symport/e32/euser/epoc/x86/uc_realx.cia
author jjkang
Fri, 11 Jun 2010 15:22:09 +0800
changeset 2 806186ab5e14
parent 1 0a7b44b10206
permissions -rw-r--r--
Change SFL to EPL

// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\epoc\x86\uc_realx.cia
// 
//


#include "u32std.h"
#include <e32math.h>


void TRealXPanic(TInt aErr);

LOCAL_C __NAKED__ void TRealXPanicEax(void)
	{
	asm("push eax");
	asm("call %a0": : "i"(&TRealXPanic));
	}

LOCAL_C __NAKED__ void TRealXRealIndefinite(void)
	{
	// return 'real indefinite' NaN in ecx,edx:ebx
	asm("mov ecx, 0xFFFF0001");	// exponent=FFFF, sign negative
	asm("mov edx, 0xC0000000"); // mantissa=C0000000 00000000
	asm("xor ebx, ebx");
	asm("mov eax, -6"); // return KErrArgument
	asm("ret");
	}

LOCAL_C __NAKED__ void TRealXBinOpNaN(void)
	{
	// generic routine to process NaN's in binary operations
	// destination operand in ecx,edx:eax
	// source operand at [esi]

	asm("mov eax, [esi+8]");			// source operand into eax,edi:ebp
	asm("mov edi, [esi+4]");
	asm("mov ebp, [esi]");
	asm("cmp ecx, 0xFFFF0000");			// check if dest is a NaN
	asm("jb short TRealXBinOpNaN1");	// if not, swap them
	asm("cmp edx, 0x80000000");
	asm("jne short TRealXBinOpNaN2");
	asm("test ebx, ebx");
	asm("jne short TRealXBinOpNaN2");
	asm("TRealXBinOpNaN1:");			// swap the operands
	asm("xchg ecx, eax");
	asm("xchg edx, edi");
	asm("xchg ebx, ebp");
	asm("TRealXBinOpNaN2:");
	asm("cmp eax, 0xFFFF0000");			// check if both operands are NaNs
	asm("jb short TRealXBinOpNaN4");	// if not, ignore non-NaN operand
	asm("cmp edi, 0x80000000");
	asm("jne short TRealXBinOpNaN3");
	asm("test ebp, ebp");
	asm("je short TRealXBinOpNaN4");
	asm("TRealXBinOpNaN3:");			// if both operands are NaN's, compare significands
	asm("cmp edx, edi");
	asm("ja short TRealXBinOpNaN4");
	asm("jb short TRealXBinOpNaN5");
	asm("cmp ebx, ebp");
	asm("jae short TRealXBinOpNaN4");
	asm("TRealXBinOpNaN5:");			// come here if dest is smaller - copy source to dest
	asm("mov ecx, eax");
	asm("mov edx, edi");
	asm("mov ebx, ebp");
	asm("TRealXBinOpNaN4:");			// NaN with larger significand is in ecx,edx:ebx
	asm("or edx, 0x40000000");			// convert an SNaN to a QNaN
	asm("mov eax, -6");					// return KErrArgument
	asm("ret");
	}

// Add TRealX at [esi] + ecx,edx:ebx
// Result in ecx,edx:ebx
// Error code in eax
// Note:	+0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
//			+/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
LOCAL_C __NAKED__ void TRealXAdd()
	{
	asm("xor ch, ch");				// clear rounding flags
	asm("cmp ecx, 0xFFFF0000");		// check if dest=NaN or infinity
	asm("jnc addfpsd");				// branch if it is
	asm("mov eax, [esi+8]");		// fetch sign/exponent of source
	asm("cmp eax, 0xFFFF0000");		// check if source=NaN or infinity
	asm("jnc addfpss");				// branch if it is
	asm("cmp eax, 0x10000");		// check if source=0
	asm("jc addfp0s");				// branch if it is
	asm("cmp ecx, 0x10000");		// check if dest=0
	asm("jc addfp0d");				// branch if it is
	asm("and cl, 1");				// clear bits 1-7 of ecx
	asm("and al, 1");				// clear bits 1-7 of eax
	asm("mov ch, cl");
	asm("xor ch, al");				// xor of signs into ch bit 0
	asm("add ch, ch");
	asm("or cl, ch");				// and into cl bit 1
	asm("or al, ch");				// and al bit 1
	asm("xor ch, ch");				// clear rounding flags
	asm("mov ebp, [esi]");			// fetch source mantissa 0-31
	asm("mov edi, [esi+4]");		// fetch source mantissa 32-63
	asm("ror ecx, 16");				// dest exponent into cx
	asm("ror eax, 16");				// source exponent into ax
	asm("push ecx");				// push dest exponent/sign
	asm("sub cx, ax");				// cx = dest exponent - source exponent
	asm("je short addfp3b");		// if equal, no shifting required
	asm("ja short addfp1");			// branch if dest exponent >= source exponent
	asm("xchg ebx, ebp");			// make sure edi:ebp contains the mantissa to be shifted
	asm("xchg edx, edi");			
	asm("xchg eax, [esp]");			// and larger exponent and corresponding sign is on the stack
	asm("neg cx");					// make cx positive = number of right shifts needed
	asm("addfp1:");
	asm("cmp cx, 64");				// if more than 64 shifts needed
	asm("ja addfp2");				// branch to output larger number
	asm("jb addfp3");				// branch if <64 shifts
	asm("mov eax, edi");			// exactly 64 shifts needed - rounding word=mant high
	asm("test ebp, ebp");			// check bits lost
	asm("jz short addfp3a");
	asm("or ch, 1");				// if not all zero, set rounded-down flag
	asm("addfp3a:");
	asm("xor edi, edi");			// clear edx:ebx
	asm("xor ebp, ebp");			
	asm("jmp short addfp5");		// finished shifting
	asm("addfp3b:");				// exponents equal
	asm("xor eax, eax");			// set rounding word=0
	asm("jmp short addfp5");
	asm("addfp3:");
	asm("cmp cl, 32");				// 32 or more shifts needed ?
	asm("jb short addfp4");			// skip if <32
	asm("mov eax, ebp");			// rounding word=mant low
	asm("mov ebp, edi");			// mant low=mant high
	asm("xor edi, edi");			// mant high=0
	asm("sub cl, 32");				// reduce count by 32
	asm("jz short addfp5");			// if now zero, finished shifting
	asm("shrd edi, eax, cl");		// shift ebp:eax:edi right by cl bits
	asm("shrd eax, ebp, cl");		//
	asm("shr ebp, cl");				//
	asm("test edi, edi");			// check bits lost in shift
	asm("jz short addfp5");			// if all zero, finished
	asm("or ch, 1");				// else set rounded-down flag
	asm("xor edi, edi");			// clear edx again
	asm("jmp short addfp5");		// finished shifting
	asm("addfp4:");					// <32 shifts needed now
	asm("xor eax, eax");			// clear rounding word initially
	asm("shrd eax, ebp, cl");		// shift edi:ebp:eax right by cl bits
	asm("shrd ebp, edi, cl");		//
	asm("shr edi, cl");				//

	asm("addfp5:");
	asm("mov [esp+3], ch");			// rounding flag into ch image on stack
	asm("pop ecx");					// recover sign and exponent into ecx, with rounding flag
	asm("ror ecx, 16");				// into normal position
	asm("test cl, 2");				// addition or subtraction needed ?
	asm("jnz short subfp1");		// branch if subtraction
	asm("add ebx,ebp");				// addition required - add mantissas
	asm("adc edx,edi");				//
	asm("jnc short roundfp");		// branch if no carry
	asm("rcr edx,1");				// shift carry right into mantissa
	asm("rcr ebx,1");				//
	asm("rcr eax,1");				// and into rounding word
	asm("jnc short addfp5a");
	asm("or ch, 1");				// if 1 shifted out, set rounded-down flag
	asm("addfp5a:");
	asm("add ecx, 0x10000");		// and increment exponent

	// perform rounding based on rounding word in eax and rounding flag in ch
	asm("roundfp:");
	asm("cmp eax, 0x80000000");		
	asm("jc roundfp0");				// if rounding word<80000000, round down
	asm("ja roundfp1");				// if >80000000, round up
	asm("test ch, 1");
	asm("jnz short roundfp1");		// if rounded-down flag set, round up
	asm("test ch, 2");
	asm("jnz short roundfp0");		// if rounded-up flag set, round down
	asm("test bl, 1");				// else test mantissa lsb
	asm("jz short roundfp0");		// round down if 0, up if 1 [round to even]
	asm("roundfp1:");				// Come here to round up
	asm("add ebx, 1");				// increment mantissa
	asm("adc edx,0");				//
	asm("jnc roundfp1a");			// if no carry OK
	asm("rcr edx,1");				// else shift carry into mantissa [edx:ebx=0 here]
	asm("add ecx, 0x10000");		// and increment exponent
	asm("roundfp1a:");
	asm("cmp ecx, 0xFFFF0000");		// check for overflow
	asm("jae short addfpovfw");		// jump if overflow
	asm("mov ch, 2");				// else set rounded-up flag
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	asm("roundfp0:");				// Come here to round down
	asm("cmp ecx, 0xFFFF0000");		// check for overflow
	asm("jae short addfpovfw");		// jump if overflow
	asm("test eax, eax");			// else check if rounding word zero
	asm("jz short roundfp0a");		// if so, leave rounding flags as they are
	asm("mov ch, 1");				// else set rounded-down flag
	asm("roundfp0a:");				
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	asm("addfpovfw:");				// Come here if overflow occurs
	asm("xor ch, ch");				// clear rounding flags, exponent=FFFF
	asm("xor ebx, ebx");
	asm("mov edx, 0x80000000");		// mantissa=80000000 00000000 for infinity
	asm("mov eax, -9");				// return KErrOverflow
	asm("ret");

	// exponents differ by more than 64 - output larger number
	asm("addfp2:");					
	asm("pop ecx");					// recover exponent and sign
	asm("ror ecx, 16");				// into normal position
	asm("or ch, 1");				// set rounded-down flag
	asm("test cl, 2");				// check if signs the same
	asm("jz addfp2a");
	asm("xor ch, 3");				// if not, set rounded-up flag
	asm("addfp2a:");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// signs differ, so must subtract mantissas
	asm("subfp1:");
	asm("add ch, ch");				// if rounded-down flag set, change it to rounded-up
	asm("neg eax");					// subtract rounding word from 0
	asm("sbb ebx, ebp");			// and subtract mantissas with borrow
	asm("sbb edx, edi");			//
	asm("jnc short subfp2");		// if no borrow, sign is correct
	asm("xor cl, 1");				// else change sign of result
	asm("shr ch, 1");				// change rounding back to rounded-down
	asm("not eax");					// negate rounding word
	asm("not ebx");					// and mantissa
	asm("not edx");					//
	asm("add eax,1");				// two's complement negation
	asm("adc ebx,0");				//
	asm("adc edx,0");				//
	asm("subfp2:");
	asm("jnz short subfp3");		// branch if edx non-zero at this point
	asm("mov edx, ebx");			// else shift ebx into edx
	asm("or edx, edx");				//
	asm("jz short subfp4");			// if still zero, branch
	asm("mov ebx, eax");			// else shift rounding word into ebx
	asm("xor eax, eax");			// and zero rounding word
	asm("sub ecx, 0x200000");		// decrease exponent by 32 due to shift
	asm("jnc short subfp3");		// if no borrow, carry on
	asm("jmp short subfpundflw");	// if borrow here, underflow
	asm("subfp4:");
	asm("mov edx, eax");			// move rounding word into edx
	asm("or edx, edx");				// is edx still zero ?
	asm("jz short subfp0");			// if so, result is precisely zero
	asm("xor ebx, ebx");			// else zero ebx and rounding word
	asm("xor eax, eax");			//
	asm("sub ecx, 0x400000");		// and decrease exponent by 64 due to shift
	asm("jc short subfpundflw");	// if borrow, underflow
	asm("subfp3:");
	asm("mov edi, ecx");			// preserve sign and exponent
	asm("bsr ecx, edx");			// position of most significant 1 into ecx
	asm("neg ecx");					//
	asm("add ecx, 31");				// cl = 31-position of MS 1 = number of shifts to normalise
	asm("shld edx, ebx, cl");		// shift edx:ebx:eax left by cl bits
	asm("shld ebx, eax, cl");		//
	asm("shl eax, cl");				//
	asm("mov ebp, ecx");			// bit count into ebp for subtraction
	asm("shl ebp, 16");				// shift left by 16 to align with exponent
	asm("mov ecx, edi");			// exponent, sign, rounding flags back into ecx
	asm("sub ecx, ebp");			// subtract shift count from exponent
	asm("jc short subfpundflw");	// if borrow, underflow
	asm("cmp ecx, 0x10000");		// check if exponent 0
	asm("jnc roundfp");				// if not, jump to round result, else underflow

