[image: image1.png]symbian

PREQ2104 How-To Document

	Status:
	Draft

	Version:
	0.1

Use File > Properties to edit document information

[image: image2.png]symbian

PREQ2104 How-To Document

Draft v0.1

Contents

31
Introduction

31.1
Purpose and Scope

32
Overview

33
Building PREQ2104

33.1
Overview

33.2
Prerequisites

33.2.1
Prerequisites for Windows

43.2.2
Prerequisites for Linux

43.3
Before building

43.4
Building on Linux

43.5
Building on Windows

44
Using CliTool

55
Using the DBMS JDBC Driver

66
Using the static libraries

67
DBMS SQL extensions

77.1
Support for AUTOINCREMENT column in DDL

77.2
Support for index collation definition in DDL

77.3
Support for BLOB/VARBINARY/LONGVARBINARY in DML

77.4
Floating point definition – REAL, FLOAT and DOUBLE

77.5
Text column types – CHAR and CHAR8

88
Port information

88.1
EUser port

98.2
F32 port

98.3
Store and DBMS ports

99
Implementation Considerations

99.1
Error handling

99.1.1
Panic

99.1.2
TRAP and LEAVE

99.2
Localisation

910
Testing

1010.1
DBMS tests

1010.1.1
Testing on Windows

1010.1.2
Testing on Linux

1211
Further Information

1211.1
References

1211.2
Open Issues

1211.3
Glossary

13Appendix A - <Appendix Title>

13A.1
Appendix Heading 1

13A.1.1
Appendix Heading 2

13Appendix B - <Appendix Title>

13B.1
Appendix Heading 1

13B.1.1
Appendix Heading 2

Introduction

1.1 Purpose and Scope

The purpose of this document is to provide practical information to DBMS tools users.

2 Overview

As a result of the work on PREQ2104, there are several ways to use DBMS on native platforms (e.g. off emulator). These are:

1. Using the JDBC driver for DBMS

2. Using API via static libraries

3. Using the dbmsshell

Further, there are several implementation specific details in the work done for PREQ2104. These relate primarily to the following:

1. Extensions to supported SQL language

2. Modifications and additions to Symbian APIs required for the port

The remainder of the document will describe the above in detail. First, we’ll discuss how to build tools from source. Chapters 4, 5 and 6 will cover the typical usage scenarios. Then, chapters 7, 8 and 9 cover essential details about the implementation. Finally chapter 10 covers testing.
3 Building
3.1 Overview
DBMS tools build is somewhat complex. This is primarily because the code base includes several artefacts that require extension makefiles for building. A detailed description of artefacts is available in the design document.

The build output artefacts are presented in the following table:
	Artefact
	bld.inf
	Comments

	dbmsjdbc.jar
	group/bld.inf
	Compiles java, generate native headers and builds jar

	dbmsjdbc.dll / libdbmsjdbc.so
	src/native/bld.inf
	Builds JNI DLL

Additionally, there are a number of test artefacts.

3.2 Prerequisites

3.2.1 Prerequisites for Windows

· Symbian development environment (e.g. a baseline)

· Java 1.5 installed

· JAVA_HOME environment variable correctly set

· PATH environment must be updated to include /epoc32/gcc_mingw/bin/
3.2.2 Prerequisites for Linux

· Symbian baseline

· Raptor 2.0.10 or later

· GCC 3.4.6 configured correctly as default compiler and included in PATH environment variable
· Java 1.5 installed

· JAVA_HOME environment variable correctly set
3.3 Before building

In order to simplify makefiles, especially ones building Java and JNI code, we have introduced a top level macro for platform switching. This is done via platform.mmh which can be found in the top level source directory. When building for windows, __WINDOWS_BUILD__ must be defined and __LINUX_BUILD__ must be commented out, and vice versa.
3.4 Building on Linux
Using SBSv2, the linux build is fairly straightforward. Change to top level directory, then:

sbs –b bld.inf –c tools2 -k
3.5 Building on Windows

Change to top level directory, then:

bldmake bldfiles
abld build tools2
4 Using DbmsShell
The dbmsshell is a native executable that can be used to interactively create and modify DBMS database files.
Clitool supports the following command line options:

Usage: dbmsshell [-db <dbfile>] [-script <scriptfile>]

 -db <dbfile>

 Specifies the database file to open or create.

