revert the change to rofsbuild image format, but add checking codes to prevent address overflow
/*
* Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "fatimagegenerator.h"
#include "fatcluster.h"
#include "fsnode.h"
#include "h_utl.h"
#include <memory.h>
#include <time.h>
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;
const TInt KCharsOfCmdWndLine = 80 ;
const TInt KRootEntryCount = 0x200;
const TInt KRootClusterIndex = 0;
TFatImgGenerator::TFatImgGenerator(TSupportedFatType aType ,ConfigurableFatAttributes& aAttr ) :
iType(aType),
iFatTable(0),
iFatTableBytes(0),
iTotalClusters(0),
iBytsPerClus(aAttr.iDriveClusterSize)
{
memset(&iBootSector,0,sizeof(iBootSector));
memset(&iFat32Ext,0,sizeof(iFat32Ext));
memset(&iFatHeader,0,sizeof(iFatHeader));
if(iBytsPerClus != 0){
if(iBytsPerClus > KMaxClusterBytes){
Print(EError,"Cluster size is too large!\n");
iType = EFatUnknown;
return ;
}else if(iBytsPerClus < aAttr.iDriveSectorSize){
Print(EError,"Cluster size cannot be smaller than sector size (%d)!\n", aAttr.iDriveSectorSize);
iType = EFatUnknown;
return ;
}else{
TUint32 tempSectorSize = aAttr.iDriveSectorSize;
while (tempSectorSize < iBytsPerClus){
tempSectorSize <<=1;
}
if (tempSectorSize > iBytsPerClus){
Print(EError,"Cluster size should be (power of 2)*(sector size) i.e. 512, 1024, 2048, 4096, etc!\n");
iType = EFatUnknown;
return;
}
}
}
if(aAttr.iDriveSectorSize != 512 && aAttr.iDriveSectorSize != 1024 && aAttr.iDriveSectorSize != 2048 && aAttr.iDriveSectorSize != 4096) {
Print(EError,"Sector size must be one of (512, 1024, 2048, 4096)!\n");
iType = EFatUnknown ;
return ;
}
*((TUint32*)iBootSector.BS_jmpBoot) = 0x00905AEB ;
memcpy(iBootSector.BS_OEMName,"SYMBIAN ",8);
*((TUint16 *)iBootSector.BPB_BytsPerSec) = aAttr.iDriveSectorSize;
iBootSector.BPB_NumFATs = aAttr.iDriveNoOfFATs;
iBootSector.BPB_Media = 0xF8 ;
iFatHeader.BS_DrvNum = 0x80 ;
iFatHeader.BS_BootSig = 0x29 ;
*((TUint32*)iFatHeader.BS_VolID) = aAttr.iVolumeId;
memcpy(iFatHeader.BS_VolLab,aAttr.iDriveVolumeLabel,sizeof(iFatHeader.BS_VolLab));
if(aAttr.iImageSize == 0){
if(aType == EFat32)
aAttr.iImageSize = 0x100000000LL ;// 4G
else
aAttr.iImageSize = 0x40000000LL ; // 1G
}
TUint32 totalSectors = (TUint32)((aAttr.iImageSize + aAttr.iDriveSectorSize - 1) / aAttr.iDriveSectorSize);
if(aType == EFat32) {
InitAsFat32(totalSectors,aAttr.iDriveSectorSize);
}
else if(aType == EFat16) {
InitAsFat16(totalSectors,aAttr.iDriveSectorSize);
}
if(iType == EFatUnknown) return ;
iBytsPerClus = iBootSector.BPB_SecPerClus * aAttr.iDriveSectorSize;
}
TFatImgGenerator::~TFatImgGenerator() {
if(iFatTable)
delete []iFatTable;
Interator it = iDataClusters.begin();
while(it != iDataClusters.end()){
TFatCluster* cluster = *it ;
delete cluster;
it++;
}
}
void TFatImgGenerator::InitAsFat16(TUint32 aTotalSectors,TUint16 aBytsPerSec){
TUint32 numOfClusters ;
TUint8 aSecPerClus = iBytsPerClus / aBytsPerSec;
if(aSecPerClus == 0) {
//Auto-calc the SecPerClus
// FAT32 ,Count of clusters must >= 4085 and < 65525 , however , to avoid the "off by xx" warning,
// proprositional value >= (4085 + 16) && < (65525 - 16)
