sbsv2/raptor/test/smoke_suite/test_resources/mmp/mmp4/mmu/t_sharedio.cpp
author Richard Taylor <richard.i.taylor@nokia.com>
Wed, 14 Jul 2010 14:50:01 +0100
changeset 616 24e4ef208cca
parent 591 22486c9c7b15
permissions -rw-r--r--
sbs version 2.14.2

/*
* Copyright (c) 2003-2010 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: 
* e32test\mmu\t_sharedio.cpp
* Overview:
* Verifies the correct implementation of Shared IO Buffers
* API information:
* DSharedIoBuffer
* Details:
* 1. Loading the shared IO buffer test device driver
* 2. Create buffer of a specified size
* - it passes a request to the device driver to create a buffer
* - the driver creates a shared io buffer and it zero fills it
* - it checks the size is as specified
* 3. Map in buffer
* - it passes a request to the device driver to map the buffer created at
* step 1 into this user process
* - the driver maps the buffer into this user process
* - checks if UserToKernel and KernelToUser methods work as expected
* - fills a buffer
* - returns the user address and size to the user process
* - using the address and size returned by the driver, the user process
* checks the buffer is filled as expected
* 4. Fill and check shared buffer
* - user process fills the buffer and driver checks it
* - driver fills the buffer and user process checks it
* 5. Map Out Buffer
* - requests to the driver that the buffer should be unmapped from this
* process' address space
* - the driver checks that iUserAddress becomes NULL after unmapping
* 6. Destroy Buffer
* - requests to the driver to destroy the buffer
* 7. Create a buffer with a physical address
* (not performed on WINS)
* - requests to the driver to create a buffer by specifying a physical address
* - the driver allocates a physical address
* - creates a shared IO buffer over that physical address
* - fills the buffer with a pattern
* - destroys the buffer
* - creates a hardware chunk over the same physical address
* - checks the buffer contains the pattern
* - closes the chunk
* 8. Check using the same buffer by 2 different user processes
* (not performed on WINS)
* - process 1 maps a global buffer (the global buffer will be
* created in the context of process 1)
* - fills it
* - unmaps it
* - process 2 maps the global buffer
* - checks if it's filled accordingly
* - unmaps it
* - destroys the global buffer
* 9. Checking buffers are protected at context switching
* (not relevant on WINS)
* - creates a shared buffer and map it into this process
* - creates a new process
* - the new process tries to access the buffer mapped into the first process
* by zeroing the raw buffer passed from the first process. This relies on the
* fact that each shared buffer is created in the Home Section, so they will be
* available at the same address
* - tests if the new process was panicked due to access violation
* - tests if the contents of the buffer haven't been changed
* 10.Checking writing to unmapped buffer
* (not performed on WINS)
* - creates a new process
* - the new process creates a buffer, maps it and unmaps it
* - the new process tries to use the buffer after unmapping
* - the parent process logs the exit type and reason and checks
* these are EExitPanic and 3 (Kern 3 - access violation)
* 11.Checking address lookup is implemented
* (not relevant on WINS)
* - creates a new process
* - the new process will ask the device driver to read and write a descriptor
* in the old process, the kernel will perform an address lookup before
* reading or writing the descriptor, to make sure the address location does
* belong to the old process. The descriptor is a TPtr pointing to a buffer
* located in a shared io buffer.
* - device driver will return an error in case address lookup fails or ThreadRead
* or ThreadWrite fail
* - the new process returns the error code returned by the device driver
* - the old process tests for the exit code for the new process being KErrNone and
* that the thread is not panicked, and also that the values written and read
* are those expected.
* 12.Closing test driver
* - Trivial, but it will test if a created & mapped shared io buffer gets released
* successfully when the logical channel is closed (which in turn will delete the
* shared io buffer associated with the channel)
* The test comes in 4 flavours, in order to test memory protection when context switching
* between different types of processes.
* T_SHAREDIO:
* Main process is a moving process which creates another moving process.
* T_SHAREDIO2:
* Main process is a fixed process which creates a moving process.
* T_SHAREDIO3:
* Main process is a fixed process which creates another fixed process.
* T_SHAREDIO4:
* Main process is a moving process which creates a fixed process.
* Platforms/Drives/Compatibility:
* All (some steps will not be performed on emulator)
* Assumptions/Requirement/Pre-requisites:
* The test needs D_SHAREDIO.LDD, the device driver that actually operates the API. 
* Failures and causes:
* Failures of this test will indicate defects in the implementation of Shared Io Buffers.
* Base Port information:
* No?
*
*/


