Symbian3/PDK/Source/GUID-AC99E9ED-2C02-561A-ABA4-DCDD415E8653.dita
author Dominic Pinkman <Dominic.Pinkman@Nokia.com>
Thu, 11 Mar 2010 18:02:22 +0000
changeset 3 46218c8b8afa
parent 1 25a17d01db0c
child 5 f345bda72bc4
permissions -rw-r--r--
week 10 bug fix submission (SF PDK version): Bug 1892, Bug 1897, Bug 1319. Also 3 or 4 documents were found to contain code blocks with SFL, which has been fixed. Partial fix for broken links, links to Forum Nokia, and the 'Symbian platform' terminology issues.

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (c) 2007-2010 Nokia Corporation and/or its subsidiary(-ies) All rights reserved. -->
<!-- This component and the accompanying materials are made available under the terms of the License 
"Eclipse Public License v1.0" which accompanies this distribution, 
and is available at the URL "http://www.eclipse.org/legal/epl-v10.html". -->
<!-- Initial Contributors:
    Nokia Corporation - initial contribution.
Contributors: 
-->
<!DOCTYPE concept
  PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
<concept id="GUID-AC99E9ED-2C02-561A-ABA4-DCDD415E8653" xml:lang="en"><title>Math
functions</title><shortdesc>Describes the maths functions used by application programs.</shortdesc><prolog><metadata><keywords/></metadata></prolog><conbody>
<section id="GUID-965ABD80-2C30-43D1-8F40-7BF573301630"><title>Calling syntax</title> <p>Math functions are designed for
use by application programs which must be able firstly to do the desired calculation
and secondly to handle error conditions arising from the calculations. Thus,
the ANSI-style functions of the form</p> <codeblock id="GUID-C277F9D8-5FDD-5460-B059-DF02E36B4948" xml:space="preserve">double sin(double); // typical declaration</codeblock> <codeblock id="GUID-8A9C44FE-7EDF-59DB-AFE0-B48148CBE0C8" xml:space="preserve">double x=1; // argument
double a; // result
a=sin(x); // typical use</codeblock> <p>are not implemented by the Symbian
software platform. Rather, all functions return error information explicitly.</p> <p>All
functions are provided as static member functions of the <codeph>Math</codeph> class.
This is a convenient packaging mechanism. A typical math function is thus
declared like this:</p> <codeblock id="GUID-C363CF23-CE56-59FA-A4EB-2DA2AD886C0D" xml:space="preserve">class Math
    {
public:
    // ...
    static TInt Sin(TReal &amp;aTrg,const TReal &amp;aSrc);
    // ...
    };</codeblock> <p>and used like this:</p> <codeblock id="GUID-EA13F019-D473-5757-B036-8461BD3B0143" xml:space="preserve">TReal x=1; // argument
TReal a; // result
TInt matherror; // error indication
matherror=Math::ASin(a,x); // get result and error
User::LeaveIfError(matherror); // handle error</codeblock> <p>This syntax
is unusual for those used to the ANSI library. However, the ANSI library functions
are designed for speed, and for users whose programs control the valid range
of the arguments, and can thus reasonably ensure that they are within range.
The <codeph>Math</codeph> class, however, provides direct support to expression
interpreters acting on numbers entered by users. In this context, error checking
is a vital part of the process.</p> <p>In most cases, the same variable may
be used for both argument and result, i.e., <codeph>Math::Sin(x,x)</codeph> will
work as expected, because the function has finished with the argument by the
time the result is written to.</p> </section>
<section id="GUID-8633E2E3-316D-40AE-9F88-77E6CF7FA041"><title>Precision</title> <p>The <codeph>TReal</codeph> type is equated
to <codeph>double</codeph>. With an IEEE754 floating-point implementation,
this gives a range from about 2.225074 × 10<sup>–</sup> <sup>308</sup> to
about 1.797693 × 10<sup>+308</sup>, and an accuracy of 15 decimal places.</p> </section>
<section id="GUID-2D26DDD3-FE18-4D0A-AC10-F445708750BB"><title>Error indications</title> <p>All functions return a standard
error code. </p> </section>
</conbody></concept>