if(aTotalSectors < (4085 + 16)) { //when SecPerClus is 1, numOfClusters eq to aTotalSectors
iType = EFatUnknown ;
Print(EError,"Size is too small for FAT16, please set a bigger size !\n");
return ;
}
TUint8 secPerClusMax = KMaxClusterBytes / aBytsPerSec;
numOfClusters = (aTotalSectors + secPerClusMax - 1) / secPerClusMax ;
if(numOfClusters >= (65525 - 16)) { // too big
iType = EFatUnknown ;
Print(EError,"Size is too big for FAT16, please use the FAT32 format!\n");
return ;
}
aSecPerClus = 1;
while(aSecPerClus < secPerClusMax){
numOfClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus ;
if (numOfClusters >= (4085 + 16) && numOfClusters < (65525 - 16)) {
break;
}
aSecPerClus <<= 1 ;
}
}
else {
numOfClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus;
if(numOfClusters >= (65525 - 16)){
Print(EError,"Cluster count is too big for FAT16, please use the FAT32 format or set a new bigger cluster size!\n");
iType = EFatUnknown ;
return ;
}
else if(numOfClusters < (4085 + 16)){
Print(EError,"Cluster count is too small for FAT16, please set a new smaller cluster size or set the image size bigger!\n");
iType = EFatUnknown ;
return ;
}
}
iTotalClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus ;
iFatTableBytes = ((iTotalClusters << 1) + aBytsPerSec - 1) & (~(aBytsPerSec - 1));
iFatTable = new(std::nothrow) char[iFatTableBytes];
if(!iFatTable) {
Print(EError,"Memory allocation failed for FAT16 Table!\n");
iType = EFatUnknown ;
return ;
}
memset(iFatTable,0,iFatTableBytes);
*((TUint32*)iFatTable) = 0xFFFFFFF8 ;
iBootSector.BPB_SecPerClus = aSecPerClus;
*((TUint16*)iBootSector.BPB_RsvdSecCnt) = 0x0001 ;
*((TUint16*)iBootSector.BPB_RootEntCnt) = KRootEntryCount ;
if(aTotalSectors > 0xFFFF)
*((TUint32*)iBootSector.BPB_TotSec32) = aTotalSectors;
else
*((TUint16*)iBootSector.BPB_TotSec16) = (TUint16)aTotalSectors;
TUint16 sectorsForFAT = (TUint16)((iFatTableBytes + aBytsPerSec - 1) / aBytsPerSec);
*((TUint16*)iBootSector.BPB_FATSz16) = sectorsForFAT ;
memcpy(iFatHeader.BS_FilSysType,"FAT16 ",sizeof(iFatHeader.BS_FilSysType));
}
void TFatImgGenerator::InitAsFat32(TUint32 aTotalSectors,TUint16 aBytsPerSec) {
TUint32 numOfClusters;
TUint8 aSecPerClus = iBytsPerClus / aBytsPerSec;
if(aSecPerClus == 0) {
//Auto-calc the SecPerClus
// FAT32 ,Count of clusters must >= 65525, however , to avoid the "off by xx" warning,
// proprositional value >= (65525 + 16)
if(aTotalSectors < (65525 + 16)) { //when SecPerClus is 1, numOfClusters eq to aTotalSectors
iType = EFatUnknown ;
Print(EError,"Size is too small for FAT32, please use the FAT16 format, or set the data size bigger!\n");
return ;
}
TUint8 secPerClusMax = KMaxClusterBytes / aBytsPerSec;
aSecPerClus = secPerClusMax;
while(aSecPerClus > 1){
numOfClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus ;
if (numOfClusters >= (65525 + 16)) {
break;
}
aSecPerClus >>= 1 ;
}
}
else {
numOfClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus;
if(numOfClusters < (65525 + 16)) {
Print(EError,"Cluster count is too small for FAT32, please set a new smaller cluster size or set the image size bigger or use the FAT16 format!\n");