#define __E32TEST_EXTENSION__

#include <e32test.h>
#include <e32math.h>
#include "d_sharedio.h"
#include <e32hal.h>
#include <u32std.h>
#include <u32hal.h>
#include <e32svr.h>
#include <f32dbg.h>
#include <e32def.h>
#include <e32def_private.h>
#include "freeram.h"

LOCAL_D RTest test(_L("T_SHAREDIO"));

const TInt KTestBufferSize = 0x100000;

TUint MemModelAttributes;
TBool PhysicalCommitSupported;

RTestLdd ldd;

TUint32 TestBufferSizes[]={0x1000, 0x10453, 0x100000, 0x100001, 0x203000, 0};

TInt checkBuffer(TAny* buffer, TUint32 aSize, TUint32 key)
	{
	TInt r=KErrNone;
	TUint8* m=(TUint8*)buffer;
	for(TUint32 size=0;size<aSize;size++,key+=5,m++)
		{
		if(*m!=(TUint8)(key%256))
			{
			r=KErrCorrupt;
			break;
			}
		}
	return r;
	}

TInt fillBuffer(TAny* buffer, TUint32 aSize, TUint32 key)
	{
	TUint8* m=(TUint8*)buffer;
	for(TUint32 size=0;size<aSize;size++,key+=5,m++)
		{
		*m=(TUint8)(key%256);
		}
	return KErrNone;
	}

TBool CheckBuffer(TAny* aBuffer,TInt aSize)
	{
	TAny** p = (TAny**)aBuffer;
	TAny** end = (TAny**)((TInt)p+aSize);
	while(p<end)
		{
		if(*p!=p)
			return EFalse;
		++p;
		}
	return ETrue;
	}

enum TTestProcessFunctions
	{
	ETestProcess1,
	ETestProcess2,
	ETestProcess3,
	};

class RTestProcess : public RProcess
	{
public:
	void Create(TTestProcessFunctions aFunction,TInt aArg1=-1,TInt aArg2=-1);
	};

void RTestProcess::Create(TTestProcessFunctions aFunction,TInt aArg1,TInt aArg2)
	{
	if(aArg1==-1)
		aArg1 = RProcess().Id();
	TBuf<512> commandLine;
	commandLine.Num((TInt)aFunction);
	commandLine.Append(_L(" "));
	commandLine.AppendNum(aArg1);
	commandLine.Append(_L(" "));
	commandLine.AppendNum(aArg2);
#ifdef __FIXED__
	//fixed process creating a moving process
	TFileName filename(RProcess().FileName());
	TInt pos=filename.LocateReverse(TChar('\\'));
	filename.SetLength(pos+1);
	filename+=_L("T_SHAREDIO.EXE");
	TInt r = RProcess::Create(filename,commandLine);
#else
#ifdef __SECOND_FIXED__
	//fixed process creating another fixed process
	TFileName filename(RProcess().FileName());
	TInt pos=filename.LocateReverse(TChar('\\'));
	filename.SetLength(pos+1);
	filename+=_L("T_SHAREDIO2.EXE");
	TInt r = RProcess::Create(filename,commandLine);
#else
#ifdef __MOVING_FIXED__
	//moving process creating a fixed process
	TFileName filename(RProcess().FileName());
	TInt pos=filename.LocateReverse(TChar('\\'));
	filename.SetLength(pos+1);
	filename+=_L("T_SHAREDIO2.EXE");
	TInt r = RProcess::Create(filename,commandLine);
#else
	//moving process creating a moving process
	TInt r = RProcess::Create(RProcess().FileName(),commandLine);
#endif
#endif
#endif
	test(r==KErrNone);
	SetJustInTime(EFalse);
	}

const TInt KProcessRendezvous = KRequestPending+1;

TInt DoTestProcess(TInt aTestNum,TInt aArg1,TInt aArg2)
	{
	(void)aArg1;
	(void)aArg2;

