[image: image1.png]symbian

how to use symport
	
	
	
	

	Security Classification:
	Confidential - Symbian
	Team/Department:
	Licensee Technical Consulting

	Document Reference:
	SGL.XXXnnn.nnn
	Author(s):
	Peter Harper

	Status:
	Draft
	Owner(s):
	Peter Harper

	Version:
	0.1
	Approver(s)
	Alex Rothwell

	Last Revised Date:
	17/10/2008
	
	

	
	
	
	

Use File > Properties to edit document information

how to use symport
[image: image2.png]symbian

SGL.XXXnnn.nnn
Confidential - Symbian
Draft v0.1

11
Introduction

11.1
Rationale

12
Quick Guide

22.1
Other Details

33
Build Tools

33.1
Template Extension Makefile (TEM) Limitations

43.2
Function Like Makefiles (FLM) Advantages

44
Debugging

55
Compatibility

56
Testing

66.1
Test Details

66.1.1
symport\bldtest\test.pl

66.1.2
symport\symuser\test.pl

76.1.3
symport\symfile\test.pl

76.2
Code Coverage

1
Introduction

SYMPORT is a port of parts of the Symbian OS base code to Windows and Linux to enable us to write standalone tools that uses Symbian code. For example it enables us to reuse store and dbms code in tools to generate files in opaque data formats like these. This document is for anyone who wants to understand more about SYMPORT or use it to write or build tools.
1.1 Rationale

Previously the only way of generating some Symbian OS data files was using the emulator. The emulator is far from ideal for a number of reasons.

1. It’s complicated to use and hard to automate.
2. It’s a collection of lots of files which makes distribution difficult.

3. It’s unsupported on Linux and problematic to use in the build.
The difficulties of writing tools meant that some data formats could not be generated. This complicated the variant creation chain as variant engineers had to manually use the emulator to generate content intended for device ROM’s.

SYMPORT should enable us to write useable standalone tools that don’t rely on the emulator and have none of the limitations of the emulator.
2 Quick Guide

SYMPORT is just a collection of libraries and build machinery to enable you to build tools using Symbian-like C++ code. It makes use of the TOOLS2 build platform which in turn uses the MINGW GCC compiler on Windows to build native Windows binaries. This has the advantage that the build environment is very similar on Linux allowing us to generate Linux tools quite easily. The following debug and release libraries are provided in \epoc32\release\tools2.
	Library
	Purpose

	libsymuser.a
	A static library that contains some useful bits of the Symbian EUSER library including descriptors and arrays.

	libsymfile.a
	A static library providing a limited implementation of the Symbian RFs and RFile interfaces to enable Symbian code to access the native file system.

	libsymport.dll
	A DLL version of the above symuser and symfile libraries. You should use this if you’re not building standalone exe tools.

	libsymport.a
	Import library for libsymport.dll. This is only needed for the old build system to avoid build order dependencies.

	libsymexestub.a
	A static library which is automatically used for building executables. You shouldn’t have to worry about this.

To build Symbian code into a native exe you have to use a build extension in a bld.inf file.
PRJ_PLATFORMS

TOOLS2

PRJ_EXTENSIONS

#ifdef TOOLS2

start extension tools/x86tool

option TARGET_NAME helloworld

option TARGET_TYPE exe

option SOURCE helloworld.cpp

option LIBS symfile symuser

end

#endif

To build the code use the normal build commands

bldmake bldfiles

abld build tools2 deb

or

sbs -c tools2_deb

This will build “\epoc32\release\tools2\deb\helloworld.exe” on Windows and “\epoc32\release\tools2\linux_386\deb\helloworld” on Linux. You can run these executables as native programs on Windows and Linux. Console output is sent to the standard out stream.
The LIBS line specifies that the tool should link to the static library versions of symuser and symfile. You could instead link to symport.dll by replacing this line with “option SHARED_LIBS symport” – in which case the symport.dll will have to be distributed with the tool.
2.1 Other Details

1. The SymInit function is provided in symuser to initialise certain globals needed. This is called from the main function in symexestub before E32Main is called. If you provide your own main function then you should call SymInit somewhere in here before calling any API’s which may rely on these globals.

2. Special logic has been added so that if a filename starting with “\epoc32” is encountered the EPOCROOT environment variable is used to refer to the epoc32 folder. This allows test code to export files into the epoc32 tree and refer to their location reliably in SYMPORT code.