iType = EFatUnknown ;
return ;
}
}
iTotalClusters = (aTotalSectors + aSecPerClus - 1) / aSecPerClus ;
iFatTableBytes = ((iTotalClusters << 2) + aBytsPerSec - 1) & (~(aBytsPerSec - 1));
iFatTable = new(std::nothrow) char[iFatTableBytes];
if(!iFatTable) {
Print(EError,"Memory allocation failed for FAT32 Table!\n");
iType = EFatUnknown ;
return ;
}
memset(iFatTable,0,iFatTableBytes);
TUint32* fat32table = reinterpret_cast<TUint32*>(iFatTable);
fat32table[0] = 0x0FFFFFF8 ;
fat32table[1] = 0x0FFFFFFF ;
iBootSector.BPB_SecPerClus = aSecPerClus;
iBootSector.BPB_RsvdSecCnt[0] = 0x20 ;
*((TUint32*)iBootSector.BPB_TotSec32) = aTotalSectors;
*((TUint32*)iFat32Ext.BPB_FATSz32) = (iFatTableBytes + aBytsPerSec - 1) / aBytsPerSec;
*((TUint32*)iFat32Ext.BPB_RootClus) = 2 ;
*((TUint16*)iFat32Ext.BPB_FSInfo) = 1 ;
*((TUint16*)iFat32Ext.BPB_BkBootSec) = 6 ;
memcpy(iFatHeader.BS_FilSysType,"FAT32 ",sizeof(iFatHeader.BS_FilSysType));
}
bool TFatImgGenerator::Execute(TFSNode* aRootDir , const char* aOutputFile){
if(EFatUnknown == iType)
return false ;
ofstream o(aOutputFile,ios_base::binary + ios_base::out + ios_base::trunc);
TUint32 writtenBytes = 0 ;
if(!o.is_open()) {
Print(EError,"Can not open \"%s\" for writing !\n",aOutputFile) ;
return false;
}
TUint16 bytsPerSector = *((TUint16*)iBootSector.BPB_BytsPerSec);
Interator it = iDataClusters.begin();
while(it != iDataClusters.end()){
TFatCluster* cluster = *it ;
delete cluster;
it++;
}
iDataClusters.clear();
Print(EAlways,"Filesystem ready.\nWriting Header...");
if(EFat16 == iType){
char* header = new(std::nothrow) char[bytsPerSector];
if(!header){
Print(EError,"Can not allocate memory for FAT16 header!\n");
o.close();
return false ;
}
int offset = 0;
memcpy(header,&iBootSector,sizeof(iBootSector));
offset = sizeof(iBootSector);
memcpy(&header[offset],&iFatHeader,sizeof(iFatHeader));
offset += sizeof(iFatHeader);
memset(&header[offset],0,bytsPerSector - offset);
*((TUint16*)(&header[510])) = 0xAA55 ;
o.write(header,bytsPerSector);
writtenBytes += bytsPerSector;
delete []header ;
TUint16 rootDirSectors = (KRootEntryCount * 32) / bytsPerSector ;
TUint16 rootDirClusters = (rootDirSectors + iBootSector.BPB_SecPerClus - 1) /iBootSector.BPB_SecPerClus;
TUint32 rootDirBytes = KRootEntryCount * 32;
TFatCluster* rootDir = new(std::nothrow) TFatCluster(0,rootDirClusters);
rootDir->Init(rootDirBytes);
iDataClusters.push_back(rootDir);
aRootDir->WriteDirEntries(KRootClusterIndex,rootDir->GetData());
TUint index = 2 ;
Print(EAlways," OK.\nPreparing cluster list...");
TFSNode* child = aRootDir->GetFirstChild() ;
while(child){
if(!PrepareClusters(index,child)){
Print(EAlways," Failed.\nError:Image size is expected to be big enough for all the files.\n");
return false ;
}
child = child->GetSibling() ;
}
}
else if(EFat32 == iType){
TUint headerSize = ( bytsPerSector << 5 ); // 32 reserved sectors for fat32
char* header = new(std::nothrow) char[headerSize];
if(!header){
Print(EError,"Can not allocate memory for FAT32 header!\n");
o.close();
return false ;
}
memset(header,0,headerSize);
int offset = 0;
memcpy(header,&iBootSector,sizeof(iBootSector));