	// come here if underflow
	asm("subfpundflw:");			
	asm("and ecx, 1");				// set exponent to zero, leave sign
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("mov eax, -10");			// return KErrUnderflow
	asm("ret");

	// come here to return zero result
	asm("subfp0:");
	asm("xor ecx, ecx");			// set exponent to zero, positive sign
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("addfp0snzd:");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if source=0 - eax=source exponent/sign
	asm("addfp0s:");
	asm("cmp ecx, 0x10000");		// check if dest=0
	asm("jnc addfp0snzd");			// if not, return dest unaltered
	asm("and ecx, eax");			// else both zero, result negative iff both zeros negative
	asm("and ecx, 1");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if dest=0, source nonzero
	asm("addfp0d:");
	asm("mov ebx, [esi]");			// return source unaltered
	asm("mov edx, [esi+4]");
	asm("mov ecx, [esi+8]");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if dest=NaN or infinity
	asm("addfpsd:");
	asm("cmp edx, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("mov eax, [esi+8]");		// eax=second operand exponent
	asm("cmp eax, 0xFFFF0000");		// check second operand for NaN or infinity
	asm("jae short addfpsd1");		// branch if NaN or infinity
	asm("addfpsd2:");
	asm("mov eax, -9");				// else return dest unaltered [infinity] and KErrOverflow
	asm("ret");
	asm("addfpsd1:");
	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
	asm("mov edi, [esi+4]");
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("xor al, cl");				// both operands are infinity - check signs
	asm("test al, 1");
	asm("jz short addfpsd2");		// if both the same, return KErrOverflow
	asm("jmp %a0": : "i"(&TRealXRealIndefinite));		// else return 'real indefinite'

	// come here if source=NaN or infinity, dest finite
	asm("addfpss:");
	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
	asm("mov edi, [esi+4]");
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("mov ecx, eax");			// if source=infinity, return source unaltered
	asm("mov edx, edi");
	asm("mov ebx, ebp");
	asm("mov eax, -9");				// return KErrOverflow
	asm("ret");
	}

// Subtract TRealX at [esi] - ecx,edx:ebx
// Result in ecx,edx:ebx
// Error code in eax
LOCAL_C __NAKED__ void TRealXSubtract()
	{
	asm("xor cl, 1");				// negate subtrahend
	asm("jmp %a0": :"i"(&TRealXAdd));
	}

// Multiply TRealX at [esi] * ecx,edx:ebx
// Result in ecx,edx:ebx
// Error code in eax
LOCAL_C __NAKED__ void TRealXMultiply()
	{
	asm("xor ch, ch");				// clear rounding flags
	asm("mov eax, [esi+8]");		// fetch sign/exponent of source
	asm("xor cl, al");				// xor signs
	asm("cmp ecx, 0xFFFF0000");		// check if dest=NaN or infinity
	asm("jnc mulfpsd");				// branch if it is
	asm("cmp eax, 0xFFFF0000");		// check if source=NaN or infinity
	asm("jnc mulfpss");				// branch if it is
	asm("cmp eax, 0x10000");		// check if source=0
	asm("jc mulfp0");				// branch if it is
	asm("cmp ecx, 0x10000");		// check if dest=0
	asm("jc mulfp0");				// branch if it is
	asm("push ecx");				// save result sign
	asm("shr ecx, 16");				// dest exponent into cx
	asm("shr eax, 16");				// source exponent into ax
	asm("add eax, ecx");			// add exponents
	asm("sub eax, 0x7FFE");			// eax now contains result exponent
	asm("push eax");				// save it
	asm("mov edi, edx");			// save dest mantissa high
	asm("mov eax, ebx");			// dest mantissa low -> eax
	asm("mul dword ptr [esi]");		// dest mantissa low * source mantissa low -> edx:eax
	asm("xchg ebx, eax");			// result dword 0 -> ebx, dest mant low -> eax
	asm("mov ebp, edx");			// result dword 1 -> ebp
	asm("mul dword ptr [esi+4]");	// dest mant low * src mant high -> edx:eax
	asm("add ebp, eax");			// add in partial product to dwords 1 and 2
	asm("adc edx, 0");				//
	asm("mov ecx, edx");			// result dword 2 -> ecx
	asm("mov eax, edi");			// dest mant high -> eax
	asm("mul dword ptr [esi+4]");	// dest mant high * src mant high -> edx:eax
	asm("add ecx, eax");			// add in partial product to dwords 2, 3
	asm("adc edx, 0");				//
	asm("mov eax, edi");			// dest mant high -> eax
	asm("mov edi, edx");			// result dword 3 -> edi
	asm("mul dword ptr [esi]");		// dest mant high * src mant low -> edx:eax
	asm("add ebp, eax");			// add in partial product to dwords 1, 2
	asm("adc ecx, edx");			//
	asm("adc edi, 0");				// 128-bit mantissa product is now in edi:ecx:ebp:ebx
	asm("mov edx, edi");			// top 64 bits into edx:ebx
	asm("mov edi, ebx");			
	asm("mov ebx, ecx");			// bottom 64 bits now in ebp:edi
	asm("pop ecx");					// recover exponent
	asm("js short mulfp1");			// skip if mantissa normalised
	asm("add edi, edi");			// else shift left [only one shift will be needed]
	asm("adc ebp, ebp");
	asm("adc ebx, ebx");
	asm("adc edx, edx");
	asm("dec ecx");					// and decrement exponent
	asm("mulfp1:");
	asm("cmp ebp, 0x80000000");		// compare bottom 64 bits with 80000000 00000000 for rounding
	asm("ja short mulfp2");			// branch to round up
	asm("jb short mulfp3");			// branch to round down
	asm("test edi, edi");
	asm("jnz short mulfp2");		// branch to round up
	asm("test bl, 1");				// if exactly half-way, test LSB of result mantissa
	asm("jz short mulfp4");			// if LSB=0, round down [round to even]
	asm("mulfp2:");
	asm("add ebx, 1");				// round up - increment mantissa
	asm("adc edx, 0");
	asm("jnc short mulfp2a");
	asm("rcr edx, 1");
	asm("inc ecx");	
	asm("mulfp2a:");
	asm("mov al, 2");				// set rounded-up flag
	asm("jmp short mulfp5");
	asm("mulfp3:");					// round down
	asm("xor al, al");				// clear rounding flags
	asm("or ebp, edi");				// check for exact result
	asm("jz short mulfp5");			// skip if exact
	asm("mulfp4:");					// come here to round down when we know result inexact
	asm("mov al, 1");				// else set rounded-down flag
	asm("mulfp5:");					// final mantissa now in edx:ebx, exponent in ecx
	asm("cmp ecx, 0xFFFF");			// check for overflow
	asm("jge short mulfp6");		// branch if overflow
	asm("cmp ecx, 0");				// check for underflow
	asm("jle short mulfp7");		// branch if underflow
	asm("shl ecx, 16");				// else exponent up to top end of ecx
	asm("mov ch, al");				// rounding flags into ch
	asm("pop eax");					// recover result sign
	asm("mov cl, al");				// into cl
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if overflow
	asm("mulfp6:");					
	asm("pop eax");					// recover result sign
	asm("mov ecx, 0xFFFF0000");		// exponent=FFFF
	asm("mov cl, al");				// sign into cl
	asm("mov edx, 0x80000000");		// set mantissa to 80000000 00000000 for infinity
	asm("xor ebx, ebx");
	asm("mov eax, -9");				// return KErrOverflow
	asm("ret");

	// come here if underflow
	asm("mulfp7:");				
	asm("pop eax");					// recover result sign
	asm("xor ecx, ecx");			// exponent=0
	asm("mov cl, al");				// sign into cl
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("mov eax, -10");			// return KErrUnderflow
	asm("ret");

	// come here if either operand zero
	asm("mulfp0:");
	asm("and ecx, 1");				// set exponent=0, keep sign
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if destination operand NaN or infinity
	asm("mulfpsd:");
	asm("cmp edx, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("cmp eax, 0xFFFF0000");		// check second operand for NaN or infinity
	asm("jae short mulfpsd1");		// branch if NaN or infinity
	asm("cmp eax, 0x10000");		// check if second operand zero
	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
	asm("mov eax, -9");				// else return dest [infinity] with xor sign and KErrOverflow
	asm("ret");
	asm("mulfpsd1:");
	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
	asm("mov edi, [esi+4]");		
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("mov eax, -9");				// both operands infinity - return infinity with xor sign
	asm("ret");						// and KErrOverflow

	// come here if source operand NaN or infinity, destination finite
	asm("mulfpss:");
	asm("mov ebp, [esi]");			// source mantissa into edi:ebp
	asm("mov edi, [esi+4]");
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("cmp ecx, 0x10000");		// source=infinity, check if dest=0
	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
	asm("or ecx, 0xFFFF0000");		// set exp=FFFF, leave xor sign in cl
	asm("mov edx, edi");			// set mantissa for infinity
	asm("mov ebx, ebp");
	asm("mov eax, -9");				// return KErrOverflow
	asm("ret");
	}

// Divide 96-bit unsigned dividend EDX:EAX:0 by 64-bit unsigned divisor ECX:EBX
// Assume ECX bit 31 = 1, ie 2^63 <= divisor < 2^64
// Assume the quotient fits in 32 bits
// Return 32 bit quotient in EDI
// Return 64 bit remainder in EBP:ESI
LOCAL_C __NAKED__ void LongDivide(void)
	{
	asm("push edx");				// save dividend
	asm("push eax");				//
	asm("cmp edx, ecx");			// check if truncation of divisor will overflow DIV instruction
	asm("jb short longdiv1");		// skip if not
	asm("xor eax, eax");			// else return quotient of 0xFFFFFFFF
	asm("dec eax");					//
	asm("jmp short longdiv2");		//
	asm("longdiv1:");
	asm("div ecx");					// divide EDX:EAX by ECX to give approximate quotient in EAX
	asm("longdiv2:");
	asm("mov edi, eax");			// save approx quotient
	asm("mul ebx");					// multiply approx quotient by full divisor ECX:EBX
	asm("mov esi, eax");			// first partial product into EBP:ESI
	asm("mov ebp, edx");			//
	asm("mov eax, edi");			// approx quotient back into eax
	asm("mul ecx");					// upper partial product now in EDX:EAX
	asm("add eax, ebp");			// add to form 96-bit product in EDX:EAX:ESI
	asm("adc edx, 0");				//
	asm("neg esi");					// remainder = dividend - approx quotient * divisor
	asm("mov ebp, [esp]");			// fetch dividend bits 32-63
	asm("sbb ebp, eax");			//
	asm("mov eax, [esp+4]");		// fetch dividend bits 64-95
	asm("sbb eax, edx");			// remainder is now in EAX:EBP:ESI
	asm("jns short longdiv4");		// if remainder positive, quotient is correct, so exit
	asm("longdiv3:");
	asm("dec edi");					// else quotient is too big, so decrement it
	asm("add esi, ebx");			// and add divisor to remainder
	asm("adc ebp, ecx");			//
	asm("adc eax, 0");				//
	asm("js short longdiv3");		// if still negative, repeat [requires <4 iterations]
	asm("longdiv4:");
	asm("add esp, 8");				// remove dividend from stack
	asm("ret");						// return with quotient in EDI, remainder in EBP:ESI
	}