 If no database file is specified, clitool defaults to 'test.db'

 in the current directory.

 -script <scriptfile>

 If no script is specified, clitool will start an interactive shell.

 Otherwise, clitool will execute commands in the scriptfile until

 the end of script (or a fatal error).

In addition to running SQL commands, the Clitool supports the following:

List of supported commands (non-SQL):

QUIT - Exit database shell

SCHEMA - Print the schema for the current database

COMPACT - Compact database - equivalent to RDbDatabase::Compact()

BEGIN - Open a database transaction

COMMIT - Commit current database transaction

ROLLBACK - Rollback current database transaction

REPAIR - Repair database - equivalent to RDbDatabase::Recover()

HELP - Show this help screen

Here is a sample dbmsshell session:

> CREATE TABLE TEST (T1 INTEGER AUTOINCREMENT, T2 CHAR(20) NOT NULL, T3 VARBINARY, T4 REAL)

Ok

> schema

--

| Table: TEST |

--

| Column name | Type | Flags |

--

| T1 | EDbColInt32 | not-null auto-increment |

| T2 | EDbColText16[20] | not-null |

| T3 | EDbColBinary | |

| T4 | EDbColReal32 | |

--

> CREATE INDEX myindex ON test (T2) COLLATE FOLDED

Ok

> schema

--

| Table: TEST |

--

| Column name | Type | Flags |

--

| T1 | EDbColInt32 | not-null auto-increment |

| T2 | EDbColText16[20] | not-null |

| T3 | EDbColBinary | |

| T4 | EDbColReal32 | |

--

| INDEX: myindex (T2) Comparison: FOLDED |

--

Ok

> INSERT INTO TEST (T2, T3, T4) VALUES ('Hello world!', X'CAFEBABE', 3.1415)

Ok, 1 rows affected.

> SELECT * FROM TEST

|T1|T2|T3|T4|

|0|Hello world!|X'CAFEBABE'|3.141500|

Ok
> quit
5 Using the DBMS JDBC Driver
One of the PREQ2104 deliverables is the Type 2 JDBC driver for DBMS.

The driver offers limited JDBC access to DBMS databases. Most notable limitations are:

1. Supports single threaded operation only

2. Supports a single database connection at a time

3. No DatabaseMetaData implementation

The driver is primarily geared towards database creation – e.g. WRITE access to the database. The read access is provided via ResultSet and ResultSetMetaData implementations. While the read access is fairly complete it has been provided primarily for test purposes – e.g. to be able to test the tools using the driver without dropping to native code.

The driver provides a way to specify settings consistent with how this is normally done with JDBC drivers - via the connect URL. The connect URL BNF is as follows:

dbms-url ::= dbms:/<file-name>[?<param-name>=<value>[&<param-name>=<value>]*]

file-name ::= The file name on disk

param-name ::= Parameter name

value ::= Parameter value

Examples:

dbms:/test.db?volumeio.BlockSize=8192

dbms:/test.db?volumeio.BlockSize=8192&volumeio.ClusterSize=8192&localeDll=elocl.36

Following configurable parameters are supported:

	Parameter name
	Default value
	Description

	localeDll
	null
	Path to the locale DLL. If not specified uses default english locale.

	dbms.secureId
	None
	The third UID stored in the database file header

	volumeio.BlockSize
	4096
	See TVolumeIOParamInfo and RFs::VolumeIOParam in Developer library

	volumeio.ClusterSize
	4096
	See TVolumeIOParamInfo and RFs::VolumeIOParam in Developer library

The block size and cluster size parameters are required because these are essentially used by DBMS to internally lay out data in the most efficient fashion for a particular medium. For example, if a flash chip has I/O characteristics such that 1Kb reads and writes are fastest, choosing appropriate block and cluster sizes can significantly improve database performance. The values must be specified by phone manufacturers.