offset = sizeof(iBootSector);
memcpy(&header[offset],&iFat32Ext,sizeof(iFat32Ext));
offset += sizeof(iFat32Ext);
memcpy(&header[offset],&iFatHeader,sizeof(iFatHeader));
offset += sizeof(iFatHeader);
TFAT32FSInfoSector* fsinfo = reinterpret_cast<TFAT32FSInfoSector*>(&header[bytsPerSector]);
*((TUint32*)fsinfo->FSI_LeadSig) = 0x41615252 ;
*((TUint32*)fsinfo->FSI_StrucSig) = 0x61417272 ;
memset(fsinfo->FSI_Free_Count,0xFF,8);
char* tailed = header + 510 ;
for(int i = 0 ; i < 32 ; i++ , tailed += bytsPerSector )
*((TUint16*)tailed) = 0xAA55 ;
TUint index = 2 ;
Print(EAlways," OK.\nPreparing cluster list...");
if(!PrepareClusters(index,aRootDir)) {
Print(EAlways," Failed.\nERROR: Image size is expected to be big enough for all the files.\n");
delete []header ;
return false;
}
*(TUint32*)(fsinfo->FSI_Free_Count) = iTotalClusters - index + 3;
*(TUint32*)(fsinfo->FSI_Nxt_Free) = index ;
// write bakup boot sectors
memcpy(&header[bytsPerSector * 6],header,(bytsPerSector << 1));
o.write(header,headerSize);
writtenBytes += headerSize;
delete []header ;
}
//iDataClusters.sort();
it = iDataClusters.end() ;
it -- ;
int clusters = (*it)->GetIndex() + (*it)->ActualClusterCount() - 1;
Print(EAlways," OK.\n%d clusters of data need to be written.\nWriting Fat table...",clusters);
for(TUint8 w = 0 ; w < iBootSector.BPB_NumFATs ; w++){
o.write(iFatTable,iFatTableBytes);
if(o.bad() || o.fail()){
Print(EAlways,"\nERROR:Writting failed. Please check the filesystem\n");
delete []iFatTable,
o.close();
return false ;
}
writtenBytes += iFatTableBytes;
}
char* buffer = new(std::nothrow) char[KBufferedIOBytes];
if(!buffer){
Print(EError,"Can not allocate memory for I/O buffer !\n");
o.close();
return false ;
}
o.flush();
Print(EAlways," OK.\nWriting clusters data...");
int bytesInBuffer = 0;
int writeTimes = 24;
TFatCluster* lastClust = 0 ;
for(it = iDataClusters.begin(); it != iDataClusters.end() ; it++ ){
TFatCluster* cluster = *it ;
TUint fileSize = cluster->GetSize();
TUint toProcess = cluster->ActualClusterCount() * iBytsPerClus ;
if(toProcess > KBufferedIOBytes){ // big file
if(bytesInBuffer > 0){
o.write(buffer,bytesInBuffer);
if(o.bad() || o.fail()){
Print(EError,"Writting failed.\n");
delete []buffer,
o.close();
return false ;
}
writtenBytes += bytesInBuffer;
bytesInBuffer = 0;
Print(EAlways,".");
writeTimes ++ ;
if((writeTimes % KCharsOfCmdWndLine) == 0){
o.flush();
cout << endl ;
}
}
if(cluster->IsLazy()){
ifstream ifs(cluster->GetFileName(), ios_base::binary + ios_base::in);
if(!ifs.is_open()){
Print(EError,"Can not open file \"%s\"\n",cluster->GetFileName()) ;
o.close();
delete []buffer;
return false ;
}
if(!ifs.good()) ifs.clear();
TUint processedBytes = 0 ;
while(processedBytes < fileSize){
TUint ioBytes = fileSize - processedBytes ;
if(ioBytes > KBufferedIOBytes)
ioBytes = KBufferedIOBytes;
ifs.read(buffer,ioBytes);
processedBytes += ioBytes;
o.write(buffer,ioBytes);
if(o.bad() || o.fail()){
Print(EError,"Writting failed.\n");
delete []iFatTable,
o.close();
return false ;
}
writtenBytes += ioBytes;
Print(EAlways,".");
writeTimes ++ ;