// Divide TRealX at [esi] / ecx,edx:ebx
// Result in ecx,edx:ebx
// Error code in eax
LOCAL_C __NAKED__ void TRealXDivide(void)
	{
	asm("xor ch, ch");				// clear rounding flags
	asm("mov eax, [esi+8]");		// fetch sign/exponent of dividend
	asm("xor cl, al");				// xor signs
	asm("cmp eax, 0xFFFF0000");		// check if dividend=NaN or infinity
	asm("jnc divfpss");				// branch if it is
	asm("cmp ecx, 0xFFFF0000");		// check if divisor=NaN or infinity
	asm("jnc divfpsd");				// branch if it is
	asm("cmp ecx, 0x10000");		// check if divisor=0
	asm("jc divfpdv0");				// branch if it is
	asm("cmp eax, 0x10000");		// check if dividend=0
	asm("jc divfpdd0");				// branch if it is
	asm("push esi");				// save pointer to dividend
	asm("push ecx");				// save result sign
	asm("shr ecx, 16");				// divisor exponent into cx
	asm("shr eax, 16");				// dividend exponent into ax
	asm("sub eax, ecx");			// subtract exponents
	asm("add eax, 0x7FFE");			// eax now contains result exponent
	asm("push eax");				// save it
	asm("mov ecx, edx");			// divisor mantissa into ecx:ebx
	asm("mov edx, [esi+4]");		// dividend mantissa into edx:eax
	asm("mov eax, [esi]");			
	asm("xor edi, edi");			// clear edi initially
	asm("cmp edx, ecx");			// compare EDX:EAX with ECX:EBX
	asm("jb short divfp1");			// if EDX:EAX < ECX:EBX, leave everything as is
	asm("ja short divfp2");			//
	asm("cmp eax, ebx");			// if EDX=ECX, then compare ls dwords
	asm("jb short divfp1");			// if dividend mant < divisor mant, leave everything as is
	asm("divfp2:");
	asm("sub eax, ebx");			// else dividend mant -= divisor mant
	asm("sbb edx, ecx");			//
	asm("inc edi");					// and EDI=1 [bit 0 of EDI is the integer part of the result]
	asm("inc dword ptr [esp]");		// also increment result exponent
	asm("divfp1:");
	asm("push edi");				// save top bit of result
	asm("call %a0": : "i"(&LongDivide));	// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
	asm("push edi");				// save next 32 bits of result
	asm("mov edx, ebp");			// remainder from EBP:ESI into EDX:EAX
	asm("mov eax, esi");			//
	asm("call %a0": : "i"(&LongDivide));	// divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
	asm("test byte ptr [esp+4], 1");	// test integer bit of result
	asm("jnz short divfp4");		// if set, no need to calculate another bit
	asm("xor eax, eax");			//
	asm("add esi, esi");			// 2*remainder into EAX:EBP:ESI
	asm("adc ebp, ebp");			//
	asm("adc eax, eax");			//
	asm("sub esi, ebx");			// subtract divisor to generate final quotient bit
	asm("sbb ebp, ecx");			//
	asm("sbb eax, 0");				//
	asm("jnc short divfp3");		// skip if no borrow - in this case eax=0
	asm("add esi, ebx");			// if borrow add back - final remainder now in EBP:ESI
	asm("adc ebp, ecx");			//
	asm("adc eax, 0");				// eax will be zero after this and carry will be set
	asm("divfp3:");
	asm("cmc");						// final bit = 1-C
	asm("rcr eax, 1");				// shift it into eax bit 31
	asm("mov ebx, edi");			// result into EDX:EBX:EAX, remainder in EBP:ESI
	asm("pop edx");
	asm("add esp, 4");				// discard integer bit [zero]
	asm("jmp short divfp5");		// branch to round

	asm("divfp4:");					// integer bit was set
	asm("mov ebx, edi");			// result into EDX:EBX:EAX
	asm("pop edx");					//
	asm("pop eax");					// integer part of result into eax [=1]
	asm("stc");						// shift a 1 into top end of mantissa
	asm("rcr edx,1");				//
	asm("rcr ebx,1");				//
	asm("rcr eax,1");				// bottom bit into eax bit 31

	// when we get to here we have 65 bits of quotient mantissa in
	// EDX:EBX:EAX (bottom bit in eax bit 31)
	// and the remainder is in EBP:ESI
	asm("divfp5:");
	asm("pop ecx");					// recover result exponent
	asm("add eax, eax");			// test rounding bit
	asm("jnc short divfp6");		// branch to round down
	asm("or ebp, esi");				// test remainder to see if we are exactly half-way
	asm("jnz short divfp7");		// if not, round up
	asm("test bl, 1");				// exactly halfway - test LSB of mantissa
	asm("jz short divfp8");			// round down if LSB=0 [round to even]
	asm("divfp7:");
	asm("add ebx, 1");				// round up - increment mantissa
	asm("adc edx, 0");
	asm("jnc short divfp7a");
	asm("rcr edx, 1");				// if carry, shift 1 into mantissa MSB
	asm("inc ecx");					// and increment exponent
	asm("divfp7a:");
	asm("mov al, 2");				// set rounded-up flag
	asm("jmp short divfp9");
	asm("divfp6:");
	asm("xor al, al");				// round down - first clear rounding flags
	asm("or ebp, esi");				// test if result exact
	asm("jz short divfp9");			// skip if exact
	asm("divfp8:");					// come here to round down when we know result is inexact
	asm("mov al, 1");				// set rounded-down flag
	asm("divfp9:");					// final mantissa now in edx:ebx, exponent in ecx
	asm("cmp ecx, 0xFFFF");			// check for overflow
	asm("jge short divfp10");		// branch if overflow
	asm("cmp ecx, 0");				// check for underflow
	asm("jle short divfp11");		// branch if underflow
	asm("shl ecx, 16");				// else exponent up to top end of ecx
	asm("mov ch, al");				// rounding flags into ch
	asm("pop eax");					// recover result sign
	asm("mov cl, al");				// into cl
	asm("pop esi");					// recover dividend pointer
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if overflow
	asm("divfp10:");
	asm("pop eax");					// recover result sign
	asm("mov ecx, 0xFFFF0000");		// exponent=FFFF
	asm("mov cl, al");				// sign into cl
	asm("mov edx, 0x80000000");		// set mantissa to 80000000 00000000 for infinity
	asm("xor ebx, ebx");
	asm("mov eax, -9");				// return KErrOverflow
	asm("pop esi");					// recover dividend pointer
	asm("ret");

	// come here if underflow
	asm("divfp11:");	
	asm("pop eax");					// recover result sign
	asm("xor ecx, ecx");			// exponent=0
	asm("mov cl, al");				// sign into cl
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("mov eax, -10");			// return KErrUnderflow
	asm("pop esi");					// recover dividend pointer
	asm("ret");


	// come here if divisor=0, dividend finite
	asm("divfpdv0:");
	asm("cmp eax, 0x10000");		// check if dividend also zero
	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
	asm("or ecx, 0xFFFF0000");		// else set exponent=FFFF, leave xor sign in cl
	asm("mov edx, 0x80000000");		// set mantissa for infinity
	asm("xor ebx, ebx");
	asm("mov eax, -41");			// return KErrDivideByZero
	asm("ret");

	// come here if dividend=0, divisor finite and nonzero
	asm("divfpdd0:");
	asm("and ecx, 1");				// exponent=0, leave xor sign in cl
	asm("xor eax, eax");			// return KErrNone
	asm("ret");

	// come here if dividend is a NaN or infinity
	asm("divfpss:");
	asm("mov ebp, [esi]");			// dividend mantissa into edi:ebp
	asm("mov edi, [esi+4]");
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("cmp ecx, 0xFFFF0000");		// check divisor for NaN or infinity
	asm("jae short divfpss1");		// branch if NaN or infinity
	asm("or ecx, 0xFFFF0000");		// infinity/finite - return infinity with xor sign
	asm("mov edx, 0x80000000");
	asm("xor ebx, ebx");
	asm("mov eax, -9");				// return KErrOverflow
	asm("ret");
	asm("divfpss1:");
	asm("cmp edx, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("jmp %a0": : "i"(&TRealXRealIndefinite)); // if both operands infinite, return 'real indefinite'

	// come here if divisor is a NaN or infinity, dividend finite
	asm("divfpsd:");
	asm("cmp edx, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("and ecx, 1");				// dividend is finite, divisor=infinity, so return 0 with xor sign
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("xor eax, eax");			// return KErrNone
	asm("ret");
	}

// TRealX modulo - dividend at [esi], divisor in ecx,edx:ebx
// Result in ecx,edx:ebx
// Error code in eax
LOCAL_C __NAKED__ void TRealXModulo(void)
	{
	asm("mov eax, [esi+8]");		// fetch sign/exponent of dividend
	asm("mov cl, al");				// result sign=dividend sign
	asm("xor ch, ch");				// clear rounding flags
	asm("cmp eax, 0xFFFF0000");		// check if dividend=NaN or infinity
	asm("jnc short modfpss");		// branch if it is
	asm("cmp ecx, 0xFFFF0000");		// check if divisor=NaN or infinity
	asm("jnc short modfpsd");		// branch if it is
	asm("cmp ecx, 0x10000");		// check if divisor=0
	_ASM_j(c,TRealXRealIndefinite)	// if so, return 'real indefinite'
	asm("shr eax, 16");				// ax=dividend exponent
	asm("ror ecx, 16");				// cx=divisor exponent
	asm("sub ax, cx");				// ax=dividend exponent-divisor exponent
	asm("jc short modfpdd0");		// if dividend exponent is smaller, return dividend
	asm("cmp ax, 64");				// check if exponents differ by >= 64 bits
	asm("jnc short modfplp");		// if so, underflow
	asm("mov ah, 0");				// ah bit 0 acts as 65th accumulator bit
	asm("mov ebp, [esi]");			// edi:ebp=dividend mantissa
	asm("mov edi, [esi+4]");		//
	asm("jmp short modfp2");		// skip left shift on first iteration
	asm("modfp1:");
	asm("add ebp, ebp");			// shift accumulator left [65 bits]
	asm("adc edi, edi");
	asm("adc ah, ah");
	asm("modfp2:");
	asm("sub ebp, ebx");			// subtract divisor from dividend
	asm("sbb edi, edx");
	asm("sbb ah, 0");
	asm("jnc short modfp3");		// skip if no borrow
	asm("add ebp, ebx");			// else add back
	asm("adc edi, edx");
	asm("adc ah, 0");
	asm("modfp3:");
	asm("dec al");					// any more bits to do?
	asm("jns short modfp1");		// loop if there are
	asm("mov edx, edi");			// result mantissa [not yet normalised] into edx:ebx
	asm("mov ebx, ebp");
	asm("or edi, ebx");				// check for zero
	asm("jz short modfp0");			// jump if result zero
	asm("or edx, edx");				// check if ms dword zero
	asm("jnz short modfp4");
	asm("mov edx, ebx");			// if so, shift left by 32
	asm("xor ebx, ebx");
	asm("sub cx, 32");				// and decrement exponent by 32
	asm("jbe short modfpund");		// if borrow or exponent zero, underflow
	asm("modfp4:");
	asm("mov edi, ecx");			// preserve sign and exponent
	asm("bsr ecx, edx");			// position of most significant 1 into ecx
	asm("neg ecx");					//
	asm("add ecx, 31");				// cl = 31-position of MS 1 = number of shifts to normalise
	asm("shld edx, ebx, cl");		// shift edx:ebx left by cl bits
	asm("shl ebx, cl");				//
	asm("mov ebp, ecx");			// bit count into ebp for subtraction
	asm("mov ecx, edi");			// exponent & sign back into ecx
	asm("sub cx, bp");				// subtract shift count from exponent
	asm("jbe short modfpund");		// if borrow or exponent 0, underflow
	asm("rol ecx, 16");				// else ecx=exponent:sign
	asm("xor eax, eax");			// normal exit, result in ecx,edx:ebx
	asm("ret");

