python-2.5.2/win32/Lib/test/test_random.py
changeset 0 ae805ac0140d
equal deleted inserted replaced
-1:000000000000 0:ae805ac0140d
       
     1 #!/usr/bin/env python
       
     2 
       
     3 import unittest
       
     4 import random
       
     5 import time
       
     6 import pickle
       
     7 import warnings
       
     8 from math import log, exp, sqrt, pi
       
     9 from test import test_support
       
    10 
       
    11 class TestBasicOps(unittest.TestCase):
       
    12     # Superclass with tests common to all generators.
       
    13     # Subclasses must arrange for self.gen to retrieve the Random instance
       
    14     # to be tested.
       
    15 
       
    16     def randomlist(self, n):
       
    17         """Helper function to make a list of random numbers"""
       
    18         return [self.gen.random() for i in xrange(n)]
       
    19 
       
    20     def test_autoseed(self):
       
    21         self.gen.seed()
       
    22         state1 = self.gen.getstate()
       
    23         time.sleep(0.1)
       
    24         self.gen.seed()      # diffent seeds at different times
       
    25         state2 = self.gen.getstate()
       
    26         self.assertNotEqual(state1, state2)
       
    27 
       
    28     def test_saverestore(self):
       
    29         N = 1000
       
    30         self.gen.seed()
       
    31         state = self.gen.getstate()
       
    32         randseq = self.randomlist(N)
       
    33         self.gen.setstate(state)    # should regenerate the same sequence
       
    34         self.assertEqual(randseq, self.randomlist(N))
       
    35 
       
    36     def test_seedargs(self):
       
    37         for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
       
    38                     3.14, 1+2j, 'a', tuple('abc')]:
       
    39             self.gen.seed(arg)
       
    40         for arg in [range(3), dict(one=1)]:
       
    41             self.assertRaises(TypeError, self.gen.seed, arg)
       
    42         self.assertRaises(TypeError, self.gen.seed, 1, 2)
       
    43         self.assertRaises(TypeError, type(self.gen), [])
       
    44 
       
    45     def test_jumpahead(self):
       
    46         self.gen.seed()
       
    47         state1 = self.gen.getstate()
       
    48         self.gen.jumpahead(100)
       
    49         state2 = self.gen.getstate()    # s/b distinct from state1
       
    50         self.assertNotEqual(state1, state2)
       
    51         self.gen.jumpahead(100)
       
    52         state3 = self.gen.getstate()    # s/b distinct from state2
       
    53         self.assertNotEqual(state2, state3)
       
    54 
       
    55         self.assertRaises(TypeError, self.gen.jumpahead)  # needs an arg
       
    56         self.assertRaises(TypeError, self.gen.jumpahead, "ick")  # wrong type
       
    57         self.assertRaises(TypeError, self.gen.jumpahead, 2.3)  # wrong type
       
    58         self.assertRaises(TypeError, self.gen.jumpahead, 2, 3)  # too many
       
    59 
       
    60     def test_sample(self):
       
    61         # For the entire allowable range of 0 <= k <= N, validate that
       
    62         # the sample is of the correct length and contains only unique items
       
    63         N = 100
       
    64         population = xrange(N)
       
    65         for k in xrange(N+1):
       
    66             s = self.gen.sample(population, k)
       
    67             self.assertEqual(len(s), k)
       
    68             uniq = set(s)
       
    69             self.assertEqual(len(uniq), k)
       
    70             self.failUnless(uniq <= set(population))
       
    71         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
       
    72 
       
    73     def test_sample_distribution(self):
       
    74         # For the entire allowable range of 0 <= k <= N, validate that
       
    75         # sample generates all possible permutations
       
    76         n = 5
       
    77         pop = range(n)
       
    78         trials = 10000  # large num prevents false negatives without slowing normal case
       
    79         def factorial(n):
       
    80             return reduce(int.__mul__, xrange(1, n), 1)
       
    81         for k in xrange(n):
       
    82             expected = factorial(n) // factorial(n-k)
       
    83             perms = {}
       
    84             for i in xrange(trials):
       
    85                 perms[tuple(self.gen.sample(pop, k))] = None
       
    86                 if len(perms) == expected:
       
    87                     break
       
    88             else:
       
    89                 self.fail()
       
    90 
       
    91     def test_sample_inputs(self):
       
    92         # SF bug #801342 -- population can be any iterable defining __len__()
       
    93         self.gen.sample(set(range(20)), 2)
       
    94         self.gen.sample(range(20), 2)
       
    95         self.gen.sample(xrange(20), 2)
       
    96         self.gen.sample(str('abcdefghijklmnopqrst'), 2)
       
    97         self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
       
    98 
       
    99     def test_sample_on_dicts(self):
       
   100         self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
       
   101 
       
   102         # SF bug #1460340 -- random.sample can raise KeyError
       
   103         a = dict.fromkeys(range(10)+range(10,100,2)+range(100,110))
       
   104         self.gen.sample(a, 3)
       
   105 
       
   106         # A followup to bug #1460340:  sampling from a dict could return
       
   107         # a subset of its keys or of its values, depending on the size of
       
   108         # the subset requested.
       