if((writeTimes % KCharsOfCmdWndLine) == 0){
o.flush();
Print(EAlways,"\n") ;
}
}
TUint paddingBytes = toProcess - processedBytes;
if( paddingBytes > 0 ){
memset(buffer,0,paddingBytes);
o.write(buffer,paddingBytes);
if(o.bad() || o.fail()){
Print(EError,"Writting failed.\n");
delete []buffer,
o.close();
return false ;
}
writtenBytes += paddingBytes;
}
ifs.close();
}
else {
// impossible
Print(EError,"Unexpected result!\n");
o.close();
delete []buffer;
return false ;
}
}
else {
if(toProcess > (KBufferedIOBytes - bytesInBuffer)){
o.write(buffer,bytesInBuffer);
if(o.bad() || o.fail()){
Print(EError,"Writting failed.\n");
delete []buffer,
o.close();
return false ;
}
writtenBytes += bytesInBuffer;
Print(EAlways,".");
writeTimes ++ ;
if((writeTimes % KCharsOfCmdWndLine) == 0){
o.flush();
cout << endl ;
}
bytesInBuffer = 0;
}
if(cluster->IsLazy()){
ifstream ifs(cluster->GetFileName(), ios_base::binary + ios_base::in);
if(!ifs.is_open()){
Print(EError,"Can not open file \"%s\"\n",cluster->GetFileName()) ;
o.close();
delete []buffer;
return false ;
}
if(!ifs.good()) ifs.clear();
ifs.read(&buffer[bytesInBuffer],fileSize);
bytesInBuffer += fileSize;
if(toProcess > fileSize) { // fill padding bytes
memset(&buffer[bytesInBuffer],0,toProcess - fileSize);
bytesInBuffer += (toProcess - fileSize);
}
ifs.close();
}
else{
if(toProcess != cluster->GetSize() && cluster->GetIndex() != KRootClusterIndex){
Print(EError,"Unexpected size!\n");
o.close();
delete []buffer;
return false ;
}
memcpy(&buffer[bytesInBuffer],cluster->GetData(),cluster->GetSize());
bytesInBuffer += cluster->GetSize();
}
}
lastClust = cluster ;
}
if(bytesInBuffer > 0){
o.write(buffer,bytesInBuffer);
if(o.bad() || o.fail()){
Print(EError,"Writting failed.\n");
delete []buffer,
o.close();
return false ;
}
writtenBytes += bytesInBuffer;
o.flush();
}
Print(EAlways,"\nDone.\n\n");
o.close();
return true ;
}
bool TFatImgGenerator::PrepareClusters(TUint& aNextClusIndex,TFSNode* aNode) {
TUint sizeOfItem = aNode->GetSize();
TUint clusters = (sizeOfItem + iBytsPerClus - 1) / iBytsPerClus;
if(iTotalClusters < aNextClusIndex + clusters)
return false ;
TUint16* fat16Table = reinterpret_cast<TUint16*>(iFatTable);
TUint32* fat32Table = reinterpret_cast<TUint32*>(iFatTable);
for(TUint i = aNextClusIndex + clusters - 1 ; i > aNextClusIndex ; i--){
if(iType == EFat16)
fat16Table[i - 1] = i ;
else
fat32Table[i - 1] = i ;
}
if(iType == EFat16)
fat16Table[aNextClusIndex + clusters - 1] = 0xffff ;
else
fat32Table[aNextClusIndex + clusters - 1] = 0x0fffffff ;
TFatCluster* cluster = new TFatCluster(aNextClusIndex,clusters);
if(aNode->IsDirectory()) {
TUint bytes = clusters * iBytsPerClus ;
cluster->Init(bytes);
aNode->WriteDirEntries(aNextClusIndex,cluster->GetData());
}
else {
cluster->LazyInit(aNode->GetPCSideName(),sizeOfItem);
aNode->WriteDirEntries(aNextClusIndex,NULL);
}
iDataClusters.push_back(cluster);
aNextClusIndex += clusters;
if(aNode->GetFirstChild()){
if(!PrepareClusters(aNextClusIndex,aNode->GetFirstChild()))
return false ;
}
if(aNode->GetSibling()){
if(!PrepareClusters(aNextClusIndex,aNode->GetSibling()))
return false;
}
return true ;
}