3. Symport.dll exports a function SymPortVersion() which returns the version of the DLL. There might be a need for this in future.

3 Build Tools

SYMPORT currently uses a build extension called tools/x86tool. The name is somewhat historical, referring to the fact that the port reuses the X86 build configuration of the base code. Both old format TEM and new format FLM build extensions are provided. If you are using SBSv2 you should use the FLM as it’s quicker and avoids many of the problems that TEM’s suffer from. The following extension parameters are supported.
	Parameter
	Purpose

	TARGET_NAME
	The name of the thing you’re building. It’s suggested that you don’t supply a file extension in TARGET_NAME in which case an appropriate extension will be chosen taking into account the differences in conventions between Windows and Linux.

	TARGET_TYPE
	Supported target types are exe, dll or lib (all lowercase). The type is used to determine the file extension of the target.

	MACROS
	Macros to define at compile time.

	INCLUDES
	Extra include folders to use. Paths are relative to the bld.inf.

	SOURCE
	The source code to be compiled into the target. The path to these files should be specified relative to the bld.inf unless a SOURCE_FOLDER is specified.

	SOURCE_DIRS
	You can use this to add all the *.cpp files in the specified folders to the target. The paths are relative to the bld.inf

	SOURCE_FOLDER
	By default SOURCE file locations are relative to the bld.inf. Specify a SOURCE_FOLDER to change the folder from which the SOURCE files are found.

	LIBS
	Static libraries to link into the target. Note that order is significant to GCC. For example the static library symfile needs the symuser static library – so symuser should be specified last to ensure all externals are resolved.
Note that library names should be specified without the initial “lib” or trailing “.a” extension.

	SHARED_LIBS
	Shared libraries (shared objects on Linux, dynamic link libraries on Windows) to link into the target.

Note that the names should be specified without the initial “lib” or trailing “.dll” or “.lib” or “.so” extension.

3.1 Template Extension Makefile (TEM) Limitations
For compatibility reasons to ensure you can build code using the old and new build systems a TEM is provided in \epoc32\tools\makefile_templates\tools\x86tool.mk. However a TEM is self contained and has no knowledge of how to make external prerequisites required to build the code in the TEM.

For the old build system static libraries are compiled during the LIBRARY phase so avoiding any build order dependency. However DLL’s need to be linked at the TARGET stage which introduces a link order dependency on any component that links to these DLL’s
. To avoid this problem the import library for any SYMPORT DLL’s should be stored in source control and exported to the correct location in \epoc32\release\tools2\deb (or rel).
Similar problems exist for the new build system, but as parallel builds are possible it’s more likely that build order dependencies will cause a problem. Even a build on a single PC may exhibit problems as many build jobs may be executing at the same time on multi-processor machines. You can avoid these issues by pre-generating import libraries or sticking to using only static libraries. Alternatively use the FLM provided which does not suffer from any of these problems.
3.2 Function Like Makefiles (FLM) Advantages

When building on Linux
 or Windows using the new build system (SBSv2) it’s suggested that the FLM is used. FLM’s are fully integrated with the makefile based build system meaning you don’t have to worry about build order dependencies. If an EXE links to a DLL the build system knows that it must generate the DLL first. As FLM’s specify their dependencies the build system knows which tasks is can parallelise – which leads to much quicker build times.
Import libraries are not required when using the FLM – the DLL/SO’s contain all the information needed to resolve external symbols when linking.

The disadvantage of FLM’s is that they are only supported for the new build system.
4 Debugging

You can debug TOOLS2 code using Eclipse and GDB. The following instructions are only relevant to Windows.

Symbian provide the MinGW GCC compiler in the epoc tree but not GDB. For some reason Carbide cannot be used to debug standard C++ code so the vanilla Eclipse IDE must be installed.

1. First of all download the Eclipse IDE for C/C++ Developers from http://www.eclipse.org/downloads/ It's a zip file, so just unzip to an appropriate place. The following instructions were written with Eclipse 3.3.1.1.
2. To debug you will need to install GDB from http://www.mingw.org/download.shtml Version 6.3.2 seems to work okay.

3. When creating/importing new projects in Eclipse you need to manually select the MinGW toolchain.

4. Once the project is loaded, the build command needs to be pointed at the MinGW compiler within the epoc tree. This is set to “\epoc32\gcc_mingw\bin\g++” in the “GCC C++ Compiler” and “MinGW C++ Linker” sections of the project properties. You may also need to set the location of the GCC archiver if you are building a static library “\epoc32\gcc_mingw\bin\ar”.