	RTestLdd ldd;
	TInt r;
	r=User::LoadLogicalDevice(KSharedIoTestLddName);
	if(r!=KErrNone && r!=KErrAlreadyExists)
		return KErrGeneral;
	r=ldd.Open();
	if(r!=KErrNone)
		return r;

	switch(aTestNum)
		{
	case ETestProcess1:
		{
		TAny* gbuffer;
		TUint32 gsize;
		r=User::GetTIntParameter(1,(TInt&)gbuffer);
		if(r!=KErrNone)
			return r;
		r=User::GetTIntParameter(2,(TInt&)gsize);
		if(r!=KErrNone)
			return r;

		r=checkBuffer(gbuffer,gsize,23454);
		if(r!=KErrNone)
			return r;
		r=ldd.MapOutGlobalBuffer();
		if(r!=KErrNone)
			return r;

		r=ldd.CreateBuffer(KTestBufferSize);
		if(r!=KErrNone)
			return r;

		TAny* buffer;
		TUint32 size;
		r=ldd.MapInBuffer(&buffer,&size);
		if(r!=KErrNone)
			return r;

		if(!CheckBuffer(buffer,size))
			return KErrGeneral;

		r=ldd.MapOutBuffer();
		if(r!=KErrNone)
			return r;

		RProcess::Rendezvous(KProcessRendezvous);

		*(TInt*)buffer = 0;   // Should cause exception
		break;
		}
	case ETestProcess2:
		{
		TInt size=aArg2;
		TUint8* p=(TUint8*)aArg1;

		RProcess::Rendezvous(KProcessRendezvous);
		for(TInt i=0;i<size;i++)
			p[i]=0; // Should cause exception
		break;
		}
	case ETestProcess3:
		{
		TAny* buffer;
		TUint32 size;

		r=ldd.CreateBuffer(KTestBufferSize);
		if(r!=KErrNone)
			return r;

		r=ldd.MapInBuffer(&buffer,&size);
		if(r!=KErrNone)
			return r;

		if(!CheckBuffer(buffer,size))
			return KErrGeneral;

		*(TInt*)buffer=KMagic1;
		TPckg<TInt> buf(*(TInt*)buffer);
		r=ldd.ThreadRW(buf);
		if(r!=KErrNone)
			return r;

		if(*(TInt*)buffer!=KMagic2)
			return KErrCorrupt;

		r=ldd.ThreadRW(*(TDes8*)aArg1,aArg2);
		if(r!=KErrNone)
			return r;
		
		r=ldd.MapOutBuffer();
		if(r!=KErrNone)
			return r;

		break;
		}
	default:
		User::Panic(_L("T_SHAREDIO"),1);
		}

	ldd.Close();	
	return KErrNone;
	}

void CreateWithOOMCheck(TInt aSize, TBool aPhysicalAddress)
	{
	TInt failResult=KErrGeneral;

	TInt freeRam = FreeRam(); //This will also add a delay

	for(TInt failCount=1; failCount<1000; failCount++)
		{
		test.Printf(_L("alloc fail count = %d\n"),failCount);

		User::__DbgSetAllocFail(ETrue,RAllocator::EFailNext,failCount);
		__KHEAP_MARK;
		
		if (aPhysicalAddress)
			failResult=ldd.CreateBufferPhysAddr(aSize);
		else
			failResult=ldd.CreateBuffer(aSize);

		if(failResult==KErrNone)
			break;

		test(failResult==KErrNoMemory);
		__KHEAP_MARKEND;

		test(freeRam == FreeRam());  //This will also add a delay
		}
	User::__DbgSetAllocFail(ETrue,RAllocator::ENone,0);
	__KHEAP_RESET;

	test.Next(_L("Destroy buffer"));
	if (aPhysicalAddress)
		ldd.DestroyBufferPhysAddr();
	else
		ldd.DestroyBuffer();
	
	test(freeRam == FreeRam());  //This will also add a delay
	}

GLDEF_C TInt E32Main()
    {
	TBuf16<512> cmd;
	User::CommandLine(cmd);
	if(cmd.Length() && TChar(cmd[0]).IsDigit())
		{
		TInt function = -1;
		TInt arg1 = -1;
		TInt arg2 = -1;
		TLex lex(cmd);
		lex.Val(function);
		lex.SkipSpace();
		lex.Val(arg1);
		lex.SkipSpace();
		lex.Val(arg2);
		return DoTestProcess(function,arg1,arg2);
		}

	MemModelAttributes=UserSvr::HalFunction(EHalGroupKernel, EKernelHalMemModelInfo, NULL, NULL);
	TUint mm=MemModelAttributes&EMemModelTypeMask;
	PhysicalCommitSupported = mm!=EMemModelTypeDirect && mm!=EMemModelTypeEmul;