   109         N = 30
       
   110         d = dict((i, complex(i, i)) for i in xrange(N))
       
   111         for k in xrange(N+1):
       
   112             samp = self.gen.sample(d, k)
       
   113             # Verify that we got ints back (keys); the values are complex.
       
   114             for x in samp:
       
   115                 self.assert_(type(x) is int)
       
   116         samp.sort()
       
   117         self.assertEqual(samp, range(N))
       
   118 
       
   119     def test_gauss(self):
       
   120         # Ensure that the seed() method initializes all the hidden state.  In
       
   121         # particular, through 2.2.1 it failed to reset a piece of state used
       
   122         # by (and only by) the .gauss() method.
       
   123 
       
   124         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
       
   125             self.gen.seed(seed)
       
   126             x1 = self.gen.random()
       
   127             y1 = self.gen.gauss(0, 1)
       
   128 
       
   129             self.gen.seed(seed)
       
   130             x2 = self.gen.random()
       
   131             y2 = self.gen.gauss(0, 1)
       
   132 
       
   133             self.assertEqual(x1, x2)
       
   134             self.assertEqual(y1, y2)
       
   135 
       
   136     def test_pickling(self):
       
   137         state = pickle.dumps(self.gen)
       
   138         origseq = [self.gen.random() for i in xrange(10)]
       
   139         newgen = pickle.loads(state)
       
   140         restoredseq = [newgen.random() for i in xrange(10)]
       
   141         self.assertEqual(origseq, restoredseq)
       
   142 
       
   143 class WichmannHill_TestBasicOps(TestBasicOps):
       
   144     gen = random.WichmannHill()
       
   145 
       
   146     def test_setstate_first_arg(self):
       
   147         self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
       
   148 
       
   149     def test_strong_jumpahead(self):
       
   150         # tests that jumpahead(n) semantics correspond to n calls to random()
       
   151         N = 1000
       
   152         s = self.gen.getstate()
       
   153         self.gen.jumpahead(N)
       
   154         r1 = self.gen.random()
       
   155         # now do it the slow way
       
   156         self.gen.setstate(s)
       
   157         for i in xrange(N):
       
   158             self.gen.random()
       
   159         r2 = self.gen.random()
       
   160         self.assertEqual(r1, r2)
       
   161 
       
   162     def test_gauss_with_whseed(self):
       
   163         # Ensure that the seed() method initializes all the hidden state.  In
       
   164         # particular, through 2.2.1 it failed to reset a piece of state used
       
   165         # by (and only by) the .gauss() method.
       
   166 
       
   167         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
       
   168             self.gen.whseed(seed)
       
   169             x1 = self.gen.random()
       
   170             y1 = self.gen.gauss(0, 1)
       
   171 
       
   172             self.gen.whseed(seed)
       
   173             x2 = self.gen.random()
       
   174             y2 = self.gen.gauss(0, 1)
       
   175 
       
   176             self.assertEqual(x1, x2)
       
   177             self.assertEqual(y1, y2)
       
   178 
       
   179     def test_bigrand(self):
       
   180         # Verify warnings are raised when randrange is too large for random()
       
   181         oldfilters = warnings.filters[:]
       
   182         warnings.filterwarnings("error", "Underlying random")
       
   183         self.assertRaises(UserWarning, self.gen.randrange, 2**60)
       
   184         warnings.filters[:] = oldfilters
       
   185 
       
   186 class SystemRandom_TestBasicOps(TestBasicOps):
       
   187     gen = random.SystemRandom()
       
   188 
       
   189     def test_autoseed(self):
       
   190         # Doesn't need to do anything except not fail
       
   191         self.gen.seed()
       
   192 
       
   193     def test_saverestore(self):
       
   194         self.assertRaises(NotImplementedError, self.gen.getstate)
       
   195         self.assertRaises(NotImplementedError, self.gen.setstate, None)
       
   196 
       
   197     def test_seedargs(self):
       
   198         # Doesn't need to do anything except not fail
       
   199         self.gen.seed(100)
       
   200 
       
   201     def test_jumpahead(self):
       
   202         # Doesn't need to do anything except not fail
       
   203         self.gen.jumpahead(100)
       
   204 
       
   205     def test_gauss(self):
       
   206         self.gen.gauss_next = None
       
   207         self.gen.seed(100)
       
   208         self.assertEqual(self.gen.gauss_next, None)
       
   209 
       
   210     def test_pickling(self):
       
   211         self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
       
   212 
       
   213     def test_53_bits_per_float(self):
       
   214         # This should pass whenever a C double has 53 bit precision.
       