5. In the pre-processor settings the following symbols need to be defined.

· __SYMBIAN32__

· __GCC32__

· __EPOC32__

· __X86__

· _DEBUG

· _UNICODE

· __SUPPORT_CPP_EXCEPTIONS__

· __TOOLS2__

· '__PRODUCT_INCLUDE__="\epoc32\include\variant\Symbian_OS.hrh"' or for S60 '__PRODUCT_INCLUDE__="\epoc32\include\oem\bldvariant.hrh"'
6. The include paths should at least include the following – note that the order IS significant as the x86tool folder includes some modified header files that must be found before those in /epoc32/include.
· /epoc32/include/x86tool

· /epoc32/include

7. In the miscellaneous options add the following to the value for “Other flags”

· -include /epoc32/include/x86tool/x86tool.h
8. For the MinGW Linker set the library search paths to “\epoc32\release\tools2\deb”. You need to link to the SYMPORT static libraries.

· symfile

· symuser

· symexestub

9. Choose Run->Open Debug Dialog and on the debugger tab make sure the GDB debugger path is correct, e.g. c:\MinGW\bin\gdb.exe and make sure the Debugger is set as MinGW gdb Debugger.
5 Compatibility
SYMPORT only contains an implementation of API’s that don’t rely on the kernel. In particular it doesn’t support RProcess, RThread, TRequestStatus, CActive, CActiveScheduler (or any asynchronous API’s), CServer, RSession, RChunk, RHeap, RProperty or any functionality that depends on these API’s.

There are some issues with compatibility mostly related to the differences between Windows and Linux.

1. There’s no concept of file sharing and files are opened in a mode similar to the EFileShareAny.

2. In some error situations KErrNotFound is returned rather than KErrPathNotFound.
3. You can’t set the session path to a non-existing location as you can in Symbian OS.

4. You can’t delete the session path directory as you can in Symbian OS.

5. In some error situations KErrAccessDenied is returned instead of KErrInUse or KErrBadName.

6. Setting the session path affects all RFs sessions.

7. On Linux drive specifiers (e.g. c:\somefile) are ignored and replaced with the location of the home directory (e.g. /home/peterh/somefile). The code automatically takes care of forward/backslash differences.
8. On Linux you can delete open files. This is intentional for security reasons.

9. On Linux all filenames are forced to lower case to avoid any issues with case sensitivity.

10. File system access restrictions are not avoided – so attempts to write to root will probably fail.

11. On Linux you have shared objects with an *.so file extension by default rather than *.dll’s. Executables don’t have *.exe file extension on Linux.

6 Testing
SYMPORT is tested using ported test code whenever possible. All the tests are standard Symbian RTest test harnesses. You can build the test code using the standard build commands…
bldmake bldfiles

abld test build tools2

or

sbs -c tools2.test

For simplicity perl test code is provided to automate build and execution of the tests and analysis of the results. This uses the standard Perl “Test” and “Test::Harness” modules. All tests are executed for DEBUG and RELEASE.
	Tests
	Purpose

	symport\bldtest\test.pl
	Tests the TEM and FLM build system extension makefiles.

	symport\symuser\test.pl
	Tests the user library by executing ported E32TEST test code.

	symport\symfile\test.pl
	Tests the implementation of the RFile and RFs interfaces.

	symport\group\test.pl
	Executes all the above tests. Run this to test the whole of SYMPORT.

6.1 Test Details
This section describes in more detail what each group of tests actually does.
6.1.1 symport\bldtest\test.pl

The purpose of this test code is to test the TEM and FLM build extensions.

1. It build some simple test code consisting of a LIB, DLL and EXE using the FLM with SBSv2, checks all the files exist and the test code executes without failing.

2. It rebuilds the test code using SBSv2 with the TEM, checks all the files exist and the test code executes without failing.

3. It rebuilds the test code using SBSv1 and the TEM, checks all the files exist and the test code executes without failing. This test is disabled on Linux as the SBSv1 is not supported.