6 Using the static libraries
A good example for using static libraries is the dbmsshell. The mmp for dbmsshell is as follows:

target

dbmsshell.exe

targettype

exe

systeminclude
/epoc32/include/x86tool

systeminclude
/epoc32/include

SOURCEPATH ../src

source
dbmsshell.cpp

staticlibrary dbms symstore symfile symuser symutil

Note that your code must use /epoc32/include/x86tool before /epoc32/include. The resulting environment is somewhat unusual in that the code can use both, standard C and C++ APIs and libraries, including STL on the one hand, and Symbian APIs such as descriptors on the other.
7 DBMS SQL extensions
DBMS supports limited SQL. There are several database functions that cannot normally be accessed via SQL. In particular this refers to:

1. No support for autoincrement column definition in DDL (apart from counter)

2. No support for index collation definition in DDL

3. No support for BLOB/VARBINARY/LONGVARBINARY in DML

4. DBMS creates a EDbColReal64 when col specified as FLOAT in DDL

5. DBMS creates a EDbColText16 when col specified as CHAR in DDL

6. No way to specify EDbColText8 from DDL SQL

7. NCHAR keyword is not supported in SQL although the engine supports both EDbColText8 and EDbColText16

We will discuss how these limitations are handled by the DBMS creation tool in the remainder of this section. Note that these extensions are not back-ported to on-device DBMS, they are rather only available in the DBMS creation tools.
7.1 Support for AUTOINCREMENT column in DDL

DBMS provides support for autoincrement through the COUNTER data type. This translates to UNSIGNED INTEGER AUTOINCREMENT in standard SQL.

However, it is possible to create autoincrement columns of other types via DBMS API. In order to be able to create databases with such columns, the AUTOINCREMENT keyword support has been added. The AUTOINCREMENT keyword can now be used with any integer type column.

Example:
CREATE TABLE T (PK INTEGER AUTOINCREMENT)

7.2 Support for index collation definition in DDL

The DBMS API allows creation of text indices based on collation rules. In order to support creation of such indices via SQL, text index specification has been extended as follows:

CREATE [UNIQUE] INDEX <index-name>

ON <table-name> (<column-list>)

[COLLATE NORMAL|FOLDED|COLLATED]
The new keywords are highlighted with bold letters.

Example:

CREATE UNIQUE INDEX t_ind_1 ON tx(T2) COLLATE FOLDED
7.3 Support for BLOB/VARBINARY/LONGVARBINARY in DML

The SQL support in DBMS does not allow blob content definition in DML. This has been added so blobs can be defined as follows:
INSERT INTO DATA (<column-name>) VALUES (X’<hex-encoded-data>’)

Example:

INSERT INTO CONTACTS (name, number, image) VALUES (‘John’, ‘07930647721’, X’CAFEBABE0126D4F1C3B8346238DBAA7D6B689C7D66E8098632A’)

7.4 Floating point definition – REAL, FLOAT and DOUBLE

Please use the following table to specify floating point types. Note that this was not changed in relation to on-device DBMS, however we decided to present it here to avoid any confusion:

	DBMS SQL Type
	Actual data type
	DBMS column type

	REAL
	32 bit float
	EDbColReal32

	FLOAT
	64 bit float
	EDbColReal64

	DOUBLE
	64 bit float
	EDbColReal64

7.5 Text column types – CHAR and CHAR8

The SQL support in DBMS does not allow specifying 8-bit text columns in DDL - this functionality is exclusively available via the API.
In order to overcome this limitation we have added new data types for DDL:

	New DBMS SQL data type
	Column type

	CHAR8
	EDbColText8

	VARCHAR8
	EDbColText8

	LONG VARCHAR8
	EDbColLongText8

Note that in standard SQL, CHAR would be typically used for 8-bit text while NCHAR would be used for 16-bit coded text. Unfortunately, we were not able to follow this convention because that would require changing existing semantics of the CHAR type from 16-bit to 8-bit which could cause some existing queries to fail.
8 Port information
In order to implement the native (e.g. non-emulator) tools for DBMS, our effort was focused on porting Symbian OS APIs to the target platforms (Windows / Linux). In particular, we have ported:

1. Parts of EUser

2. Parts of F32

3. Store component

4. DBMS

DBMS and Store did not require many changes, however EUser did and F32 API had to be fully re-implemented.