// Turn off lazy dll unloading
	RLoader l;
	test(l.Connect()==KErrNone);
	test(l.CancelLazyDllUnload()==KErrNone);
	l.Close();

	test.Title();

	test.Start(_L("Loading test driver..."));

	TInt r;
	r=User::LoadLogicalDevice(KSharedIoTestLddName);
	test(r==KErrNone || r==KErrAlreadyExists);
	r=User::LoadLogicalDevice(KSharedIoTestLddName);
	test(r==KErrAlreadyExists);
	r=ldd.Open();
	test(r==KErrNone);

	TAny* buffer;
	TUint32 size;
	TUint32 key;

	TInt testBufferSize=0;
	for(; TestBufferSizes[testBufferSize]!=0; ++testBufferSize)
		{
		test.Printf(_L("Test buffer size = %08x\n"),TestBufferSizes[testBufferSize]);

		test.Next(_L("Create buffer"));
		r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
		if(r!=KErrNone)
			test.Printf(_L("Creating buffer failed client r=%d"), r);
		test(r==KErrNone);

		test.Next(_L("Map In Buffer"));
		r=ldd.MapInBuffer(&buffer,&size);
		
		test.Next(_L("CheckBuffer"));
		test(CheckBuffer(buffer,size));
		test(r==KErrNone);
		test.Next(_L("Fill and check shared buffer"));
		key=Math::Random();
		fillBuffer(buffer,size,key);
		test(ldd.CheckBuffer(key)==KErrNone);

		key=Math::Random();
		test(ldd.FillBuffer(key)==KErrNone);
		test(checkBuffer(buffer,size,key)==KErrNone);

		test.Next(_L("Map Out Buffer"));
		r=ldd.MapOutBuffer();
		test(r==KErrNone);

		test.Next(_L("Destroy Buffer"));
		r=ldd.DestroyBuffer();
		test(r==KErrNone);

		test.Next(_L("Create a buffer under OOM conditions"));
		CreateWithOOMCheck(TestBufferSizes[testBufferSize], EFalse);

		if(PhysicalCommitSupported)
			{
			test.Next(_L("Create a buffer with a physical address under OOM conditions"));
			CreateWithOOMCheck(TestBufferSizes[testBufferSize], ETrue);

			test.Next(_L("Create a buffer with a physical address"));
			r=ldd.CreateBufferPhysAddr(0x1000);
			test(r==KErrNone);

			test.Next(_L("Map In physical address Buffer"));
			r=ldd.MapInBuffer(&buffer,&size);
			test(r==KErrNone);

			test.Next(_L("Fill and check physical address shared buffer"));
			key=Math::Random();
			fillBuffer(buffer,size,key);
			test(ldd.CheckBuffer(key)==KErrNone);

			key=Math::Random();
			test(ldd.FillBuffer(key)==KErrNone);
			test(checkBuffer(buffer,size,key)==KErrNone);

			test.Next(_L("Map Out physical address Buffer"));
			r=ldd.MapOutBuffer();
			test(r==KErrNone);

			test.Next(_L("Destroy a buffer with a physical address"));
			r=ldd.DestroyBufferPhysAddr();
			test(r==KErrNone);
		}

		test.Next(_L("Check using the same buffer by 2 different user processes"));
		TAny* gbuffer;
		TUint32 gsize;
		r=ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize);
		test(r==KErrNone);

		fillBuffer(gbuffer,gsize,23454);

		r=ldd.MapOutGlobalBuffer();
		test(r==KErrNone);

		r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
		test(r==KErrNone);

		r=ldd.MapInBuffer(&buffer,&size);
		test(r==KErrNone);

		test(CheckBuffer(buffer,size));

		key=Math::Random();
		fillBuffer(buffer,size,key);
		test(ldd.CheckBuffer(key)==KErrNone);

		RTestProcess rogueP;
		TRequestStatus rendezvous;
		TRequestStatus logon;

		if(MemModelAttributes&EMemModelAttrProcessProt)
			{
			test.Next(_L("Checking buffers are protected at context switching"));
			rogueP.Create(ETestProcess2,(TInt)buffer,(TInt)size);
			rogueP.Logon(logon);
			rogueP.Rendezvous(rendezvous);
			rogueP.Resume();
			User::WaitForRequest(rendezvous);
			test(rendezvous==KProcessRendezvous);
			User::WaitForRequest(logon);
			test(rogueP.ExitType()==EExitPanic);
			test(logon==3);
			test(ldd.CheckBuffer(key)==KErrNone);
			}

		r=ldd.MapOutBuffer();
		test(r==KErrNone);

		r=ldd.DestroyBuffer();
		test(r==KErrNone);

