improve resource copying speed on certain clustered build systems by forcing them to happen locally.
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32tools\petran\Szip\deflate.cpp
//
//
#include "deflate.h"
#include "h_utl.h"
#include "panic.h"
class HDeflateHash
{
public:
inline static HDeflateHash* NewLC(TInt aLinks);
//
inline TInt First(const TUint8* aPtr,TInt aPos);
inline TInt Next(TInt aPos,TInt aOffset) const;
private:
inline HDeflateHash();
inline static TInt Hash(const TUint8* aPtr);
private:
typedef TUint16 TOffset;
private:
TInt iHash[256];
TOffset iOffset[1]; // or more
};
class MDeflater
{
public:
void DeflateL(const TUint8* aBase,TInt aLength);
inline virtual ~MDeflater() { };
private:
const TUint8* DoDeflateL(const TUint8* aBase,const TUint8* aEnd,HDeflateHash& aHash);
static TInt Match(const TUint8* aPtr,const TUint8* aEnd,TInt aPos,HDeflateHash& aHas);
void SegmentL(TInt aLength,TInt aDistance);
virtual void LitLenL(TInt aCode) =0;
virtual void OffsetL(TInt aCode) =0;
virtual void ExtraL(TInt aLen,TUint aBits) =0;
};
class TDeflateStats : public MDeflater
{
public:
inline TDeflateStats(TEncoding& aEncoding);
inline virtual ~TDeflateStats() { }
private:
// from MDeflater
void LitLenL(TInt aCode);
void OffsetL(TInt aCode);
void ExtraL(TInt aLen,TUint aBits);
private:
TEncoding& iEncoding;
};
class TDeflater : public MDeflater
{
public:
inline TDeflater(TBitOutput& aOutput,const TEncoding& aEncoding);
inline virtual ~TDeflater() { };
private:
// from MDeflater
void LitLenL(TInt aCode);
void OffsetL(TInt aCode);
void ExtraL(TInt aLen,TUint aBits);
private:
TBitOutput& iOutput;
const TEncoding& iEncoding;
};
// Class HDeflateHash
inline HDeflateHash::HDeflateHash()
{TInt* p=iHash+256;do *--p=-KDeflateMaxDistance-1; while (p>iHash);}
inline HDeflateHash* HDeflateHash::NewLC(TInt aLinks)
{
return new(HMem::Alloc(0,_FOFF(HDeflateHash,iOffset[Min(aLinks,KDeflateMaxDistance)]))) HDeflateHash;
}
inline TInt HDeflateHash::Hash(const TUint8* aPtr)
{
TUint x=aPtr[0]|(aPtr[1]<<8)|(aPtr[2]<<16);
return (x*KDeflateHashMultiplier)>>KDeflateHashShift;
}
inline TInt HDeflateHash::First(const TUint8* aPtr,TInt aPos)
{
TInt h=Hash(aPtr);
TInt offset=Min(aPos-iHash[h],KDeflateMaxDistance<<1);
iHash[h]=aPos;
iOffset[aPos&(KDeflateMaxDistance-1)]=TOffset(offset);
return offset;
}
inline TInt HDeflateHash::Next(TInt aPos,TInt aOffset) const
{return aOffset+iOffset[(aPos-aOffset)&(KDeflateMaxDistance-1)];}
// Class TDeflater
//
// generic deflation algorithm, can do either statistics and the encoder
TInt MDeflater::Match(const TUint8* aPtr,const TUint8* aEnd,TInt aPos,HDeflateHash& aHash)
{
TInt offset=aHash.First(aPtr,aPos);
if (offset>KDeflateMaxDistance)
return 0;
TInt match=0;
aEnd=Min(aEnd,aPtr+KDeflateMaxLength);
TUint8 c=*aPtr;
do
{
const TUint8* p=aPtr-offset;
if (p[match>>16]==c)
{ // might be a better match
const TUint8* m=aPtr;
for (;;)
{
if (*p++!=*m++)
break;
if (m<aEnd)
continue;
return ((m-aPtr)<<16)|offset;
}
TInt l=m-aPtr-1;
if (l>match>>16)
{
match=(l<<16)|offset;
c=m[-1];
}
}
offset=aHash.Next(aPos,offset);
} while (offset<=KDeflateMaxDistance);
return match;
}
const TUint8* MDeflater::DoDeflateL(const TUint8* aBase,const TUint8* aEnd,HDeflateHash& aHash)
//
// Apply the deflation algorithm to the data [aBase,aEnd)
// Return a pointer after the last byte that was deflated (which may not be aEnd)
//
{
const TUint8* ptr=aBase;
TInt prev=0; // the previous deflation match
do
{
TInt match=Match(ptr,aEnd,ptr-aBase,aHash);
// Extra deflation applies two optimisations which double the time taken
// 1. If we have a match at p, then test for a better match at p+1 before using it
