Initial contribution of the Adaptation Documentation.
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (c) 2007-2010 Nokia Corporation and/or its subsidiary(-ies) All rights reserved. -->
<!-- This component and the accompanying materials are made available under the terms of the License
"Eclipse Public License v1.0" which accompanies this distribution,
and is available at the URL "http://www.eclipse.org/legal/epl-v10.html". -->
<!-- Initial Contributors:
Nokia Corporation - initial contribution.
Contributors:
-->
<!DOCTYPE concept
PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
<concept id="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703" xml:lang="en"><title>Power Controller DPowerController Implementation Tutorial</title><shortdesc>This topic describes how to implement the <codeph>DPowerController</codeph> class to provide the main power controller functionality in a base
port.</shortdesc><prolog><metadata><keywords/></metadata></prolog><conbody>
<p><xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita"><apiname>DPowerController</apiname></xref> is defined as: </p>
<codeblock id="GUID-95318C39-B205-557C-B1F3-75C1441E464A" xml:space="preserve">class DPowerController : public DBase
{
public:
IMPORT_C DPowerController();
IMPORT_C void Register();
IMPORT_C void WakeupEvent();
#ifndef __X86__
IMPORT_C TInt RegisterResourceController(DBase* aController, TInt aClientId);
private:
struct SResourceControllerData
{
DBase* iResourceController;
TInt iClientId;
} iResourceControllerData;
#endif
public:
volatile TPowerState iTargetState;
public:
virtual void CpuIdle() = 0;
virtual void EnableWakeupEvents() = 0;
virtual void DisableWakeupEvents() = 0;
virtual void AbsoluteTimerExpired() = 0;
virtual void PowerDown(TTimeK aWakeupTime) = 0;
};
</codeblock>
<p>The first three functions are exported from the kernel, <filepath>EKERN.EXE</filepath>, while the other five pure virtual functions
are implemented by your base port. You do not need to export any other
functions. </p>
<ul>
<li id="GUID-2EEFEFF3-FCAF-526C-A11B-790A2A47AA9C"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-BCCDBA09-415D-5779-BCE5-CDEB2E1EF7D8">Initialising the power controller</xref>, </p> </li>
<li id="GUID-CBB1EE9C-CD27-5417-973C-3BBED74715D6"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-DCD91EBA-CB0E-5EA9-84E0-8F8FED6FC91E">DPowerController::RegisterResourceController()</xref>, </p> </li>
<li id="GUID-4E2D396D-E6FA-5658-830F-9F82D4A63AD1"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-5A0CAD08-AA12-56EE-B0A3-75548D1896C9">DPowerController::EnableWakeupEvents()</xref>, </p> </li>
<li id="GUID-DB82BCE3-702A-51EB-ADE0-9434D59CD553"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-51D37A0C-AD46-52D5-A31C-CB3A8046CE84">DPowerController::AbsoluteTimerExpired()</xref>, </p> </li>
<li id="GUID-77CCBFFE-037D-5B86-BF14-1BE87D38B47A"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-1F77C71C-D226-58BB-ABAE-43F958CC0C61">DPowerController::PowerDown()</xref>, </p> </li>
<li id="GUID-8657D772-2338-588D-B074-832B06144D8B"><p> <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-E2A072D0-A67F-5E6D-81ED-CFD77B6ED4F1">CpuIdle()</xref>. </p> </li>
</ul>
<section id="GUID-BCCDBA09-415D-5779-BCE5-CDEB2E1EF7D8"><title>Initialising
the power controller</title> <p>Typically, you implement your derived
class in a power management kernel extension, which has the opportunity
to perform initialisation before the system itself is fully initialised.
