behaviour. For the template reference board, the LCD Extension defines and |
|
216 implements the <codeph>DLcdPowerHandler</codeph> class derived from <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita"><apiname>DPowerHandler</apiname></xref>. </p> <p> <b>Note</b>: </p> <ul> |
|
217 <li id="GUID-32D95977-F46B-50E0-B575-BE7369C05F62"><p> <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-578DB5FB-731D-36B2-A459-AAC7F250D726"><apiname>DPowerHandler::PowerDown()</apiname></xref> and <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-DDC564B4-BD12-30E9-B04A-DBA6CFAF8743"><apiname>DPowerHandler::PowerUp()</apiname></xref> </p> <p>These functions are called in the context of the thread that initiates |
|
218 power down or power up, and synchronization is required, typically by means |
|
219 of power up and power down DFCs. </p> </li> |
|
220 <li id="GUID-7DC988A6-C60E-5951-9DD7-82DA129A8CB6"><p> <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-038F9D7D-7DA0-3299-8AA2-85F175206887"><apiname>DPowerHandler::PowerUpLcd()</apiname></xref> and <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-6EAF00D1-3CBA-3BC0-BAD9-7301EE5F9E12"><apiname>DPowerHandler::PowerDownLcd()</apiname></xref> </p> <p>These functions generally queue DFCs which then call platform-specific |
|
221 functions to power the display up and down. </p> </li> |
|
222 <li id="GUID-51152EA7-C1A5-5AB3-8ACD-6FF6F16A255D"><p> <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-BF62042B-FB7B-3D5B-8379-490FBA284A7A"><apiname>DPowerHandler::PowerUpDone()</apiname></xref> and <xref href="GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7.dita#GUID-761AE02B-41A6-35EA-AA9F-0AEEFF67A6F7/GUID-EBE8CFF8-50BD-3AC3-A4C8-47094DA5674D"><apiname>DPowerHandler::PowerDownDone()</apiname></xref> </p> <p>When power up or down is complete, the interface supplies a set |
|
223 of acknowledgment functions which must be called when the change of state |
|
224 has taken place. </p> </li> |
|
225 </ul> </section> |
|
226 </conbody><related-links> |
|
227 <link href="GUID-0C3A4156-E5CF-55F9-91A0-A7961FDEE030.dita"><linktext>LCD Extension |
|
228 Architecture</linktext></link> |
|
229 <link href="GUID-8DF46A11-874A-52E5-9298-C083EA633BA0.dita"><linktext>Implementing |
|
230 Dynamic DSA Allocation</linktext></link> |
|
231 </related-links></concept> |