We will briefly discuss details of ported components in the reminder of this section.
8.1 EUser port

The euser port can be found in the base directory in the source tree. This part of the tree is built by base/group/base.mmp and produces the static library libbase.a.
The EUser functionality has been reduced to support DBMS database creation with minimal porting effort. This is because there are many EUser functions not required for PREQ2104 which would also be more difficult to implement outside Symbian OS. In particular, this relates to Client-Server functionality, Active objects and other services that rely on Symbian OS kernel.

Hence the following EUser functionality is not available in PREQ2104 port:

1. Anything to do with TRequestStatus

2. Anything to do with Active objects

3. Anything to do with Client-Server

4. Anything to do with threads/processes

5. Anything that requires kernel services but is not specifically implemented (e.g. RProperty doesn't work)

6. Multithreaded operations are not supported (e.g. lib can only be used in a single thraded app)

Following on from point 5 above, localisation support has been specifically added. This is normally managed with help from the kernel. The EUser port allows setting a locale DLL along the lines of:

extern TExtendedLocale gLocale;

void LoadLocaleL()

{

_LIT(KLibName, "N:\\9.3\\epoc32\\release\\WINSCW\\udeb\\elocl.19\0"); // note null termination

User::LeaveIfError(gLocale.LoadLocale(KLibName));

}

If no DLLs are loaded, the default locale corresponds to the default locale on SOS emulator.

Other globally accessible variables are:
TInt gBlockSize = 4096;
TInt gClusterSize = 4096;
The above two values relate to TVolumeIOParamInfo and RFs::VolumeIOParam values which are described in the Developer Library. These values should always match the volume I/O parameters of the target device in order to ensure optimal DBMS performance.
8.2 F32 port

The f32 port can be found in the file directory in the source tree. This part of the tree is built by file/group/file.mmp and produces the static library libfile.a.
F32 port is minimal and is there to provide OS independent file system access. The API essentially provides opening, closing, reading, writing and seeking in files. No advanced RFs features are implemented. There is no requirement to connect RFs sessions.
8.3 Store and DBMS ports

The DBMS port can be found in the dbms directory in the source tree. This part of the tree is built by dbms/group/dbms.mmp and produces the static library libdbms.a.

The Store port can be found in the store directory in the source tree. This part of the tree is built by store/group/store.mmp and produces the static library libstore.a.
DBMS and Store ports are quite complete.

Clearly - the limitation here are the limitations in EUser. Hence, there is no client-server or async calls support. This functionality is not required for DBMS database creation.

9 Implementation Considerations

9.1 Error handling

9.1.1 Panic

The default Panic implementation simply prints out the error message and exits the program. This may be good for static library use, however in many cases this behaviour is not desirable.

In order to overcome this, the API user can programmatically specify the Panic handler. The Panic handler can handle panic consistent with the platform / tool in use. For example, a panic handler for the JDBC driver throws a Java exception.
9.1.2 TRAP and LEAVE

The TRAP/LEAVE are fully supported. Note that at the time of this writing the TOOLS2 platform has a bug in compiler command line options that leads to stack corruption in exception handlers. This has been reported with a minimal example for reproducing the defect and Tools team is fixing the problem.
9.2 Localisation

Localisation support is provided via the use of standard Symbian OS locale DLLs and only on Windows. See section 8.1 for more information on how to specify the locale DLL when using the static libraries. See section 5 on how to specify locale DLL in the JDBC driver.
10 Testing

The PREQ2104 testing comprises the following test suites:
1. The DBMS test subset