   215         span = 2 ** 53
       
   216         cum = 0
       
   217         for i in xrange(100):
       
   218             cum |= int(self.gen.random() * span)
       
   219         self.assertEqual(cum, span-1)
       
   220 
       
   221     def test_bigrand(self):
       
   222         # The randrange routine should build-up the required number of bits
       
   223         # in stages so that all bit positions are active.
       
   224         span = 2 ** 500
       
   225         cum = 0
       
   226         for i in xrange(100):
       
   227             r = self.gen.randrange(span)
       
   228             self.assert_(0 <= r < span)
       
   229             cum |= r
       
   230         self.assertEqual(cum, span-1)
       
   231 
       
   232     def test_bigrand_ranges(self):
       
   233         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
       
   234             start = self.gen.randrange(2 ** i)
       
   235             stop = self.gen.randrange(2 ** (i-2))
       
   236             if stop <= start:
       
   237                 return
       
   238             self.assert_(start <= self.gen.randrange(start, stop) < stop)
       
   239 
       
   240     def test_rangelimits(self):
       
   241         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
       
   242             self.assertEqual(set(range(start,stop)),
       
   243                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
       
   244 
       
   245     def test_genrandbits(self):
       
   246         # Verify ranges
       
   247         for k in xrange(1, 1000):
       
   248             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
       
   249 
       
   250         # Verify all bits active
       
   251         getbits = self.gen.getrandbits
       
   252         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
       
   253             cum = 0
       
   254             for i in xrange(100):
       
   255                 cum |= getbits(span)
       
   256             self.assertEqual(cum, 2**span-1)
       
   257 
       
   258         # Verify argument checking
       
   259         self.assertRaises(TypeError, self.gen.getrandbits)
       
   260         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
       
   261         self.assertRaises(ValueError, self.gen.getrandbits, 0)
       
   262         self.assertRaises(ValueError, self.gen.getrandbits, -1)
       
   263         self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
       
   264 
       
   265     def test_randbelow_logic(self, _log=log, int=int):
       
   266         # check bitcount transition points:  2**i and 2**(i+1)-1
       
   267         # show that: k = int(1.001 + _log(n, 2))
       
   268         # is equal to or one greater than the number of bits in n
       
   269         for i in xrange(1, 1000):
       
   270             n = 1L << i # check an exact power of two
       
   271             numbits = i+1
       
   272             k = int(1.00001 + _log(n, 2))
       
   273             self.assertEqual(k, numbits)
       
   274             self.assert_(n == 2**(k-1))
       
   275 
       
   276             n += n - 1      # check 1 below the next power of two
       
   277             k = int(1.00001 + _log(n, 2))
       
   278             self.assert_(k in [numbits, numbits+1])
       
   279             self.assert_(2**k > n > 2**(k-2))
       
   280 
       
   281             n -= n >> 15     # check a little farther below the next power of two
       
   282             k = int(1.00001 + _log(n, 2))
       
   283             self.assertEqual(k, numbits)        # note the stronger assertion
       
   284             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
       
   285 
       
   286 
       
   287 class MersenneTwister_TestBasicOps(TestBasicOps):
       
   288     gen = random.Random()
       
   289 
       
   290     def test_setstate_first_arg(self):
       
   291         self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
       
   292 
       
   293     def test_setstate_middle_arg(self):
       
   294         # Wrong type, s/b tuple
       
   295         self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
       
   296         # Wrong length, s/b 625
       
   297         self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
       
   298         # Wrong type, s/b tuple of 625 ints
       
   299         self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
       
   300         # Last element s/b an int also
       
   301         self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
       
   302 
       
   303     def test_referenceImplementation(self):
       
   304         # Compare the python implementation with results from the original
       
   305         # code.  Create 2000 53-bit precision random floats.  Compare only
       
   306         # the last ten entries to show that the independent implementations
       
   307         # are tracking.  Here is the main() function needed to create the
       
   308         # list of expected random numbers:
       
   309         #    void main(void){
       
   310         #         int i;
       
   311         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
       
   312         #         init_by_array(init, length);
       