// 2. When we have a match, add the hash links for all the data which will be skipped
if (match>>16 < prev>>16)
{ // use the previous match--it was better
TInt len=prev>>16;
SegmentL(len,prev-(len<<16));
// fill in missing hash entries for better compression
const TUint8* e=ptr+len-2;
do
{
++ptr;
if (ptr + 2 < aEnd)
aHash.First(ptr,ptr-aBase);
} while (ptr<e);
prev=0;
}
else if (match<=(KDeflateMinLength<<16))
LitLenL(*ptr); // no deflation match here
else
{ // save this match and test the next position
if (prev) // we had a match at ptr-1, but this is better
LitLenL(ptr[-1]);
prev=match;
}
++ptr;
} while (ptr+KDeflateMinLength-1<aEnd);
if (prev)
{ // emit the stored match
TInt len=prev>>16;
SegmentL(len,prev-(len<<16));
ptr+=len-1;
}
return ptr;
}
void MDeflater::DeflateL(const TUint8* aBase,TInt aLength)
//
// The generic deflation algorithm
//
{
const TUint8* end=aBase+aLength;
if (aLength>KDeflateMinLength)
{ // deflation kicks in if there is enough data
HDeflateHash* hash=HDeflateHash::NewLC(aLength);
if(hash==NULL)
Panic(EHuffmanOutOfMemory);
aBase=DoDeflateL(aBase,end,*hash);
delete hash;
}
while (aBase<end) // emit remaining bytes
LitLenL(*aBase++);
LitLenL(TEncoding::EEos); // eos marker
}
void MDeflater::SegmentL(TInt aLength,TInt aDistance)
//
// Turn a (length,offset) pair into the deflation codes+extra bits before calling
// the specific LitLen(), Offset() and Extra() functions.
//
{
aLength-=KDeflateMinLength;
TInt extralen=0;
TUint len=aLength;
while (len>=8)
{
++extralen;
len>>=1;
}
LitLenL((extralen<<2)+len+TEncoding::ELiterals);
if (extralen)
ExtraL(extralen,aLength);
//
aDistance--;
extralen=0;
TUint dist=aDistance;
while (dist>=8)
{
++extralen;
dist>>=1;
}
OffsetL((extralen<<2)+dist);
if (extralen)
ExtraL(extralen,aDistance);
}
// Class TDeflateStats
//
// This class analyses the data stream to generate the frequency tables
// for the deflation algorithm
inline TDeflateStats::TDeflateStats(TEncoding& aEncoding)
:iEncoding(aEncoding)
{}
void TDeflateStats::LitLenL(TInt aCode)
{
++iEncoding.iLitLen[aCode];
}
void TDeflateStats::OffsetL(TInt aCode)
{
++iEncoding.iDistance[aCode];
}
void TDeflateStats::ExtraL(TInt,TUint)
{}
// Class TDeflater
//
// Extends MDeflater to provide huffman encoding of the output
inline TDeflater::TDeflater(TBitOutput& aOutput,const TEncoding& aEncoding)
//
// construct for encoding
//
:iOutput(aOutput),iEncoding(aEncoding)
{}
void TDeflater::LitLenL(TInt aCode)
{
iOutput.HuffmanL(iEncoding.iLitLen[aCode]);
}
void TDeflater::OffsetL(TInt aCode)
{
iOutput.HuffmanL(iEncoding.iDistance[aCode]);
}
void TDeflater::ExtraL(TInt aLen,TUint aBits)
{
iOutput.WriteL(aBits,aLen);
}
void DoDeflateL(const TUint8* aBuf,TInt aLength,TBitOutput& aOutput,TEncoding& aEncoding)
{
// analyse the data for symbol frequency
TDeflateStats analyser(aEncoding);
analyser.DeflateL(aBuf,aLength);
// generate the required huffman encodings
Huffman::HuffmanL(aEncoding.iLitLen,TEncoding::ELitLens,aEncoding.iLitLen);
Huffman::HuffmanL(aEncoding.iDistance,TEncoding::EDistances,aEncoding.iDistance);
// Store the encoding table
Huffman::ExternalizeL(aOutput,aEncoding.iLitLen,KDeflationCodes);
// generate the tables
Huffman::Encoding(aEncoding.iLitLen,TEncoding::ELitLens,aEncoding.iLitLen);
Huffman::Encoding(aEncoding.iDistance,TEncoding::EDistances,aEncoding.iDistance);
// now finally deflate the data with the generated encoding
TDeflater deflater(aOutput,aEncoding);
deflater.DeflateL(aBuf,aLength);
aOutput.PadL(1);
}
void DeflateL(const TUint8* aBuf, TInt aLength, TBitOutput& aOutput)
{
TEncoding* encoding=new TEncoding;
HMem::FillZ(encoding,sizeof(TEncoding));
DoDeflateL(aBuf,aLength,aOutput,*encoding);
}