	// dividend=NaN or infinity
	asm("modfpss:");
	asm("mov ebp, [esi]");			// dividend mantissa into edi:ebp
	asm("mov edi, [esi+4]");
	asm("cmp edi, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebp, ebp");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("cmp ecx, 0xFFFF0000");		// check divisor for NaN or infinity
	_ASM_j(b,TRealXRealIndefinite)	// infinity%finite - return 'real indefinite'
	asm("cmp edx, 0x80000000");		// check for divisor=infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	asm("jmp %a0": : "i"(&TRealXRealIndefinite));	// if both operands infinite, return 'real indefinite'

	// divisor=NaN or infinity, dividend finite
	asm("modfpsd:");
	asm("cmp edx, 0x80000000");		// check for infinity
	_ASM_jn(e,TRealXBinOpNaN)		// branch if NaN
	asm("test ebx, ebx");
	_ASM_jn(e,TRealXBinOpNaN)
	// finite%infinity - return dividend unaltered

	asm("modfpdd0:");
	asm("mov ebx, [esi]");			// normal exit, return dividend unaltered
	asm("mov edx, [esi+4]");
	asm("mov ecx, [esi+8]");
	asm("xor eax, eax");
	asm("ret");

	asm("modfp0:");
	asm("shr ecx, 16");				// normal exit, result 0
	asm("xor eax, eax");
	asm("ret");

	asm("modfpund:");
	asm("shr ecx, 16");				// underflow, result 0
	asm("mov eax, -10");			// return KErrUnderflow
	asm("ret");

	asm("modfplp:");
	asm("shr ecx, 16");				// loss of precision, result 0
	asm("mov eax, -7");				// return KErrTotalLossOfPrecision
	asm("ret");
	}




__NAKED__ EXPORT_C TRealX::TRealX()
/**
Constructs a default extended precision object.

This sets the value to zero.
*/
	{
	THISCALL_PROLOG0()
	asm("xor eax, eax");
	asm("mov [ecx], eax");				// set value to zero
	asm("mov [ecx+4], eax");
	asm("mov [ecx+8], eax");
	asm("mov eax, ecx");				// must return this
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
/**
Constructs an extended precision object from an explicit exponent and
a 64 bit mantissa.

@param aExp    The exponent
@param aMantHi The high order 32 bits of the 64 bit mantissa
@param aMantLo The low order 32 bits of the 64 bit mantissa
*/
	{
	THISCALL_PROLOG3()
	asm("mov eax, [esp+4]");			// eax=aExp
	asm("mov [ecx+8], eax");
	asm("mov eax, [esp+8]");			// eax=aMantHi
	asm("mov [ecx+4], eax");
	asm("mov eax, [esp+12]");			// eax=aMantLo
	asm("mov [ecx], eax");
	asm("mov eax, ecx");				// must return this
	THISCALL_EPILOG3()
	}


__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*aInt*/)
/**
Gives this extended precision object a new value taken
from a signed integer.

@param aInt The signed integer value.

@return KErrNone, always.
*/
	{
	THISCALL_PROLOG1()
	// on entry ecx=this, [esp+4]=aInt, return code in eax
	asm("mov edx, [esp+4]");	// edx=aInt
	asm("or edx, edx");			// test sign/zero
	asm("mov eax, 0x7FFF");
	asm("jz short trealxfromint0_2");	// branch if 0
	asm("jns short trealxfromint1_2");// skip if positive
	asm("neg edx");					// take absolute value
	asm("add eax, 0x10000");		// sign bit in eax bit 16
	asm("trealxfromint1_2:");
	asm("push ecx");				// save this
	asm("bsr ecx, edx");			// bit number of edx MSB into ecx
	asm("add eax, ecx");			// add to eax to form result exponent
	asm("neg cl");
	asm("add cl, 31");				// 31-bit number = number of shifts to normalise edx
	asm("shl edx, cl");				// normalise edx
	asm("pop ecx");					// this back into ecx
	asm("ror eax, 16");				// sign/exponent into normal positions
	asm("mov [ecx+4], edx");		// store mantissa high word
	asm("mov [ecx+8], eax");		// store sign/exponent
	asm("xor eax, eax");
	asm("mov [ecx], eax");			// zero mantissa low word
	THISCALL_EPILOG1()					// return KErrNone
	asm("trealxfromint0_2:");
	asm("mov [ecx], edx");
	asm("mov [ecx+4], edx");		// store mantissa high word=0
	asm("mov [ecx+8], edx");		// store sign/exponent=0
	asm("xor eax, eax");			// return KErrNone
	THISCALL_EPILOG1()
	}



__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*aInt*/)
/**
Gives this extended precision object a new value taken from
an unsigned integer.

@param aInt The unsigned integer value.

@return KErrNone, always.
*/
	{
	THISCALL_PROLOG1()
	asm("mov edx, [esp+4]");		// edx=aInt
	asm("mov eax, 0x7FFF");
	asm("or edx, edx");				// test for 0
	asm("jz short trealxfromuint0_");// branch if 0
	asm("push ecx");				// save this
	asm("bsr ecx, edx");			// bit number of edx MSB into ecx
	asm("add eax, ecx");			// add to eax to form result exponent
	asm("neg cl");
	asm("add cl, 31");				// 31-bit number = number of shifts to normalise edx
	asm("shl edx, cl");				// normalise edx
	asm("pop ecx");					// this back into ecx
	asm("shl eax, 16");				// exponent into normal position
	asm("mov [ecx+4], edx");		// store mantissa high word
	asm("mov [ecx+8], eax");		// store exponent
	asm("xor eax, eax");
	asm("mov [ecx], eax");			// zero mantissa low word
	THISCALL_EPILOG1()				// return KErrNone
	asm("trealxfromuint0_:");
	asm("mov [ecx], edx");
	asm("mov [ecx+4], edx");		// store mantissa high word=0
	asm("mov [ecx+8], edx");		// store sign/exponent=0
	asm("xor eax, eax");			// return KErrNone
	THISCALL_EPILOG1()
	}




LOCAL_C __NAKED__ void TRealXFromTInt64(void)
	{
	// Convert TInt64 in edx:ebx to TRealX in ecx,edx:ebx
	asm("mov eax, 0x7FFF");
	asm("or edx, edx");					// test sign/zero
	asm("jz short trealxfromtint64a");	// branch if top word zero
	asm("jns short trealxfromtint64b");
	asm("add eax, 0x10000");			// sign bit into eax bit 16
	asm("neg edx");						// take absolute value
	asm("neg ebx");
	asm("sbb edx, 0");
	asm("jz short trealxfromtint64d");	// branch if top word zero
	asm("trealxfromtint64b:");
	asm("bsr ecx, edx");				// ecx=bit number of edx MSB
	asm("add eax, ecx");				// add to exponent in eax
	asm("add eax, 32");
	asm("neg cl");
	asm("add cl, 31");					// 31-bit number = number of left shifts to normalise
	asm("shld edx, ebx, cl");			// shift left to normalise edx:ebx
	asm("shl ebx, cl");
	asm("mov ecx, eax");				// sign/exponent into ecx
	asm("ror ecx, 16");					// and into normal positions
	asm("ret");
	asm("trealxfromtint64a:");			// come here if top word zero
	asm("or ebx, ebx");					// test for bottom word also zero
	asm("jz short trealxfromtint64c");	// branch if it is
	asm("trealxfromtint64d:");			// come here if top word zero, bottom word not
	asm("mov edx, ebx");				// shift edx:ebx left 32
	asm("xor ebx, ebx");
	asm("bsr ecx, edx");				// ecx=bit number of edx MSB
	asm("add eax, ecx");				// add to exponent in eax
	asm("neg cl");
	asm("add cl, 31");					// 31-bit number = number of left shifts to normalise
	asm("shl edx, cl");					// normalise
	asm("mov ecx, eax");				// sign/exponent into ecx
	asm("ror ecx, 16");					// and into normal positions
	asm("ret");
	asm("trealxfromtint64c:");			// entire number is zero
	asm("xor ecx, ecx");
	asm("ret");
	}




__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*aInt*/)
/**
Gives this extended precision object a new value taken from
a 64 bit integer.

@param aInt The 64 bit integer value.

@return KErrNone, always.
*/
	{
	// on entry ecx=this, [esp+4]=address of aInt, return code in eax
	THISCALL_PROLOG1()
	asm("push ebx");
	asm("push ecx");
	asm("mov edx, [esp+12]");			// edx=address of aInt
	asm("mov ebx, [edx]");
	asm("mov edx, [edx+4]");			// edx:ebx=aInt
	asm("call %a0": : "i"(&TRealXFromTInt64)); // convert to TRealX in ecx,edx:ebx
	asm("pop eax");						// eax=this
	asm("mov [eax], ebx");				// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("xor eax, eax");				// return KErrNone
	asm("pop ebx");
	THISCALL_EPILOG1()
	}



LOCAL_C __NAKED__ void __6TRealXi()
	{
	// common function for int to TRealX
	THISCALL_PROLOG1()
	asm("mov edx, [esp+4]");			// edx=aInt
	asm("or edx, edx");					// test sign/zero
	asm("mov eax, 0x7FFF");
	asm("jz short trealxfromint0");		// branch if 0
	asm("jns short trealxfromint1");	// skip if positive
	asm("neg edx");						// take absolute value
	asm("add eax, 0x10000");			// sign bit in eax bit 16
	asm("trealxfromint1:");
	asm("push ecx");					// save this
	asm("bsr ecx, edx");				// bit number of edx MSB into ecx
	asm("add eax, ecx");				// add to eax to form result exponent
	asm("neg cl");
	asm("add cl, 31");					// 31-bit number = number of shifts to normalise edx
	asm("shl edx, cl");					// normalise edx
	asm("pop ecx");						// this back into ecx
	asm("ror eax, 16");					// sign/exponent into normal positions
	asm("mov [ecx+4], edx");			// store mantissa high word
	asm("mov [ecx+8], eax");			// store sign/exponent
	asm("xor eax, eax");
	asm("mov [ecx], eax");				// zero mantissa low word
	asm("mov eax, ecx");				// return eax=this
	THISCALL_EPILOG1()
	asm("trealxfromint0:");
	asm("mov [ecx], edx");
	asm("mov [ecx+4], edx");			// store mantissa high word=0
	asm("mov [ecx+8], edx");			// store sign/exponent=0
	asm("mov eax, ecx");				// return eax=this
	THISCALL_EPILOG1()
	}


__NAKED__ EXPORT_C TRealX::TRealX(TInt /*aInt*/)
/**
Constructs an extended precision object from a signed integer value.

@param aInt The signed integer value.
*/
	{
	// on entry ecx=this, [esp+4]=aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXi));
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*aInt*/)
/**
Assigns the specified signed integer value to this extended precision object.

@param aInt The signed integer value.

@return A reference to this extended precision object.
*/
	{
	// on entry ecx=this, [esp+4]=aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXi));
	}



LOCAL_C __NAKED__ void __6TRealXui()
	{
	// common function for unsigned int to TRealX
	THISCALL_PROLOG1()
	asm("mov edx, [esp+4]");			// edx=aInt
	asm("mov eax, 0x7FFF");
	asm("or edx, edx");					// test for zero
	asm("jz short trealxfromuint0");	// branch if 0
	asm("push ecx");					// save this
	asm("bsr ecx, edx");				// bit number of edx MSB into ecx
	asm("add eax, ecx");				// add to eax to form result exponent
	asm("neg cl");
	asm("add cl, 31");					// 31-bit number = number of shifts to normalise edx
	asm("shl edx, cl");					// normalise edx
	asm("pop ecx");						// this back into ecx
	asm("shl eax, 16");					// exponent into normal position
	asm("mov [ecx+4], edx");			// store mantissa high word
	asm("mov [ecx+8], eax");			// store exponent
	asm("xor eax, eax");
	asm("mov [ecx], eax");				// zero mantissa low word
	asm("mov eax, ecx");				// return eax=this
	THISCALL_EPILOG1()
	asm("trealxfromuint0:");
	asm("mov [ecx], edx");				
	asm("mov [ecx+4], edx");			// store mantissa high word=0
	asm("mov [ecx+8], edx");			// store sign/exponent=0
	asm("mov eax, ecx");				// return eax=this
	THISCALL_EPILOG1()
	}



__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aInt*/)
/**
Constructs an extended precision object from an unsigned integer value.