This is done via the extension's DLL entry point. You use the <xref href="GUID-7964FC46-4641-3BDD-92C9-50FA22C3321A.dita"><apiname>DECLARE_STANDARD_EXTENSION()</apiname></xref> macro as a wrapper around
your initialisation code. There are at least three things to do here: </p> <ul>
<li id="GUID-25C66F1B-6B2F-5B3B-A827-410263EE22A4"><p>create an instance
of your power controller object </p> </li>
<li id="GUID-369A09EC-74D3-529A-AC05-0EFE0C4ABBF7"><p>register your
power controller object with the Symbian platform power manager, by
calling <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-F66D72D0-AA27-3BAF-8915-C6E8CC4E7CCF"><apiname>DPowerController::Register()</apiname></xref>. Your power
controller cannot be used by the Symbian platform power manager until
it has been registered. </p> </li>
<li id="GUID-E4C7D934-AAB9-511B-93A4-125D5A5B248D"><p>if you intend
to use a battery monitor, then you would create it and register it
as the HAL handler to deal with <xref href="GUID-66A851A0-2A0C-3624-AEC1-22F6629FABF7.dita#GUID-66A851A0-2A0C-3624-AEC1-22F6629FABF7/GUID-227B4DCD-5D74-3AB7-8E09-64A04D88F094"><apiname>THalFunctionGroup::EHALGroupPower</apiname></xref> calls. See <xref href="GUID-65CDCA83-C726-5173-8E46-B8981D1D7B02.dita">Battery Monitor Implementation Tutorialc</xref> and <xref href="GUID-54042C84-6216-5930-9CBF-BAF635CECD4D.dita">Power HAL Handler
Tutorial</xref> for more detail. </p> </li>
</ul> <p>For example: </p> <codeblock id="GUID-1A909C4C-DCAF-54E3-B482-16918E33BF4F" xml:space="preserve">DECLARE_STANDARD_EXTENSION()
{
TInt r=KErrNoMemory;
// Create the power controller object, and register it.
DPowerController* pC = new DYourPowerController;
if !(pC)
{
return (r);
}
pC->Register();
// Create the battery monitor.
DBatteryMonitor* pM = new DYourBatteryMonitor;
if !(pM)
{
return(r);
}
r = KErrNone;
return(r);
}</codeblock> </section>
<section id="GUID-DCD91EBA-CB0E-5EA9-84E0-8F8FED6FC91E"><title>DPowerController::RegisterResourceController()</title> <p>The function <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-42896B4D-9F77-3D91-82BD-50102A8F3DA4"><apiname>DPowerController::RegisterResourceController()</apiname></xref> allows the Resource Controller to register itself with the Power
Controller. See <xref href="GUID-66FD040B-133E-57CF-80DD-9369F62709C6.dita#GUID-66FD040B-133E-57CF-80DD-9369F62709C6/GUID-08BFCAF4-9AF0-5999-A1C4-7BBD107C9354">registering with the resource controller</xref> in the PSL implementation
document. </p> <p>To support idle power management the Power Controller's
PSL must override <codeph>RegisterResourceController()</codeph> to
include the registration of a list of resources whose states are of
interest to idle power management. </p> <p><b>Idle power management</b> </p> <p>The Power Controller can assemble
a list of resources whose state it is interested in from a NULL thread
in an array of <xref href="GUID-586AF75A-8350-345D-ABF4-6542C8E75DED.dita"><apiname>SIdleResourceInfo</apiname></xref> structures. Each
entry in the list contains the resource ID that the power controller
must enter before registering with the PRM. The resource list should
be created in the kernel heap or data section. </p> <p>The example
below creates a buffer to capture the state of all static resources.
The PRM captures the information using <xref href="GUID-46F2174F-0206-345B-8C5D-F8B5763652E0.dita#GUID-46F2174F-0206-345B-8C5D-F8B5763652E0/GUID-52DC308A-9DF1-3BDE-A905-A4DD3B692638"><apiname>DPowerResourceController::RegisterResourcesForIdle()</apiname></xref>. </p> <codeblock id="GUID-C6E907FD-094D-5412-8F81-FC02CDE8B411" xml:space="preserve"> ...