4. After each build a CLEAN is performed to check that all the files are actually deleted.

The FLM must exist for these tests to pass. Check the following files exist…

dir /S /b "%SBS_HOME%\lib\flm\x86tool*"

C:\Symbian\SITK\sbs\lib\flm\x86tool.xml

C:\Symbian\SITK\sbs\lib\flm\tools\x86tool.flm

If necessary you can copy these files to the right place with the following commands.

cd symport/flm

perl export.pl -v
6.1.2 symport\symuser\test.pl

The purpose of these tests is to test the ported EUSER code. These tests are ported from E32TEST with minor modifications to get them to run on TOOLS2 for Windows and Linux. E32TEST’s are well documented – see the in-source documentation for fuller details.
	E32TEST
	Functionality Tested

	buffer\t_bflat
	Test all aspects of the CBufFlat class.

	buffer\t_bseg
	Test all aspects of the CBufSeg class.

	buffer\t_buf
	Test methods of the TBuf16, TBuf8, TBuf template class.

	buffer\t_rbuf
	Test methods of the RBuf16, RBuf8, RBuf template class.

	buffer\t_char
	Test TChar, TCharF, TChaLC and TCharUC character classes.

	buffer\t_circ
	Test methods of CCirBuffer and CCirBuf template class.

	buffer\t_collate
	Test Unicode collations.

	buffer\t_des
	Test methods of the TDes template class.

	buffer\t_farray
	Test the functionality of CArrayFixFlat, CArrayPtrFlat, CArrayFixSeg classes.

	buffer\t_func
	Comprehensive test for the Mem, Des and integer divide routines.

Check memory for a large variation of buffer sizes and alignments,

Check all the optimizations made in the copying/filling code.

	buffer\t_graph
	Test the TPoint, TSize, TRect class.

	buffer\t_key
	Test arrays keys against flat and segmented arrays of characters (8 and 16 bit) and records.

	buffer\t_lex
	Test TLex and TLexMark classes.

	buffer\t_match
	Test the match methods of TPtrC8 and TPtrC16 objects and the TCharIterator TCombiningCharIterator, TCollationValueIterator and TCollationRawValueIterator classes.

	buffer\t_parray
	Test the variable record length array classes.

	buffer\t_que
	Test double linked list functionality.

	buffer\t_readar
	Test the CArrayFixFlat, CArrayPakFlat, CArrayVarFlat classes.

	buffer\t_regn
	Test fixed and variable clipping regions.

	buffer\t_sque
	Test single linked list functionality.

	buffer\t_varray
	Test variable record length array classes.

	buffer\t_versio
	Test the version information class.

	buffer\t_hashtab
	Hash table tests.

	buffer\T_FoldPerf
	Unicode folding performance tests

	buffer\t_huff
	Test methods of the Huffman, TBitInput and TBitOutput classes.

	math\t_float
	Test conversion of real to descriptors, descriptors to real and the Math::Round method.

	math\t_i64
	Test 64-bit integer functionality.

	math\t_i64_2
	Test 64-bit integer functionality.

	math\t_math
	Test routines for the maths functions

	math\t_math2
	Test accuracy of functions in the maths library.

	system\t_trap
	Test TRAP, Leave and Assert

	system\t_ctrap
	Test the CCleanup, CTrapCleanup and TAutoClose classes

6.1.3 symport\symfile\test.pl

These tests check the implementation of the RFs and RFile interfaces is correct and compatible with Symbian OS.
· There’s one test harness which tests all the ported functions in RFs, TParse, TFileText and RFile. Ported F32TEST code has been reused where appropriate.
· On Windows the test code is compiled for WINSCW and executed in the emulator to check compatibility.
· Substitution of EPOCROOT in file paths and the handling of drive specifiers on Linux is checked.

· The test code is built using both the static libraries and the symport.dll.
6.2 Test Code Coverage

Test code coverage is measured using the GCC GCOV code coverage tool. The code is built with code coverage enabled and then all the tests are run. This suggests that the test code gives us the following coverage.
	Component
	Test coverage / LOC
	Test coverage / %

	symuser
	49331 / 58190
	84.78

	symfile
	5118 / 5590
	91.56

Test code statistic are generated and collected automatically using the following command.

cd symport\group

perl test.pl -coverage

� Symbian code avoids this problem by using DEF files to generate import libraries at the LIBRARY stage. However this complicates the build process and there are issues with the GCC DLLTOOL preventing us using such an approach for SYMPORT.

� SBSv2 is the only build system that works on Linux.

Copyright © Symbian Software Ltd. 2008.
Confidential - Symbian
Page 1 of 8
All rights reserved
Copyright © Symbian Software Ltd. 2008.
Confidential - Symbian
Page 2 of 8
All rights reserved

[image: image3.png]symbian

_1139388098

_1139388101