@param aInt The unsigned integer value.
*/
	{
	// on entry ecx=this, [esp+4]=aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXui));
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*aInt*/)
/**
Assigns the specified unsigned integer value to this extended precision object.

@param aInt The unsigned integer value.

@return A reference to this extended precision object.
*/
	{
	// on entry ecx=this, [esp+4]=aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXui));
	}




LOCAL_C __NAKED__ void __6TRealXRC6TInt64()
	{
	// common function for TInt64 to TRealX
	THISCALL_PROLOG1()
	asm("push ebx");					// preserve ebx
	asm("push ecx");					// save this
	asm("mov edx, [esp+12]");			// edx=address of aInt
	asm("mov ebx, [edx]");
	asm("mov edx, [edx+4]");			// edx:ebx=aInt
	asm("call %a0": : "i"(&TRealXFromTInt64));	// convert to TRealX in ecx,edx:ebx
	asm("pop eax");						// eax=this
	asm("mov [eax], ebx");				// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("mov ecx, eax");				// restore this ptr
	asm("pop ebx");						// restore ebx
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*aInt*/)
/**
Constructs an extended precision object from a 64 bit integer.

@param aInt A reference to a 64 bit integer.
*/
	{
	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*aInt*/)
/**
Assigns the specified 64 bit integer value to this extended precision object.

@param aInt A reference to a 64 bit integer.

@return A reference to this extended precision object.
*/
	{
	// on entry ecx=this, [esp+4]=address of aInt, return eax=this
	asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
	}




LOCAL_C __NAKED__ void ConvertTReal32ToTRealX(void)
	{
	// Convert TReal32 in edx to TRealX in ecx:edx,ebx
	asm("xor ebx, ebx");				// mant low always zero
	asm("mov eax, edx");
	asm("shr eax, 23");					// exponent now in al, sign in ah bit 0
	asm("test al, al");					// check for denormal/zero
	asm("jz short treal32totrealx2");	// branch if denormal/zero
	asm("xor ecx, ecx");
	asm("mov cl, al");
	asm("add ecx, 0x7F80");				// bias exponent correctly for TRealX
	asm("cmp al, 0xFF");				// check for infinity/NaN
	asm("jnz short treal32totrealx1");	// skip if neither
	asm("mov cl, al");					// else set TRealX exponent to FFFF
	asm("mov ch, al");
	asm("treal32totrealx1:");
	asm("shl edx, 8");					// left-justify mantissa in edx
	asm("or edx, 0x80000000");			// put in implied integer bit
	asm("shl ecx, 16");					// exponent into ecx bits 16-31
	asm("mov cl, ah");					// sign into ecx bit 0
	asm("ret");
	asm("treal32totrealx2:");			// come here if exponent 0
	asm("shl edx, 9");					// left-justify mantissa in edx [shift out integer bit as well]
	asm("jnz short treal32totrealx3");	// jump if denormal
	asm("xor ecx, ecx");				// else return 0
	asm("mov cl, ah");					// with same sign as input value
	asm("ret");
	asm("treal32totrealx3:");			// come here if denormal
	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
	asm("neg ecx");
	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx
	asm("shl edx, cl");					// normalise
	asm("neg ecx");
	asm("add ecx, 0x7F80");				// exponent=7F80-number of shifts
	asm("shl ecx, 16");					// exponent into ecx bits 16-31
	asm("mov cl, ah");					// sign into ecx bit 0
	asm("ret");
	}




LOCAL_C __NAKED__ void ConvertTReal64ToTRealX(void)
	{
	// Convert TReal64 in edx:ebx to TRealX in ecx:edx,ebx
	asm("mov eax, edx");
	asm("shr eax, 20");
	asm("mov ecx, 0x7FF");
	asm("and ecx, eax");				// ecx=exponent
	asm("jz short treal64totrealx1");	// branch if zero/denormal
	asm("add ecx, 0x7C00");				// else bias exponent correctly for TRealX
	asm("cmp ecx, 0x83FF");				// check for infinity/NaN
	asm("jnz short treal64totrealx2");
	asm("mov ch, cl");					// if so, set exponent to FFFF
	asm("treal64totrealx2:");		
	asm("shl ecx, 16");					// exponent into ecx bits 16-31
	asm("mov cl, 11");					// number of shifts needed to justify mantissa correctly
	asm("shld edx, ebx, cl");			// shift mantissa left
	asm("shl ebx, cl");
	asm("or edx, 0x80000000");			// put in implied integer bit
	asm("shr eax, 11");					// sign bit into al bit 0
	asm("mov cl, al");					// into ecx bit 0
	asm("ret");
	asm("treal64totrealx1:");			// come here if zero/denormal
	asm("mov cl, 12");					// number of shifts needed to justify mantissa correctly
	asm("shld edx, ebx, cl");			// shift mantissa left
	asm("shl ebx, cl");
	asm("test edx, edx");				// check for zero
	asm("jnz short treal64totrealx3");
	asm("test ebx, ebx");
	asm("jnz short treal64totrealx4");
	asm("shr eax, 11");					// sign bit into eax bit 0, rest of eax=0
	asm("mov ecx, eax");				// return 0 result with correct sign
	asm("ret");
	asm("treal64totrealx4:");			// come here if denormal, edx=0
	asm("mov edx, ebx");				// shift mantissa left 32
	asm("xor ebx, ebx");
	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
	asm("neg ecx");
	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx
	asm("shl edx, cl");					// normalise
	asm("neg ecx");
	asm("add ecx, 0x7BE0");				// exponent=7BE0-number of shifts	
	asm("shl ecx, 16");					// exponent into bits 16-31 of ecx
	asm("shr eax, 11");
	asm("mov cl, al");					// sign into bit 0 of ecx
	asm("ret");
	asm("treal64totrealx3:");			// come here if denormal, edx nonzero
	asm("bsr ecx, edx");				// ecx=bit number of MSB of edx
	asm("neg ecx");
	asm("add ecx, 31");					// ecx=number of left shifts to normalise edx:ebx
	asm("shld edx, ebx, cl");			// normalise
	asm("shl ebx, cl");
	asm("neg ecx");
	asm("add ecx, 0x7C00");				// exponent=7C00-number of shifts
	asm("shl ecx, 16");					// exponent into bits 16-31 of ecx
	asm("shr eax, 11");
	asm("mov cl, al");					// sign into bit 0 of ecx
	asm("ret");
	}




__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/)
/**
Gives this extended precision object a new value taken from
a single precision floating point number.

@param aReal The single precision floating point value.

@return KErrNone, if a valid number;
KErrOverflow, if the number is infinite;
KErrArgument, if not a number.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4]
	// on exit, error code in eax
	THISCALL_PROLOG1()
	asm("push ecx");
	asm("push ebx");					// save ebx
	asm("push ecx");					// save this
	asm("mov edx, [esp+16]");			// aReal into edx
	asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
	asm("pop eax");						// eax=this
	asm("mov [eax], ebx");				// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("xor eax, eax");				// error code=KErrNone initially
	asm("cmp ecx, 0xFFFF0000");			// check for infinity/NaN
	asm("jb short trealxsettreal32a");	// if neither, return KErrNone
	asm("mov eax, -9");					// eax=KErrOverflow
	asm("cmp edx, 0x80000000");			// check for infinity
	asm("je short trealxsettreal32a");	// if infinity, return KErrOverflow
	asm("mov eax, -6");					// if NaN, return KErrArgument
	asm("trealxsettreal32a:");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/)
/**
Gives this extended precision object a new value taken from
a double precision floating point number.

@param aReal The double precision floating point value.

@return KErrNone, if a valid number;
KErrOverflow, if the number is infinite;
KErrArgument, if not a number.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
	// on exit, error code in eax
	THISCALL_PROLOG2()
	asm("push ecx");
	asm("push ebx");				// save ebx
	asm("push ecx");				// save this
	asm("mov ebx, [esp+16]");		// aReal into edx:ebx
	asm("mov edx, [esp+20]");
	asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
	asm("pop eax");					// eax=this
	asm("mov [eax], ebx");			// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("xor eax, eax");			// error code=KErrNone initially
	asm("cmp ecx, 0xFFFF0000");		// check for infinity/NaN
	asm("jb short trealxsettreal64a");	// if neither, return KErrNone
	asm("mov eax, -9");				// eax=KErrOverflow
	asm("cmp edx, 0x80000000");		// check for infinity
	asm("jne short trealxsettreal64b");	// branch if NaN
	asm("test ebx, ebx");
	asm("je short trealxsettreal64a");	// if infinity, return KErrOverflow
	asm("trealxsettreal64b:");
	asm("mov eax, -6");				// if NaN, return KErrArgument
	asm("trealxsettreal64a:");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()
	}




LOCAL_C __NAKED__ void __6TRealXf()
	{
	// common function for float to TRealX
	THISCALL_PROLOG1()
	asm("push ebx");					// save ebx
	asm("push ecx");					// save this
	asm("mov edx, [esp+12]");			// aReal into edx
	asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
	asm("pop eax");						// eax=this
	asm("mov [eax], ebx");				// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("pop ebx");
	asm("mov ecx,eax");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/)
/**
Constructs an extended precision object from
a single precision floating point number.

@param aReal The single precision floating point value.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4]
	// on exit, eax=this
	asm("jmp %a0": : "i"(&__6TRealXf));
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/)
/**
Assigns the specified single precision floating point number to
this extended precision object.

@param aReal The single precision floating point value.

@return A reference to this extended precision object.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4]
	// on exit, eax=this
	asm("jmp %a0": : "i"(&__6TRealXf));
	}




LOCAL_C __NAKED__ void __6TRealXd()
	{
	// common function for double to TRealX
	THISCALL_PROLOG2()
	asm("push ebx");				// save ebx
	asm("push ecx");				// save this
	asm("mov ebx, [esp+12]");		// aReal into edx:ebx
	asm("mov edx, [esp+16]");
	asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
	asm("pop eax");					// eax=this
	asm("mov [eax], ebx");			// store result
	asm("mov [eax+4], edx");
	asm("mov [eax+8], ecx");
	asm("pop ebx");
	asm("mov ecx,eax");
	THISCALL_EPILOG2()
	}




__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/)
/**
Constructs an extended precision object from
a double precision floating point number.

@param aReal The double precision floating point value.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
	// on exit, eax=this
	asm("jmp %a0": : "i"(&__6TRealXd));
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/)
/**
Assigns the specified double precision floating point number to
this extended precision object.

@param aReal The double precision floating point value.

@return A reference to this extended precision object.
*/
	{
	// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
	// on exit, eax=this
	asm("jmp %a0": : "i"(&__6TRealXd));
	}




__NAKED__ EXPORT_C TRealX::operator TInt() const
/**
Gets the extended precision value as a signed integer value.

The operator asm("returns:");

1. zero , if the extended precision value is not a number

2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.

3. 0x80000000, if the value is negative and too big to fit into a TInt.
*/
	{
	// on entry ecx=this, return value in eax
	THISCALL_PROLOG0()
	asm("push ecx");
	asm("mov edx, [ecx]");			// edx=mantissa low
	asm("mov eax, [ecx+4]");		// eax=mantissa high
	asm("mov ecx, [ecx+8]");		// ecx=exponent/sign
	asm("ror ecx, 16");				// exponent into cx
	asm("cmp cx, 0xFFFF");
	asm("jz short trealxtoint1");	// branch if exp=FFFF
	asm("mov dx, cx");
	asm("mov cx, 0x801E");
	asm("sub cx, dx");				// cx=number of right shifts needed to convert mantissa to int
	asm("jbe short trealxtoint2");	// if exp>=801E, saturate result
	asm("cmp cx, 31");				// more than 31 shifts needed?
	asm("ja short trealxtoint0");	// if so, underflow to zero
	asm("shr eax, cl");				// else ABS[result]=eax>>cl
	asm("test ecx, 0x10000");		// test sign
	asm("jz short trealxtoint3");	// skip if +
	asm("neg eax");
	asm("trealxtoint3:");
	asm("pop ecx");
	THISCALL_EPILOG0()
	asm("trealxtoint1:");			// come here if exponent=FFFF
	asm("cmp eax, 0x80000000");		// check for infinity
	asm("jnz short trealxtoint0");	// if NaN, return 0
	asm("test edx, edx");
	asm("jnz short trealxtoint0");	// if NaN, return 0
	asm("trealxtoint2:");			// come here if argument too big for 32-bit integer
	asm("mov eax, 0x7FFFFFFF");
	asm("shr ecx, 17");				// sign bit into carry flag
	asm("adc eax, 0");				// eax=7FFFFFFF if +, 80000000 if -
	asm("pop ecx");					
	THISCALL_EPILOG0()				// return saturated value
	asm("trealxtoint0:");			// come here if INT{argument}=0 or NaN
	asm("xor eax, eax");			// return 0
	asm("pop ecx");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TRealX::operator TUint() const
/**
Returns the extended precision value as an unsigned signed integer value.