//Allocate buffer for Idle resource management
NKern::ThreadEnterCS();
pBuf = HBuf::New(numResources * sizeof(SIdleResourceInfo));
NKern::ThreadLeaveCS();
if(!pBuf)
{
return KErrNoMemory;
}
SIdleResourceInfo* pI = (SIdleResourceInfo*)pBuf->Ptr();
//Update resource ID
for(TUint c = 0; c < numResources; c++)
{
pI[c].iResourceId = c+1;
}
r = (iResourceControllerData.iResourceController)->RegisterResourcesForIdle(iResourceControllerData.iClientId, numResources, (TPtr*)pI);
...</codeblock> <p>The first parameter passed to <codeph>RegisterResourcesForIdle()</codeph> is the client Id generated for the power controller this is the
client ID passed by the PRM when calling <xref href="GUID-B2C466D1-0B65-3BB7-81B1-7297400E60C4.dita"><apiname>RegisterResourceController</apiname></xref>. </p> <p> <b>Note</b>: <codeph>RegisterResourcesForIdle()</codeph> is not exported and is only available for use by the Power Controller
to register resources for idle power management. <b>Note</b>: <codeph>RegisterResourcesForIdle()</codeph> can only be called by the Power
Controller once. </p> </section>
<section id="GUID-5A0CAD08-AA12-56EE-B0A3-75548D1896C9"><title>DPowerController::EnableWakeupEvents()</title> <codeblock id="GUID-38714507-C38C-5787-997F-5D45F3A90357" xml:space="preserve">virtual void EnableWakeupEvents() = 0;</codeblock> <p>The Symbian Power Model defines 3 generic system-wide <xref href="GUID-113B3755-1797-5D1B-8E07-8A18F5FE1504.dita">power states</xref>: <i>Active</i>, <i>Standby</i> and <i>Off</i>, as defined in the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita">Symbian platform
power model</xref>. </p> <p>Each of the system-wide low power states: <i>Standby</i> and <i>Off</i>, has a defined set of wake-up events.
If a wake-up event occurs while the system is preparing to transition
into one of these low power states, or when the system is in the <i>Standby</i> state, then this can result in the system moving back
to the <i>Active</i> power state. Wake-up events may be different
for different target power states. Wake-up events are platform-specific
hardware events, and it is your base port that decides which events
count as wake-up events. </p> <p><b>When is it called?</b> </p> <p> <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-0642129D-05F2-3AB0-B562-37A7BB7A275F"><apiname>DPowerController::EnableWakeupEvents()</apiname></xref> is called called by the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-330F07B2-BBDF-5675-B7D5-FF6B25DD03F4">power manager</xref> as a result of a user side call to <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita#GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87/GUID-C49C0A07-EAC7-32CB-956F-1FFEFF2FD326"><apiname>Power::EnableWakeupEvents()</apiname></xref>. The class <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita"><apiname>Power</apiname></xref> is the user side interface to the power manager, and is used by
the user side entity that is responsible for moving the device into
a low power state. </p> <p><b>Context</b> </p> <p>When the user side entity decides to move
the device to a low power state, it sends a notification to all of
the user side power domains registered with it, giving their applications
a chance to save their data and state. However, before doing this,
it calls <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita#GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87/GUID-C49C0A07-EAC7-32CB-956F-1FFEFF2FD326"><apiname>Power::EnableWakeupEvents()</apiname></xref>. It also calls <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita#GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87/GUID-6CFE19D9-249A-3305-8224-823D2FDB1859"><apiname>Power::RequestWakeupEventNotification()</apiname></xref> so that it can
be informed of a wake-up event. If it is notified of a wake-up event,
it can halt, and reverse the user side response to the power transition. </p> <fig id="GUID-ACC6E7E3-71E3-5553-B433-9017CB04513D">
<image href="GUID-AEDBF425-6077-4C84-A698-508291671F2B_d0e27993_href.png" placement="inline"/>
</fig> <p>Before calling <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-0642129D-05F2-3AB0-B562-37A7BB7A275F"><apiname>DPowerController::EnableWakeupEvents()</apiname></xref>, the power manager sets the <codeph>iTargetState</codeph> member
of <codeph>DPowerController</codeph> to the applicable <xref href="GUID-87AB8B20-04EE-31D2-8F3D-EA904D05B8D0.dita"><apiname>TPowerState</apiname></xref>. This means that you can enable the appropriate set of wake-up events. </p> <p>Once the user side transition is complete, it calls <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita#GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87/GUID-7C6F3F0F-319B-3DEE-81BF-1EB5BB2EAB0A"><apiname>Power::PowerDown()</apiname></xref> in the user side interface to the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-330F07B2-BBDF-5675-B7D5-FF6B25DD03F4">power manager</xref>, which results in a call to <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-8AE99718-6B82-3920-9029-28C2041A3B10"><apiname>DPowerController::PowerDown()</apiname></xref> in the power controller. This starts the transition of all <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-DC5F1ECD-CCA3-59FF-A2F1-A3DBD76CD458">power handlers</xref> to a low power state, a potentially long process.