2. The DBMS native validation tests

3. The JDBC end-to-end tests

10.1 DBMS tests
In order to test the DBMS library code port, we have ported large number of DBMS unit tests to the TOOLS2 platform.
In addition to unit tests, we needed to ensure that the databases created on TOOLS2 are bit-equivalent to databases created on a Symbian build – e.g. WINSCW. We have opted to do this by collecting checksums on the database files at key points during unit test execution. A WINSCW built tests generate CRCs during execution, storing results in c:\dbms-tst*.CRC. TOOLS2 tests generate CRCs at exact same key points and then read and compare the CRCs against the ones obtained on windows.
10.1.1 Testing on Windows

10.1.1.1 Building

Tests can be built from the top level using regular abld syntax.
WINSCW: abld test build winscw urel

TOOLS2: abld test build tools2 deb

10.1.1.2 Running native tests
Running the DBMS tests is a little bit convoluted because of the validation tests. Essentially, in order to generate and check CRC checksum files, tests must first be run on WINSCW. The process is as follows:

Step 1 Running WINSCW tests

Use the WinsCwDbmsTests.bat script which can be found in rtest/group

Step 2 Collecting CRC result files

Copy the contents of \epoc32\winscw\c\dbms-tst to real windows path c:\dbms-tst

Step 3 Running TOOLS2 tests

Now run TOOLS2 tests using Tools2DbmsTests.bat which can be found in rtest/group

Step 4 Check the results

Test results are stored in the current directory in files named <test-name>.txt. If there was a failure, the test would panic producing a string ### User::Panic in the result file (e.g. easily grep-able for errors).

10.1.1.3 Running Java tests

Java tests can be run using the runjavatests.bat which can be found in the dbms-jdbc/ folder of the source tree. This file is exported to the target directory.

Tests should be run in the target directory. Example:

cd \9.5\epoc32\release\tools2\deb

runjavatests.bat

10.1.2 Testing on Linux
10.1.2.1 Building

Tests can be built from the top level using regular sbs syntax.

TOOLS2: sbs –b bld.inf -c tools2.test

10.1.2.2 Running

Running tests on linux is similar to running on windows. However, there are several differences.

The main challenge are hard-coded paths in Windows/Symbian format inherited from the original DBMS.

This problem has been resolved as follows (ONLY applies to Linux):

· All back-slashes are replaced by slashes

· If the file path starts with <drive>: then drive part is replaced with /tmp then the remainder of the path is appended.
Note that linux paths and file names are case sensitive. Symbian and Windows do maintain case in file and directory names, but are case insensitive.

Additionally, we cannot run WINSCW tests on linux. This means that we will have to copy CRC files generated during WINSCW run to linux. In accordance with the above renaming rules, target location on linux filesystem should be /tmp/DBMS-TST/.

To run the tests, change to target directory and use the runalltests.sh. This script can be found in dbms-jdbc/ directory in the source tree, however it is also exported to the build target directory. Here is the example:

cd ~/builds/baseline_m04485_9.5/epoc32/release/tools2/linux-i386/deb

./runalltests.sh

Test results are stored in testlog.txt.
11 Further Information

This section should always be the last section of the document as it is essentially information about the document rather than its content.

11.1 References

	No.
	Document Reference
	Version
	Description

	[R1]
	
	
	

	[R2]
	
	
	

11.2 Open Issues

11.3 Glossary

	Term
	Definition

	
	

If appendices are to be used they should be preceded with a hard page break (Ctrl+Enter) and the style ‘Appendix Title’ should be used for the Title and ‘Appendix Heading 1, 2 & 3’ styles for the headings within the Appendix (examples are overleaf – if no appendices are to be used, please delete the next page)

Appendix A - <Appendix Title>

A.1 Appendix Heading 1

A.1.1 Appendix Heading 2

A.1.1.1 Appendix Heading 3

Appendix B - <Appendix Title>

B.1 Appendix Heading 1

B.1.1 Appendix Heading 2

B.1.1.1 Appendix Heading 3

Copyright © Symbian Software Ltd. 2009. All rights reserved. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

Copyright © Symbian Software Ltd. 2009.

Page 8 of 13
All rights reserved.

[image: image3.png]symbian

_1139388038

_1139388040