The operator asm("returns:");

1. zero, if the extended precision value is not a number

2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.

3. zero, if the value is negative and too big to fit into a TUint.
*/
	{
	// on entry ecx=this, return value in eax
	THISCALL_PROLOG0()
	asm("push ecx");
	asm("mov edx, [ecx]");				// edx=mantissa low
	asm("mov eax, [ecx+4]");			// eax=mantissa high
	asm("mov ecx, [ecx+8]");			// ecx=exponent/sign
	asm("ror ecx, 16");					// exponent into cx
	asm("cmp cx, 0xFFFF");
	asm("jz short trealxtouint1");		// branch if exp=FFFF
	asm("mov dx, cx");
	asm("mov cx, 0x801E");
	asm("sub cx, dx");					// cx=number of right shifts needed to convert mantissa to int
	asm("jb short trealxtouint2");		// if exp>801E, saturate result
	asm("cmp cx, 31");					// more than 31 shifts needed?
	asm("ja short trealxtouint0");		// if so, underflow to zero
	asm("test ecx, 0x10000");			// test sign
	asm("jnz short trealxtouint0");		// if -, return 0
	asm("shr eax, cl");					// else result=eax>>cl
	asm("pop ecx");
	THISCALL_EPILOG0()
	asm("trealxtouint1:");				// come here if exponent=FFFF
	asm("cmp eax, 0x80000000");			// check for infinity
	asm("jnz short trealxtouint0");		// if NaN, return 0
	asm("test edx, edx");
	asm("jnz short trealxtouint0");		// if NaN, return 0
	asm("trealxtouint2:");				// come here if argument too big for 32-bit integer
	asm("mov eax, 0xFFFFFFFF");
	asm("shr ecx, 17");					// sign bit into carry flag
	asm("adc eax, 0");					// eax=FFFFFFFF if +, 0 if -
	asm("pop ecx");			
	THISCALL_EPILOG0()					// return saturated value
	asm("trealxtouint0:");				// come here if INT{argument}=0 or NaN
	asm("xor eax, eax");				// return 0
	asm("pop ecx");
	THISCALL_EPILOG0()
	}




LOCAL_C __NAKED__ void ConvertTRealXToTInt64(void)
	{
	// Convert TRealX in ecx,edx:ebx to TInt64 in edx:ebx
	asm("ror ecx, 16");					// exponent into cx
	asm("cmp cx, 0xFFFF");
	asm("jz short trealxtoint64a");		// branch if exp=FFFF
	asm("mov ax, cx");
	asm("mov cx, 0x803E");
	asm("sub cx, ax");					// cx=number of right shifts needed to convert mantissa to int
	asm("jbe short trealxtoint64b");	// if exp>=803E, saturate result
	asm("cmp cx, 63");					// more than 63 shifts needed?
	asm("ja short trealxtoint64z");		// if so, underflow to zero
	asm("cmp cl, 31");					// more than 31 shifts needed?
	asm("jbe short trealxtoint64d");	// branch if not
	asm("sub cl, 32");					// cl=shift count - 32
	asm("mov ebx, edx");				// shift right by 32
	asm("xor edx, edx");
	asm("trealxtoint64d:");
	asm("shrd ebx, edx, cl");			// shift edx:ebx right by cl to give ABS{result}
	asm("shr edx, cl");
	asm("test ecx, 0x10000");			// test sign
	asm("jz short trealxtoint64c");		// skip if +
	asm("neg edx");						// if -, negate
	asm("neg ebx");
	asm("sbb edx, 0");
	asm("trealxtoint64c:");
	asm("ret");
	asm("trealxtoint64a:");				// come here if exponent=FFFF
	asm("cmp edx, 0x80000000");			// check for infinity
	asm("jnz short trealxtoint64z");	// if NaN, return 0
	asm("test ebx, ebx");			
	asm("jnz short trealxtoint64z");	// if NaN, return 0
	asm("trealxtoint64b:");				// come here if argument too big for 32-bit integer
	asm("mov edx, 0x7FFFFFFF");
	asm("mov ebx, 0xFFFFFFFF");
	asm("shr ecx, 17");					// sign bit into carry flag
	asm("adc ebx, 0");					// edx:ebx=7FFFFFFF FFFFFFFF if +,
	asm("adc edx, 0");					// or 80000000 00000000 if -
	asm("ret");							// return saturated value
	asm("trealxtoint64z:");				// come here if INT{argument}=0 or NaN
	asm("xor edx, edx");				// return 0
	asm("xor ebx, ebx");
	asm("ret");
	}




/**
Returns the extended precision value as a 64 bit integer value.

The operator asm("returns:");

1. zero, if the extended precision value is not a number

2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
into a TInt64

3. 0x80000000 00000000, if the value is negative and too big to fit
into a TInt.
*/
__NAKED__ EXPORT_C TRealX::operator TInt64() const
	{
	// on entry, ecx=this, return value in edx:eax
	THISCALL_PROLOG0()
	asm("push ecx");
	asm("push ebx");
	asm("mov ebx, [ecx]");				// get TRealX value into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&ConvertTRealXToTInt64));
	asm("mov eax, ebx");				// result low into eax
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG0()
	}




LOCAL_C __NAKED__ void TRealXGetTReal32(void)
	{
	// Convert TRealX in ecx,edx:ebx to TReal32 in edx
	// Return error code in eax
	asm("cmp ecx, 0xFFFF0000");				// check for infinity/NaN
	asm("jnc short trealxgettreal32a");
	asm("xor eax, eax");
	asm("ror ecx, 16");						// exponent into cx
	asm("sub cx, 0x7F80");					// cx=result exponent if normalised
	asm("jbe short trealxgettreal32b");		// jump if denormal, zero or underflow
	asm("cmp cx, 0xFF");					// check if overflow
	asm("jb short trealxgettreal32c");		// jump if not
	asm("trealxgettreal32d:");				// come here if overflow
	asm("xor edx, edx");					// set mantissa=0 to generate infinity
	asm("ror ecx, 16");						// ecx back to normal format
	asm("trealxgettreal32a:");				// come here if infinity or NaN
	asm("shr edx, 7");
	asm("or edx, 0xFF000000");				// set exponent to FF
	asm("shr ecx, 1");						// sign bit -> carry
	asm("rcr edx, 1");						// sign bit -> MSB of result
	asm("mov eax, edx");
	asm("shl eax, 9");						// test for infinity or NaN
	asm("mov eax, -9");						// eax=KErrOverflow
	asm("jz short trealxgettreal32e");
	asm("mov eax, -6");						// if NaN, eax=KErrArgument
	asm("trealxgettreal32e:");
	asm("ret");
	asm("trealxgettreal32b:");				// come here if exponent<=7F80
	asm("cmp cx, -24");						// check for zero or total underflow
	asm("jle short trealxgettreal32z");
	asm("neg cl");
	asm("inc cl");							// cl=number of right shifts to form denormal mantissa
	asm("shrd eax, ebx, cl");				// shift mantissa right into eax
	asm("shrd ebx, edx, cl");
	asm("shr edx, cl");
	asm("or edx, 0x80000000");				// set top bit to ensure correct rounding up
	asm("xor cl, cl");						// cl=result exponent=0
	asm("trealxgettreal32c:");				// come here if result normalised
	asm("cmp dl, 0x80");					// check rounding bits
	asm("ja short trealxgettreal32f");		// branch to round up
	asm("jb short trealxgettreal32g");		// branch to round down
	asm("test ebx, ebx");
	asm("jnz short trealxgettreal32f");		// branch to round up
	asm("test eax, eax");
	asm("jnz short trealxgettreal32f");		// branch to round up
	asm("test ecx, 0x01000000");			// check rounded-down flag
	asm("jnz short trealxgettreal32f");		// branch to round up
	asm("test ecx, 0x02000000");			// check rounded-up flag
	asm("jnz short trealxgettreal32g");		// branch to round down
	asm("test dh, 1");						// else round to even
	asm("jz short trealxgettreal32g");		// branch to round down if LSB=0
	asm("trealxgettreal32f:");				// come here to round up
	asm("add edx, 0x100");					// increment mantissa
	asm("jnc short trealxgettreal32g");
	asm("rcr edx, 1");
	asm("inc cl");							// if carry, increment exponent
	asm("cmp cl, 0xFF");					// and check for overflow
	asm("jz short trealxgettreal32d");		// branch out if overflow
	asm("trealxgettreal32g:");				// come here to round down
	asm("xor dl, dl");
	asm("add edx, edx");					// shift out integer bit
	asm("mov dl, cl");
	asm("ror edx, 8");						// exponent->edx bits 24-31, mantissa in 23-1
	asm("test edx, edx");					// check if underflow
	asm("jz short trealxgettreal32h");		// branch out if underflow
	asm("shr ecx, 17");						// sign bit->carry
	asm("rcr edx, 1");						// ->edx bit 31, exp->edx bits 23-30, mant->edx bits 22-0
	asm("xor eax, eax");					// return KErrNone
	asm("ret");
	asm("trealxgettreal32z:");				// come here if zero or underflow
	asm("xor eax, eax");
	asm("cmp cx, 0x8080");					// check for zero
	asm("jz short trealxgettreal32y");		// if zero, return KErrNone
	asm("trealxgettreal32h:");				// come here if underflow after rounding
	asm("mov eax, -10");					// eax=KErrUnderflow
	asm("trealxgettreal32y:");
	asm("xor edx, edx");
	asm("shr ecx, 17");
	asm("rcr edx, 1");						// sign bit into edx bit 31, rest of edx=0
	asm("ret");
	}