This means that the power controller needs the ability to detect wake-up
events so that it can halt, and reverse the power transition. </p> <p><b>Implementation issues</b> </p> <p>There are three possibilities
in dealing with wake-up events: </p> <ul>
<li id="GUID-4243E6DD-C903-58DE-B125-38CEDB8B5269"><p>if wake-up events
are not handled by specific peripheral drivers, you could set up the
hardware so that wake-up events are recorded in a location accessible
by the software. Prior to completing the system power transition,
the Power controller would check the relevant hardware to see whether
a wakeup event had occurred. On detecting a wake-up event it would
tell the power manager by calling <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-C193F898-2C15-3C42-8353-14F00789BCDA"><apiname>DPowerController::WakeupEvent()</apiname></xref>. </p> </li>
<li id="GUID-289B86C4-A578-5A42-A0DF-70A7BF3F440E"><p>if wake-up events
are not handled by specific peripheral drivers, you could arrange
for wake-up events to interrupt the CPU. The code that services those
interrupts would tell the power manager by calling <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-FABDB7E2-DEC5-3EA9-8106-66C971C04AB7"><apiname>DPowerController::WakepEvent()</apiname></xref>. </p> </li>
<li id="GUID-E51BAE55-0A81-5D1F-B509-096A7F2141EF"><p>if wakeup events
are intercepted, serviced and cleared by peripheral drivers, then
the following outline solution could be adopted: </p> <ul>
<li id="GUID-5C942237-BBB2-5919-8578-B55BDAFAFC9F"><p>The power controller
would need to publish a list of wake-up events, preferably as a bit
mask, and export an API which peripheral drivers could use to notify
the power controller that a wake-up event has occurred. The following
interface class could be used for this purpose: </p> <codeblock id="GUID-084F7F46-66B6-5661-85AF-57D499250886" xml:space="preserve">class TPowerController
{
public:
inline static void SetPowerControllerPointer(DPowerController* apPowerController)
{ iPowerControllerPointer = apPowerController; }
IMPORT_C static void WakeupEventOccurred(TUint aWakeupEvent);
… // other methods if required
private:
DPowerController* iPowerControllerPointer;
};
</codeblock> <p>The class would be implemented
as part of the power management kernel extension and <codeph>SetPowerControllerPointer()</codeph> would be called when <xref href="GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703.dita#GUID-34D1D0BF-20DE-5677-A067-8FF9DD72E703/GUID-BCCDBA09-415D-5779-BCE5-CDEB2E1EF7D8">initialising the power controller</xref>, but after creation of the
power controller object. </p> <p>Those peripheral drivers that intercept
wake-up events would need to link to the power controller DLL (i.e.