		RTestProcess process;

		if((MemModelAttributes&EMemModelAttrKernProt) && (MemModelAttributes&EMemModelTypeMask)!=EMemModelTypeDirect)
			{
			test.Next(_L("Checking writing to unmapped buffer"));
			process.Create(ETestProcess1);
			process.Logon(logon);
			process.Rendezvous(rendezvous);
			test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
			test(process.SetParameter(1,(TInt)gbuffer)==KErrNone);
			test(process.SetParameter(2,(TInt)gsize)==KErrNone);
			process.Resume();
			User::WaitForRequest(rendezvous);
			test(rendezvous==KProcessRendezvous);
			User::WaitForRequest(logon);
			test(process.ExitType()==EExitPanic);
			test(logon==3);
			process.Close();
			}

		r=ldd.CreateBuffer(TestBufferSizes[testBufferSize]);
		if(r!=KErrNone)
			return r;

		r=ldd.MapInBuffer(&buffer,&size);
		if(r!=KErrNone)
			return r;

		if(!CheckBuffer(buffer,size))
			return KErrGeneral;

		*(TInt*)buffer=KMagic1;
		TPckg<TInt> buf(*(TInt*)buffer);

		RTestProcess proc;
		test.Next(_L("Checking address lookup is implemented"));
		proc.Create(ETestProcess3,(TInt)&buf,RThread().Id());
		proc.Logon(logon);
		proc.Resume();
		User::WaitForRequest(logon);

		test(proc.ExitType()==EExitKill);
		test(logon==0);
		test(*(TInt*)buffer==KMagic2);

		ldd.DestroyBuffer();

		// Check process death whilst buffer is mapped in
		// Test case for defect DEF051851 - Shared IO Buffer fault when process dies
		test.Next(_L("Checking process death whilst buffer is mapped in"));
			process.Create(ETestProcess1);
			process.Logon(logon);
			test.Start(_L("Map buffer into another process"));
			test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
			test.Next(_L("Kill other process"));
			process.Kill(99);
			User::WaitForRequest(logon);
			test(process.ExitType()==EExitKill);
			test(logon==99);
			process.Close();
			test.Next(_L("Map out buffer"));
			r=ldd.MapOutGlobalBuffer();
			test.Printf(_L("result = %d\n"),r);
			test(r==KErrNone);

			test.Next(_L("Map buffer into this process"));
			test(ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize)==KErrNone);
			test.Next(_L("Map out buffer from this process"));
			r=ldd.MapOutGlobalBuffer();
			test.Printf(_L("result = %d\n"),r);
			test(r==KErrNone);

			process.Create(ETestProcess1);
			process.Logon(logon);
			test.Next(_L("Map buffer into another process"));
			test(ldd.MapInGlobalBuffer(process.Id(),gbuffer,gsize)==KErrNone);
			test.Next(_L("Kill other process"));
			process.Kill(99);
			User::WaitForRequest(logon);
			test(process.ExitType()==EExitKill);
			test(logon==99);
			process.Close();
			test.Next(_L("Map out buffer"));
			r=ldd.MapOutGlobalBuffer();
			test.Printf(_L("result = %d\n"),r);
			test(r==KErrNone);
			test.End();
	} // loop for next buffer size

	test.Next(_L("Create and map in buffer"));
	r=ldd.CreateBuffer(KTestBufferSize);
	test(r==KErrNone);
	r=ldd.MapInBuffer(&buffer,&size);
	test(r==KErrNone);

//  Test for DEF053512 - Can't delete SharedIo buffers in DLogicalDevice destructor 

	test.Next(_L("Map in global buffer"));
	TAny* gbuffer;
	TUint32 gsize;
	test(ldd.MapInGlobalBuffer(RProcess().Id(),gbuffer,gsize)==KErrNone);

	test.Next(_L("Closing channel (with a buffer still mapped in)"));
	ldd.Close();

//  Test for DEF053512 - Can't delete SharedIo buffers in DLogicalDevice destructor 

	test.Next(_L("Unload driver (whilst global buffer still mapped in)"));
	r=User::FreeLogicalDevice(KSharedIoTestLddName);
	test(r==KErrNone);

	test.End();



	return(0);
    }