LOCAL_C __NAKED__ void TRealXGetTReal64(void)
	{
	// Convert TRealX in ecx,edx:ebx to TReal64 in edx:ebx
	// Return error code in eax
	// edi, esi also modified
	asm("ror ecx, 16");						// exponent into cx
	asm("cmp cx, 0xFFFF");					// check for infinity/NaN
	asm("jnc short trealxgettreal64a");
	asm("xor eax, eax");
	asm("xor edi, edi");
	asm("sub cx, 0x7C00");					// cx=result exponent if normalised
	asm("jbe short trealxgettreal64b");		// jump if denormal, zero or underflow
	asm("cmp cx, 0x07FF");					// check if overflow
	asm("jb short trealxgettreal64c");		// jump if not
	asm("trealxgettreal64d:");				// come here if overflow
	asm("xor edx, edx");					// set mantissa=0 to generate infinity
	asm("xor ebx, ebx");
	asm("trealxgettreal64a:");				// come here if infinity or NaN
	asm("mov cl, 10");
	asm("shrd ebx, edx, cl");
	asm("shr edx, cl");
	asm("or edx, 0xFFE00000");				// set exponent to 7FF
	asm("shr ecx, 17");						// sign bit -> carry
	asm("rcr edx, 1");						// sign bit -> MSB of result
	asm("rcr ebx, 1");
	asm("mov eax, edx");
	asm("shl eax, 12");						// test for infinity or NaN
	asm("mov eax, -9");						// eax=KErrOverflow
	asm("jnz short trealxgettreal64n");
	asm("test ebx, ebx");
	asm("jz short trealxgettreal64e");
	asm("trealxgettreal64n:");
	asm("mov eax, -6");						// if NaN, eax=KErrArgument
	asm("trealxgettreal64e:");
	asm("ret");
	asm("trealxgettreal64b:");				// come here if exponent<=7C00
	asm("cmp cx, -53");						// check for zero or total underflow
	asm("jle short trealxgettreal64z");
	asm("neg cl");
	asm("inc cl");							// cl=number of right shifts to form denormal mantissa
	asm("cmp cl, 32");
	asm("jb trealxgettreal64x");
	asm("mov eax, ebx");					// if >=32 shifts, do 32 shifts and decrement count by 32
	asm("mov ebx, edx");
	asm("xor edx, edx");
	asm("trealxgettreal64x:");
	asm("shrd edi, eax, cl");
	asm("shrd eax, ebx, cl");				// shift mantissa right into eax
	asm("shrd ebx, edx, cl");
	asm("shr edx, cl");
	asm("or edx, 0x80000000");				// set top bit to ensure correct rounding up
	asm("xor cx, cx");						// cx=result exponent=0
	asm("trealxgettreal64c:");				// come here if result normalised
	asm("mov esi, ebx");
	asm("and esi, 0x7FF");					// esi=rounding bits
	asm("cmp esi, 0x400");					// check rounding bits
	asm("ja short trealxgettreal64f");		// branch to round up
	asm("jb short trealxgettreal64g");		// branch to round down
	asm("test eax, eax");
	asm("jnz short trealxgettreal64f");		// branch to round up
	asm("test edi, edi");
	asm("jnz short trealxgettreal64f");		// branch to round up
	asm("test ecx, 0x01000000");			// check rounded-down flag
	asm("jnz short trealxgettreal64f");		// branch to round up
	asm("test ecx, 0x02000000");			// check rounded-up flag
	asm("jnz short trealxgettreal64g");		// branch to round down
	asm("test ebx, 0x800");					// else round to even
	asm("jz short trealxgettreal64g");		// branch to round down if LSB=0
	asm("trealxgettreal64f:");				// come here to round up
	asm("add ebx, 0x800");					// increment mantissa
	asm("adc edx, 0");
	asm("jnc short trealxgettreal64g");
	asm("rcr edx, 1");
	asm("inc cx");							// if carry, increment exponent
	asm("cmp cx, 0x7FF");					// and check for overflow
	asm("jz short trealxgettreal64d");		// branch out if overflow
	asm("trealxgettreal64g:");				// come here to round down
	asm("xor bl, bl");						// clear rounding bits
	asm("and bh, 0xF8");
	asm("mov di, cx");						// save exponent
	asm("mov cl, 10");
	asm("and edx, 0x7FFFFFFF");				// clear integer bit
	asm("shrd ebx, edx, cl");				// shift mantissa right by 10
	asm("shr edx, cl");
	asm("shl edi, 21");						// exponent into edi bits 21-31
	asm("or edx, edi");						// into edx bits 21-31
	asm("test edx, edx");					// check if underflow
	asm("jnz short trealxgettreal64i");
	asm("test ebx, ebx");
	asm("jz short trealxgettreal64h");		// branch out if underflow
	asm("trealxgettreal64i:");
	asm("shr ecx, 17");						// sign bit->carry
	asm("rcr edx, 1");						// ->edx bit 31, exp->edx bits 20-30, mant->edx bits 20-0
	asm("rcr ebx, 1");
	asm("xor eax, eax");					// return KErrNone
	asm("ret");
	asm("trealxgettreal64z:");				// come here if zero or underflow
	asm("xor eax, eax");
	asm("cmp cx, 0x8400");					// check for zero
	asm("jz short trealxgettreal64y");		// if zero, return KErrNone
	asm("trealxgettreal64h:");				// come here if underflow after rounding
	asm("mov eax, -10");					// eax=KErrUnderflow
	asm("trealxgettreal64y:");
	asm("xor edx, edx");
	asm("xor ebx, ebx");
	asm("shr ecx, 17");
	asm("rcr edx, 1");						// sign bit into edx bit 31, rest of edx=0, ebx=0
	asm("ret");
	}




__NAKED__ EXPORT_C TRealX::operator TReal32() const
/**
Returns the extended precision value as
a single precision floating point value.
*/
	{
	// On entry, ecx=this
	// On exit, TReal32 value on top of FPU stack
	THISCALL_PROLOG0()
	asm("push ecx");
	asm("push ebx");
	asm("mov ebx, [ecx]");					// *this into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXGetTReal32));	// Convert to TReal32 in edx
	asm("push edx");						// push TReal32 onto stack
	asm("fld dword ptr [esp]");				// push TReal32 onto FPU stack
	asm("pop edx");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TRealX::operator TReal64() const
/**
Returns the extended precision value as
a double precision floating point value.
*/
	{
	// On entry, ecx=this
	// On exit, TReal64 value on top of FPU stack
	THISCALL_PROLOG0()
	asm("push ecx");
	asm("push ebx");
	asm("push esi");
	asm("push edi");
	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXGetTReal64));	// Convert to TReal32 in edx:ebx
	asm("push edx");							// push TReal64 onto stack
	asm("push ebx");
	asm("fld qword ptr [esp]");					// push TReal64 onto FPU stack
	asm("add esp, 8");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
/**
Extracts the extended precision value as
a single precision floating point value.

@param aVal A reference to a single precision object which contains
the result of the operation.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// On entry, ecx=this, [esp+4]=address of aVal
	// On exit, eax=return code
	THISCALL_PROLOG1()
	asm("push ecx");
	asm("push ebx");
	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXGetTReal32));
	asm("mov ecx, [esp+12]");					// ecx=address of aVal
	asm("mov [ecx], edx");						// store result
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1()							// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
/**
Extracts the extended precision value as
a double precision floating point value.

@param aVal A reference to a double precision object which
contains the result of the operation.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// On entry, ecx=this, [esp+4]=address of aVal
	// On exit, eax=return code
	THISCALL_PROLOG1()
	asm("push ecx");
	asm("push ebx");
	asm("push esi");
	asm("push edi");
	asm("mov ebx, [ecx]");						// *this into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXGetTReal64));
	asm("mov ecx, [esp+20]");					// ecx=address of aVal
	asm("mov [ecx], ebx");						// store result
	asm("mov [ecx+4], edx");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1()							// return with error code in eax
	}




__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
/**
Sets the value of this extended precision object to zero.

@param aNegative ETrue, the value is a negative zero;
EFalse, the value is a positive zero, this is the default.
*/
	{
	THISCALL_PROLOG1()
	asm("mov edx, [esp+4]");		// aNegative into edx
	asm("xor eax, eax");			// eax=0
	asm("mov [ecx], eax");
	asm("mov [ecx+4], eax");
	asm("test edx, edx");
	asm("jz short setzero1");
	asm("inc eax");					// eax=1 if aNegative!=0
	asm("setzero1:");
	asm("mov [ecx+8], eax");		// generate positive or negative zero
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C void TRealX::SetNaN()
/**
Sets the value of this extended precision object to 'not a number'.
*/
	{
	THISCALL_PROLOG0()
	asm("xor eax, eax");			// set *this to 'real indefinite'
	asm("mov [ecx], eax");
	asm("mov eax, 0xC0000000");
	asm("mov [ecx+4], eax");
	asm("mov eax, 0xFFFF0001");
	asm("mov [ecx+8], eax");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
/**
Sets the value of this extended precision object to infinity.

@param aNegative ETrue, the value is a negative zero;
EFalse, the value is a positive zero.
*/
	{
	THISCALL_PROLOG1()
	asm("mov edx, [esp+4]");			// aNegative into edx
	asm("mov eax, 0xFFFF0000");			// exponent=FFFF, sign=0 initially
	asm("test edx, edx");
	asm("jz short setinf1");
	asm("inc eax");						// sign=1 if aNegative!=0
	asm("setinf1:");
	asm("mov [ecx+8], eax");
	asm("mov eax, 0x80000000");			// generate positive or negative infinity
	asm("mov [ecx+4], eax");
	asm("xor eax, eax");
	asm("mov [ecx], eax");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C TBool TRealX::IsZero() const
/**
Determines whether the extended precision value is zero.

@return True, if the extended precision value is zero, false, otherwise.
*/
	{
	THISCALL_PROLOG0()
	asm("mov eax, [ecx+8]");		// check exponent
	asm("shr eax, 16");				// move exponent into ax
	asm("jz short iszero1");		// branch if zero
	asm("xor eax, eax");			// else return 0
	THISCALL_EPILOG0()
	asm("iszero1:");
	asm("inc eax");					// if zero, return 1
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
/**
Determines whether the extended precision value is 'not a number'.

@return True, if the extended precision value is 'not a number',
false, otherwise.
*/
	{
	THISCALL_PROLOG0()
	asm("mov eax, [ecx+8]");		// check exponent
	asm("cmp eax, 0xFFFF0000");
	asm("jc short isnan0");			// branch if not FFFF
	asm("mov eax, [ecx+4]");
	asm("cmp eax, 0x80000000");		// check for infinity
	asm("jne short isnan1");
	asm("mov eax, [ecx]");
	asm("test eax, eax");
	asm("jne short isnan1");
	asm("isnan0:");
	asm("xor eax, eax");			// return 0 if not NaN
	THISCALL_EPILOG0()
	asm("isnan1:");
	asm("mov eax, 1");				// return 1 if NaN
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
/**
Determines whether the extended precision value has a finite value.

@return True, if the extended precision value is finite,
false, if the value is 'not a number' or is infinite,
*/
	{
	THISCALL_PROLOG0()
	asm("mov eax, [ecx+8]");			// check exponent
	asm("cmp eax, 0xFFFF0000");
	asm("jc short isinf0");				// branch if not FFFF
	asm("mov eax, [ecx+4]");
	asm("cmp eax, 0x80000000");			// check for infinity
	asm("jne short isinf0");
	asm("mov eax, [ecx]");
	asm("test eax, eax");
	asm("jne short isinf0");
	asm("inc eax");						// return 1 if infinity
	THISCALL_EPILOG0()
	asm("isinf0:");
	asm("xor eax, eax");				// return 0 if not infinity
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
/**
Determines whether the extended precision value has a finite value.

@return True, if the extended precision value is finite,
false, if the value is 'not a number' or is infinite,
*/
	{
	THISCALL_PROLOG0()
	asm("mov eax, [ecx+8]");			// check exponent
	asm("cmp eax, 0xFFFF0000");			// check for NaN or infinity
	asm("jnc short isfinite0");			// branch if NaN or infinity
	asm("mov eax, 1");					// return 1 if finite
	THISCALL_EPILOG0()
	asm("isfinite0:");
	asm("xor eax, eax");				// return 0 if NaN or infinity
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
/**
Adds an extended precision value to this extended precision number.

@param aVal The extended precision value to be added.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return this in eax
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
/**
Subtracts an extended precision value from this extended precision number.

@param aVal The extended precision value to be subtracted.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");						// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");					// this into esi
	asm("mov ecx, [esp+20]");				// address of aVal into ecx
	asm("mov ebx, [ecx]");					// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");					// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)				// panic if error
	asm("mov eax, esi");					// return this in eax
	asm("mov ecx, esi");					// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
/**
Multiplies this extended precision number by an extended precision value.

@param aVal The extended precision value to be subtracted.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// esi = this
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return this in eax
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
/**
Divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
@panic MATHX KErrDivideByZero if the divisor is zero.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXDivide));	// do division, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return this in eax
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
/**
Modulo-divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return A reference to this object.

@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXModulo));	// do modulo, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return this in eax
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()
	}




__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
/**
Adds an extended precision value to this extended precision number.

@param aVal The extended precision value to be added.

@return KErrNone, if the operation is successful;
KErrOverflow,if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
/**
Subtracts an extended precision value from this extended precision number.