the power management kernel extension). </p> <p>On the occurrence
of a wake-up event, the peripheral driver software servicing that
event would notify the power controller by calling <codeph>WakeupEventOccurred()</codeph>, specifying the appropriate wake-up event bit(s). </p> <p>You might
implement <codeph>WakeupEventOccurred()</codeph> as follows: </p> <codeblock id="GUID-501ABA28-81B9-52C1-9842-003E1E389045" xml:space="preserve">EXPORT_C void TPowerController::WakeupEventOccurred(TUint aWakeupEvent)
{
if(iPowerControllerPointer->iWakeupEvents & aWakeupEvent)
{
iPowerControllerPointer->WakeupEvent();
}
}</codeblock> <p>where <codeph>iWakeupEvents</codeph> is a data
member defined in your <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita"><apiname>DPowerController</apiname></xref> -derived
class that contains the bitmask representing the wake-up events. The
bitmask groups wakeup events according to the target power state. </p> </li>
</ul> </li>
</ul> <p>When the peripheral driver powers down, it should leave the
hardware that generates the wake-up event powered and enabled for
detection. Thus, if a wake-up event of the type handled by this peripheral
driver occurs, it will not be serviced in the normal way, but will
be left pending until the power controller services it. </p> <p>When
the power controller’s <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-8AE99718-6B82-3920-9029-28C2041A3B10"><apiname>DPowerController::PowerDown()</apiname></xref> function is called, the power controller must check the peripheral
hardware directly to see whether the wakeup event has happened, or
is happening right now, prior to transitioning the device to the target
system-wide low power state. If the wake-up event is found to have
happened then <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-8AE99718-6B82-3920-9029-28C2041A3B10"><apiname>DPowerController::PowerDown()</apiname></xref> would
return immediately, instead of initiating the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-DC5F1ECD-CCA3-59FF-A2F1-A3DBD76CD458">power handlers</xref> power down of the peripheral drivers. </p> </section>
<section id="GUID-51D37A0C-AD46-52D5-A31C-CB3A8046CE84"><title> DPowerController::AbsoluteTimerExpired()</title> <codeblock id="GUID-5EC61B73-DA37-51C8-963F-4E4169AC1BE7" xml:space="preserve">virtual void AbsoluteTimerExpired() = 0;</codeblock> <p><b>When is it called?</b> </p> <p> <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-C6F792DB-1EC0-33F4-8F82-AB3F7B44B061"><apiname>DPowerController::AbsoluteTimerExpired()</apiname></xref> is called by the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-330F07B2-BBDF-5675-B7D5-FF6B25DD03F4">power manager</xref> whenever an absolute timer expires. An absolute
timer is one that is set to complete at a specific time, as queued
by a call to <xref href="GUID-8A423EA2-4264-30C9-9579-0466994E6E88.dita#GUID-8A423EA2-4264-30C9-9579-0466994E6E88/GUID-3F302410-5CC2-3CCB-82F4-47E953E7A29B"><apiname>RTimer::At()</apiname></xref>. </p> <p><b>Implementation issues</b> </p> <p>If absolute timer expiration
is one of your wake-up events, then your implementation of <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-C6F792DB-1EC0-33F4-8F82-AB3F7B44B061"><apiname>DPowerController::AbsoluteTimerExpired()</apiname></xref> should call <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-C193F898-2C15-3C42-8353-14F00789BCDA"><apiname>DPowerController::WakeupEvent()</apiname></xref> to notify the power manager
that a wake-up event has happened. </p> <p>It is recommended that
you track absolute timers. </p> </section>
<section id="GUID-1F77C71C-D226-58BB-ABAE-43F958CC0C61"><title>DPowerController::PowerDown()</title> <codeblock id="GUID-AD394AD5-8E3E-5FE3-938E-639C4E5E9F79" xml:space="preserve">virtual void PowerDown(TTimeK aWakeupTime) = 0;</codeblock> <p><b>When is it called?</b> </p> <p> <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-8AE99718-6B82-3920-9029-28C2041A3B10"><apiname>DPowerController::PowerDown()</apiname></xref> is called by the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-330F07B2-BBDF-5675-B7D5-FF6B25DD03F4">power manager</xref> to move the device into one of the system-wide
low power states: <i>Standby</i> or <i>Off</i>. </p> <p>Typically,
this is a result of the user side entity that is responsible for moving
the device into a low power state calling <xref href="GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87.dita#GUID-15D25C07-CFD2-32CE-AD22-E17D512D8E87/GUID-7C6F3F0F-319B-3DEE-81BF-1EB5BB2EAB0A"><apiname>Power::PowerDown()</apiname></xref> in the user side interface to the <xref href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita#GUID-0C435514-EEC6-5660-BB5F-535790349632/GUID-330F07B2-BBDF-5675-B7D5-FF6B25DD03F4">power manager</xref>. </p> <p>If <xref href="GUID-26621CA5-B686-53FB-AF3E-96CDD38C8520.dita">physical RAM defragmentation</xref> is implemented you may wish to include calls to <xref href="GUID-AE7E0A8E-1513-3F6B-A6D5-150084C4E262.dita#GUID-AE7E0A8E-1513-3F6B-A6D5-150084C4E262/GUID-B4825007-E3DB-3559-9D58-637150EF3DB9"><apiname> TRamDefragRequest::DefragRam()</apiname></xref> within this function to enable defragmentation of RAM zones that
can then be powered down. </p> <p><b>Context</b> </p> <p>The target state is defined by the value of
the <codeph>iTargetState</codeph> member of <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita"><apiname>DPowerController</apiname></xref>, as set by the power manager. </p> <p><b>Implementation issues</b> </p> <p>Implementation depends on the
target state: </p> <ul>
<li id="GUID-0473B5C1-BEC0-5276-88C5-A4A8379A4621"><p>if the target
state is <i>Standby</i>, as implied by a value of <xref href="GUID-87AB8B20-04EE-31D2-8F3D-EA904D05B8D0.dita#GUID-87AB8B20-04EE-31D2-8F3D-EA904D05B8D0/GUID-5604F598-8CBC-3A94-865F-CA58DA4492B0"><apiname>TPowerState::EPwStandby</apiname></xref> in <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-86A0C14F-B219-3E0B-BD5E-A2C20EEDBF64"><apiname>DPowerController::iTargetState</apiname></xref>, then the power
controller should put the hardware into a state corresponding to the <i>Standby</i> state. </p> <p>If at least one wake-up event has been
detected and recorded since the last call to <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-0642129D-05F2-3AB0-B562-37A7BB7A275F"><apiname>DPowerController::EnableWakeupEvents()</apiname></xref>, then <codeph>PowerDown()</codeph> should return immediately; otherwise,
it should continue with the process of putting the device into <i>Standby</i>; execution of the function will halt, and can only continue,
and return, when a wake-up event occurs. </p> </li>
<li id="GUID-E38B9334-CFE4-5E91-9DD4-D7A0678AF344"><p>if the target
state is <i>Off</i>, as implied by a value of <xref href="GUID-87AB8B20-04EE-31D2-8F3D-EA904D05B8D0.dita#GUID-87AB8B20-04EE-31D2-8F3D-EA904D05B8D0/GUID-0DAD6E93-BD08-3C90-BCE8-ADBFC2681227"><apiname>TPowerState::EPwOff</apiname></xref> in <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-86A0C14F-B219-3E0B-BD5E-A2C20EEDBF64"><apiname>DPowerController::iTargetState</apiname></xref>, then <codeph>PowerDown()</codeph> must <i>never</i> return. Typically, the power
controller turns the device off, but can choose to perform other device-specific
action such as a system reboot. </p> </li>
</ul> <p>The <xref href="GUID-8C6E2996-24DE-3E59-927A-46D32290225E.dita"><apiname>TTimeK</apiname></xref> parameter passed to the function
is a system time value. If non-zero, it specifies the time when the
system should wakeup. The kernel calculates it as the time that the
next absolute timer expires. Typically, your implementation will use
the Real Time Clock module to generate an event at the specified time,
and this will cause a return to the <i>Active</i> state. This implies
that the base port should enable Real Time Clock event detection during <i>Standby</i>. </p> <p>The Symbian definition of the <i>Standby</i> state usually translates into the hardware manufacturer’s CPU “Standby”
or “Sleep” modes of operation. Typically, the internal clocks associated
with the core and some of the core peripherals, or their power supply,
are suppressed, and their internal state is not preserved. In this
case, the state of the core and core peripherals should be saved before
going into <i>Standby</i> so that they can be restored when the system
wakes-up. Note the following: </p> <ul>
<li id="GUID-824D88FD-33FB-50DC-A904-F5F44BFBF90A"><p>for the core
state, save the current mode, the banked registers for each mode,
and the stack pointer for both the current mode and user mode </p> </li>
<li id="GUID-E8CDFA98-E6F2-5D48-987F-E2591DAB242B"><p>for the core
peripherals, save the state of the interrupt controller, the pin function