@param aVal The extended precision value to be subtracted.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
/**
Multiplies this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the multiplier.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXMultiply));	// do multiplication, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
/**
Divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow;
KErrDivideByZero, if the divisor is zero.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");						// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");					// this into esi
	asm("mov ecx, [esp+20]");				// address of aVal into ecx
	asm("mov ebx, [ecx]");					// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXDivide));	// do division, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");					// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("mov ecx, esi");					// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()						// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
/**
Modulo-divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return KErrNone, if the operation is successful;
KErrTotalLossOfPrecision, if precision is lost;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+20]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXModulo));	// do modulo, result in ecx,edx:ebx, error code in eax
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("mov ecx, esi");				// restore registers
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1()					// return with error code in eax
	}




__NAKED__ EXPORT_C TRealX TRealX::operator+() const
/**
Returns this extended precision number unchanged.

Note that this may also be referred to as a unary plus operator.

@return The extended precision number.
*/
	{
	THISCALL_PROLOG0_BIGRETVAL()
	asm("mov eax, [esp+4]");			// eax=address to write return value
	asm("mov edx, [ecx]");
	asm("mov [eax], edx");
	asm("mov edx, [ecx+4]");
	asm("mov [eax+4], edx");
	asm("mov edx, [ecx+8]");
	asm("mov [eax+8], edx");			// return address of return value in eax
	THISCALL_EPILOG0_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator-() const
/**
Negates this extended precision number.

This may also be referred to as a unary minus operator.

@return The negative of the extended precision number.
*/
	{
	THISCALL_PROLOG0_BIGRETVAL()		
	asm("mov eax, [esp+4]");			// eax=address to write return value
	asm("mov edx, [ecx]");
	asm("mov [eax], edx");
	asm("mov edx, [ecx+4]");
	asm("mov [eax+4], edx");
	asm("mov edx, [ecx+8]");
	asm("xor dl, 1");					// change sign bit
	asm("mov [eax+8], edx");			
	THISCALL_EPILOG0_BIGRETVAL()		// return address of return value in eax
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator++()
/**
Increments this extended precision number by one,
and then returns a reference to it.

This is also referred to as a prefix operator.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// pre-increment
	// on entry ecx=this, return this in eax
	THISCALL_PROLOG0()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, 0x7FFF0000");			// set ecx,edx:ebx to 1.0
	asm("mov edx, 0x80000000");
	asm("xor ebx, ebx");
	asm("call %a0": :"i"(&TRealXAdd));	// add 1 to *this
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");				// check error code
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// else return this in eax
	asm("mov ecx, esi");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
/**
Returns this extended precision number before incrementing it by one.

This is also referred to as a postfix operator.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// post-increment
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov edi, [esp+20]");			// address of return value into edi
	asm("mov eax, [ecx]");				// copy initial value of *this into [edi]
	asm("mov [edi], eax");
	asm("mov eax, [ecx+4]");
	asm("mov [edi+4], eax");
	asm("mov eax, [ecx+8]");
	asm("mov [edi+8], eax");
	asm("mov ecx, 0x7FFF0000");			// set ecx,edx:ebx to 1.0
	asm("mov edx, 0x80000000");
	asm("xor ebx, ebx");
	asm("call %a0": :"i"(&TRealXAdd));	// add 1 to *this
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");				// check error code
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, [esp+20]");			// address of return value into eax
	asm("mov ecx, esi");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX& TRealX::operator--()
/**
Decrements this extended precision number by one,
and then returns a reference to it.

This is also referred to as a prefix operator.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// pre-decrement
	// on entry ecx=this, return this in eax
	THISCALL_PROLOG0()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, 0x7FFF0001");			// set ecx,edx:ebx to -1.0
	asm("mov edx, 0x80000000");
	asm("xor ebx, ebx");
	asm("call %a0": :"i"(&TRealXAdd));	// add -1 to *this
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");				// check error code
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// else return this in eax
	asm("mov ecx, esi");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG0()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
/**
Returns this extended precision number before decrementing it by one.

This is also referred to as a postfix operator.

@return A reference to this object.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// post-decrement
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int	
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ebx");					// save registers
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov edi, [esp+20]");			// address of return value into edi
	asm("mov eax, [ecx]");				// copy initial value of *this into [edi]
	asm("mov [edi], eax");
	asm("mov eax, [ecx+4]");
	asm("mov [edi+4], eax");
	asm("mov eax, [ecx+8]");
	asm("mov [edi+8], eax");
	asm("mov ecx, 0x7FFF0001");			// set ecx,edx:ebx to -1.0
	asm("mov edx, 0x80000000");
	asm("xor ebx, ebx");
	asm("call %a0": :"i"(&TRealXAdd));	// add -1 to *this
	asm("mov [esi], ebx");				// store result in *this
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");				// check error code
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, [esp+20]");			// address of return value into eax
	asm("mov ecx, esi");
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
/**
Adds an extended precision value to this extended precision number.

@param aVal The extended precision value to be added.

@return An extended precision object containing the result.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of return value
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return address of return value in eax
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
/**
Subtracts an extended precision value from this extended precision number.

@param aVal The extended precision value to be subtracted.

@return An extended precision object containing the result.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of return value
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return address of return value in eax
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
/**
Multiplies this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the multiplier.

@return An extended precision object containing the result.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of return value
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return address of return value in eax
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
/**
Divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return An extended precision object containing the result.

@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if  the operation results in underflow.
@panic MATHX KErrDivideByZero if the divisor is zero.
*/
	{
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of return value
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return address of return value in eax
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
/**
Modulo-divides this extended precision number by an extended precision value.

@param aVal The extended precision value to be used as the divisor.

@return An extended precision object containing the result.

@panic MATHX KErrTotalLossOfPrecision if precision is lost.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
	THISCALL_PROLOG1_BIGRETVAL()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of return value
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("test eax, eax");
	_ASM_jn(z,TRealXPanicEax)			// panic if error
	asm("mov eax, esi");				// return address of return value in eax
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1_BIGRETVAL()
	}




__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
/**
Adds an extended precision value to this extended precision number.

@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal    The extended precision value to be added.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
	THISCALL_PROLOG2()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": :"i"(&TRealXAdd));	// do addition, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of aResult
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
/**
Subtracts an extended precision value from this extended precision number.

@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal    The extended precision value to be subtracted.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
	THISCALL_PROLOG2()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXSubtract));	// do subtraction, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of aResult
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");			
	asm("mov [esi+8], ecx");
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
/**
Multiplies this extended precision number by an extended precision value.

@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal    The extended precision value to be used as the multiplier.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
	THISCALL_PROLOG2()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of aResult
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()					// return with error code in eax
	}



__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
/**
Divides this extended precision number by an extended precision value.

@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal    The extended precision value to be used as the divisor.

@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow;
KErrDivideByZero, if the divisor is zero.
*/
	{
	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
	THISCALL_PROLOG2()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of aResult
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()					// return with error code in eax
	}




__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
/**
Modulo-divides this extended precision number by an extended precision value.

@param aResult On return, a reference to an extended precision object
containing the result of the operation.

@param aVal    The extended precision value to be used as the divisor.

@return KErrNone, if the operation is successful;
KErrTotalLossOfPrecision, if precision is lost;
KErrUnderflow, if the operation results in underflow.
*/
	{
	// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
	THISCALL_PROLOG2()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, ecx");				// this into esi
	asm("mov ecx, [esp+28]");			// address of aVal into ecx
	asm("mov ebx, [ecx]");				// aVal into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
	asm("mov esi, [esp+24]");			// esi=address of aResult
	asm("mov [esi], ebx");				// store result
	asm("mov [esi+4], edx");
	asm("mov [esi+8], ecx");
	asm("pop edi");						// restore registers
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG2()					// return with error code in eax
	}

// Compare TRealX in ecx,edx:ebx (op1) to TRealX at [esi] (op2)
// Return 1 if op1<op2
// Return 2 if op1=op2
// Return 4 if op1>op2
// Return 8 if unordered
// Return value in eax
LOCAL_C __NAKED__ void TRealXCompare(void)
	{
	asm("cmp ecx, 0xFFFF0000");		// check if op1=NaN or infinity
	asm("jc short fpcmp1");			// branch if not
	asm("cmp edx, 0x80000000");		// check for infinity
	asm("jnz short fpcmpunord");	// branch if NaN
	asm("test ebx, ebx");
	asm("jz short fpcmp1");			// if infinity, process normally
	asm("fpcmpunord:");				// come here if unordered
	asm("mov eax, 8");				// return 8
	asm("ret");
	asm("fpcmp1:");					// op1 is not a NaN
	asm("mov eax, [esi+8]");		// get op2 into eax,edi:ebp
	asm("mov edi, [esi+4]");
	asm("mov ebp, [esi]");
	asm("cmp eax, 0xFFFF0000");		// check for NaN or infinity
	asm("jc short fpcmp2");			// branch if neither
	asm("cmp edi, 0x80000000");		// check for infinity
	asm("jnz short fpcmpunord");	// branch if NaN
	asm("test ebp, ebp");
	asm("jnz short fpcmpunord");
	asm("fpcmp2:");					// neither operand is a NaN
	asm("cmp ecx, 0x10000");		// check if op1=0
	asm("jc short fpcmpop1z");		// branch if it is
	asm("cmp eax, 0x10000");		// check if op2=0
	asm("jc short fpcmp4");			// branch if it is
	asm("xor al, cl");				// check if signs the same
	asm("test al, 1");
	asm("jnz short fpcmp4");		// branch if different
	asm("push ecx");
	asm("shr ecx, 16");				// op1 exponent into cx
	asm("shr eax, 16");				// op2 exponent into ax
	asm("cmp ecx, eax");			// compare exponents
	asm("pop ecx");
	asm("ja short fpcmp4");			// if op1 exp > op2 exp op1>op2 if +ve
	asm("jb short fpcmp5");			// if op1 exp < op2 exp op1<op2 if +ve
	asm("cmp edx, edi");			// else compare mantissa high words
	asm("ja short fpcmp4");
	asm("jb short fpcmp5");
	asm("cmp ebx, ebp");			// if equal compare mantissa low words
	asm("ja short fpcmp4");
	asm("jb short fpcmp5");
	asm("fpcmp0:");
	asm("mov eax, 2");				// numbers exactly equal
	asm("ret");
	asm("fpcmp4:");					// come here if ABS{op1}>ABS{op2} or if signs different
									// or if op2 zero, op1 nonzero
	asm("mov eax, 4");				// return 4 if +ve
	asm("test cl, 1");				// check sign
	asm("jz short fpcmp4a");		// skip if +
	asm("mov al, 1");				// return 1 if -ve
	asm("fpcmp4a:");
	asm("ret");
	asm("fpcmp5:");					// come here if ABS{op1}<ABS{op2}
	asm("mov eax, 1");				// return 1 if +ve
	asm("test cl, 1");				// check sign
	asm("jz short fpcmp5a");		// skip if +
	asm("mov al, 4");				// return 4 if -ve
	asm("fpcmp5a:");
	asm("ret");
	asm("fpcmpop1z:");				// come here if op1=0
	asm("cmp eax, 0x10000");		// check if op2 also zero
	asm("jc short fpcmp0");			// if so, they are equal
	asm("test al, 1");				// test sign of op 2
	asm("mov eax, 4");				// if -, return 4
	asm("jnz short fpcmpop1z2n");	// skip if -
	asm("mov al, 1");				// else return 1
	asm("fpcmpop1z2n:");
	asm("ret");
	}




__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
/**
*/
	{
	// On entry ecx=this, [esp+4]=address of aVal
	THISCALL_PROLOG1()
	asm("push ecx");					// save registers
	asm("push ebx");
	asm("push ebp");
	asm("push esi");
	asm("push edi");
	asm("mov esi, [esp+24]");			// address of aVal into esi
	asm("mov ebx, [ecx]");				// *this into ecx,edx:ebx
	asm("mov edx, [ecx+4]");
	asm("mov ecx, [ecx+8]");
	asm("call %a0": : "i"(&TRealXCompare)); // result in eax
	asm("pop edi");
	asm("pop esi");
	asm("pop ebp");
	asm("pop ebx");
	asm("pop ecx");
	THISCALL_EPILOG1()
	}