controller, the bus state controller, and the clock controller </p> </li>
<li id="GUID-90BEA663-F58C-5AD7-8578-353E5EFFBCCC"><p>for the MMU
state, save the control register, the translation table base address,
and the domain access control, if this is supported </p> </li>
<li id="GUID-68AB9558-5CC7-573F-8A33-A38F16EAF304"><p>flush the data
cache and drain the write buffer. </p> </li>
</ul> <p>If all of this data is saved to a DRAM device, then this
should be put into self refresh mode. </p> <p>Peripherals modules
involved in the detection of wake-up events should be left powered. </p> <p>Tick timer events should be disabled, and the current count of
this and any other system timers should be saved; relevant wake-up
events should be left unmasked, and any others should be disabled. </p> </section>
<section id="GUID-E2A072D0-A67F-5E6D-81ED-CFD77B6ED4F1"><title>DPowerController::CpuIdle()</title> <codeblock id="GUID-0E6F1B1D-F979-575B-BA3C-096CE4C0CA15" xml:space="preserve">virtual void CpuIdle()=0;</codeblock> <p><b>When is it called?</b> </p> <p> <xref href="GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366.dita#GUID-B3D1C422-6A82-3C6E-9123-1E4F598F0366/GUID-473874CA-FC35-3EB2-BC23-A97D7176B833"><apiname>DPowerController::CpuIdle()</apiname></xref> is called whenever the Null thread is scheduled to run. This can
happen as soon as the power model has been installed. It is the mechanism
through which your base port can increase power savings when the system
becomes inactive by moving the CPU or the system into a low power
mode. </p> <p>If <xref href="GUID-26621CA5-B686-53FB-AF3E-96CDD38C8520.dita">physical RAM defragmentation</xref> is implemented you may wish to
include calls to <xref href="GUID-AE7E0A8E-1513-3F6B-A6D5-150084C4E262.dita#GUID-AE7E0A8E-1513-3F6B-A6D5-150084C4E262/GUID-B4825007-E3DB-3559-9D58-637150EF3DB9"><apiname> TRamDefragRequest::DefragRam()</apiname></xref> within this function to enable defragmentation while the device
is idle. </p> <p><b>Implementation issues</b> </p> <p>The implementation can call
the Variant or ASSP implementation of <xref href="GUID-A83A7C3C-7DC0-3B9C-842F-70FCC751365D.dita#GUID-A83A7C3C-7DC0-3B9C-842F-70FCC751365D/GUID-6F242C0C-2EFC-30EC-9A5E-A34C8D15E0D7"><apiname>Asic::Idle()</apiname></xref>. </p> <p>The idle state is usually implemented via a Wait-For-Interrupt
type instruction that will usually suspend execution of the CPU, possibly
triggering other ASIC power saving actions, and will resume execution
when any unmasked interrupt occurs. </p> <p><b>Suppressing the system tick interrupt</b> </p> <p>To further increase
power savings during CPU Idle, a base port can choose to suppress
the system tick interrupt until the next nanokernel Timer (as implemented
by <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref>) is due to expire. Nanokernel timers
are the basic timing service and all Symbian platform tick-based timers
and time-of-day functions are derived from nanokernel timers. </p> <p>In EKA2, timing services rely on a hardware timer, which is programmed
by the base port Variant code, to generate the system tick. We refer
to this as the <i>system timer</i>. </p> <p>Typically, the platform-specific
ASSP or Variant object has a pointer to the nanokernel timer queue,
an <xref href="GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0.dita"><apiname>NTimerQ</apiname></xref> object. The number of ticks before the
next <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> is due to expire can be found by calling <xref href="GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0.dita#GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0/GUID-69103F26-2C21-3ECA-9DB5-C31A41F6C238"><apiname>NTimerQ::IdleTime()</apiname></xref>. </p> <p>Before going into Idle mode, <codeph>CpuIdle()</codeph> disables the hardware timer used to generate the
system tick (i.e. the system timer) for the number of ticks to be
suppressed; i.e. the system timer is reset to go off and generate
an interrupt only when the <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> expires. Note
that the clock supply to the hardware timer must be left enabled. </p> <p>On returning from Idle mode, the software must examine the system
timer and decide whether the <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> expiration
was responsible for waking up the processor, or whether it was due
to some other interrupt. </p> <p>If waking up was due to the <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref>, the system timer must be reset to generate the
system tick at the frequency desired, and the tick count, <xref href="GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0.dita#GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0/GUID-ACFDFE7C-19AE-3C81-9D38-3266A3A3EF1F"><apiname>NTimerQ::iMsCount</apiname></xref>, must be adjusted with the <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> expiration time. As the expiration time is always an integer multiple
of the number of ticks, then the <xref href="GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0.dita#GUID-C54D99AA-FF6E-3023-8260-8F5A88FBFBE0/GUID-AA1EC86F-8A6E-340D-848F-A86554772A13"><apiname>NTimerQ::Advance()</apiname></xref> function can be used for this purpose. </p> <p>If waking up was
due to another interrupt, then the software must read the system timer
and calculate the time elapsed since going into Idle mode, and adjust
the system tick count with the elapsed time (which could be a fractional
number of ticks) and reprogram the system timer to continue generating
the tick after the correct interval, as above. </p> <p>If the hardware
timer that is used to generate the system ticks does not use a Compare-Match
function, then some care has to be taken not to introduce skewing
when manipulating the timer value directly. If the timer needs to
be reloaded with the new value to give the next tick, then the software
usually “spins”, waiting for the hardware timer to change, and then
reloads it. This way the timer will always be reloaded on an edge
of its internal clock. </p> <p><b>Waking up from “Sleep” modes with long wakeup latencies</b> </p> <p>Often, to further enhance power savings, the CPU and some peripherals
are moved into a hardware “sleep” mode when <codeph>CpuIdle()</codeph> is called. This could be of long latency, and waking up could take
longer than the system Tick period. There are two situations: </p> <ul>
<li id="GUID-7484F7CB-C824-5752-9043-736E95D4405D"><p>if the wakeup
time can be determined precisely, then <codeph>CpuIdle()</codeph> programs
the system timer to bring the CPU back from the “Sleep“ mode at a
time corresponding to the next <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> expiration
(as a number of Ticks to suppress) <i>minus</i> the number of ticks
it takes to wake up from that mode. On waking up on the timer, the
System tick count should be adjusted with the total number of ticks
suppressed, i.e. the count corresponding to the time of the <xref href="GUID-D8CF05A3-5C9B-3662-92DA-3290C6EE7FD2.dita"><apiname>NTimer</apiname></xref> expiration. </p> </li>
<li id="GUID-C0A9B2A2-D98D-50C0-B58A-4E84FCEC12E4"><p>If the wakeup
time cannot be known deterministically, then the above scheme must
be combined with another system to allow adjusting the system timer
from the hardware Real Time Clock (RTC). </p> <p>Typically, the hardware
RTC is clocked with a 1Hz clock, and can be programmed to interrupt
the CPU on multiples of one second intervals. The clock supply to
the RTC must be left enabled on going into "sleep" mode. </p> </li>
</ul> <p>To guarantee that timed events occur when they are due, the
CPU should only be allowed to go to into the long latency hardware
“sleep” mode if the RTC can be guaranteed to complete a second tick
before the CPU is due to wakeup. </p> <p>Note that if waking up from
hardware “Sleep” mode takes a non-negligible amount of time, extreme
care should be taken when deciding to move the platform into that
mode. For example, if a receive request is pending on a data input
device <i>and</i> the CPU reaches the Idle mode <i>and</i> the platform
is transitioned into a “sleep” state <i>and</i> data arrives while
it is still in that state, <i>then</i> there is a possibility that
the system will not wake up on time to service the incoming data. </p> </section>
<section id="GUID-4B613C67-3A12-4AD5-8842-6ED510A68746"><title>Validation</title> <p>The <filepath>e32test</filepath> programs <filepath>t_power</filepath>, and <filepath>t_timer</filepath> will put the system into standby
and resume off a timer. </p> </section>
</conbody><related-links>
<link href="GUID-0C435514-EEC6-5660-BB5F-535790349632.dita"><linktext>Power
Management</linktext></link>
</related-links></concept>