   313         #         for (i=0; i<2000; i++) {
       
   314         #           printf("%.15f ", genrand_res53());
       
   315         #           if (i%5==4) printf("\n");
       
   316         #         }
       
   317         #     }
       
   318         expected = [0.45839803073713259,
       
   319                     0.86057815201978782,
       
   320                     0.92848331726782152,
       
   321                     0.35932681119782461,
       
   322                     0.081823493762449573,
       
   323                     0.14332226470169329,
       
   324                     0.084297823823520024,
       
   325                     0.53814864671831453,
       
   326                     0.089215024911993401,
       
   327                     0.78486196105372907]
       
   328 
       
   329         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
       
   330         actual = self.randomlist(2000)[-10:]
       
   331         for a, e in zip(actual, expected):
       
   332             self.assertAlmostEqual(a,e,places=14)
       
   333 
       
   334     def test_strong_reference_implementation(self):
       
   335         # Like test_referenceImplementation, but checks for exact bit-level
       
   336         # equality.  This should pass on any box where C double contains
       
   337         # at least 53 bits of precision (the underlying algorithm suffers
       
   338         # no rounding errors -- all results are exact).
       
   339         from math import ldexp
       
   340 
       
   341         expected = [0x0eab3258d2231fL,
       
   342                     0x1b89db315277a5L,
       
   343                     0x1db622a5518016L,
       
   344                     0x0b7f9af0d575bfL,
       
   345                     0x029e4c4db82240L,
       
   346                     0x04961892f5d673L,
       
   347                     0x02b291598e4589L,
       
   348                     0x11388382c15694L,
       
   349                     0x02dad977c9e1feL,
       
   350                     0x191d96d4d334c6L]
       
   351         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
       
   352         actual = self.randomlist(2000)[-10:]
       
   353         for a, e in zip(actual, expected):
       
   354             self.assertEqual(long(ldexp(a, 53)), e)
       
   355 
       
   356     def test_long_seed(self):
       
   357         # This is most interesting to run in debug mode, just to make sure
       
   358         # nothing blows up.  Under the covers, a dynamically resized array
       
   359         # is allocated, consuming space proportional to the number of bits
       
   360         # in the seed.  Unfortunately, that's a quadratic-time algorithm,
       
   361         # so don't make this horribly big.
       
   362         seed = (1L << (10000 * 8)) - 1  # about 10K bytes
       
   363         self.gen.seed(seed)
       
   364 
       
   365     def test_53_bits_per_float(self):
       
   366         # This should pass whenever a C double has 53 bit precision.
       
   367         span = 2 ** 53
       
   368         cum = 0
       
   369         for i in xrange(100):
       
   370             cum |= int(self.gen.random() * span)
       
   371         self.assertEqual(cum, span-1)
       
   372 
       
   373     def test_bigrand(self):
       
   374         # The randrange routine should build-up the required number of bits
       
   375         # in stages so that all bit positions are active.
       
   376         span = 2 ** 500
       
   377         cum = 0
       
   378         for i in xrange(100):
       
   379             r = self.gen.randrange(span)
       
   380             self.assert_(0 <= r < span)
       
   381             cum |= r
       
   382         self.assertEqual(cum, span-1)
       
   383 
       
   384     def test_bigrand_ranges(self):
       
   385         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
       
   386             start = self.gen.randrange(2 ** i)
       
   387             stop = self.gen.randrange(2 ** (i-2))
       
   388             if stop <= start:
       
   389                 return
       
   390             self.assert_(start <= self.gen.randrange(start, stop) < stop)
       
   391 
       
   392     def test_rangelimits(self):
       
   393         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
       
   394             self.assertEqual(set(range(start,stop)),
       
   395                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
       
   396 
       
   397     def test_genrandbits(self):
       
   398         # Verify cross-platform repeatability
       
   399         self.gen.seed(1234567)
       
   400         self.assertEqual(self.gen.getrandbits(100),
       
   401                          97904845777343510404718956115L)
       
   402         # Verify ranges
       
   403         for k in xrange(1, 1000):
       
   404             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
       
   405 
       
   406         # Verify all bits active
       
   407         getbits = self.gen.getrandbits
       
   408         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
       
   409             cum = 0
       
   410             for i in xrange(100):
       
   411                 cum |= getbits(span)
       
   412             self.assertEqual(cum, 2**span-1)
       
   413 
       
   414         # Verify argument checking
       
   415         self.assertRaises(TypeError, self.gen.getrandbits)
       
   416         self.assertRaises(TypeError, self.gen.getrandbits, 'a')
       
   417         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
       
   418         self.assertRaises(ValueError, self.gen.getrandbits, 0)
       
   419         self.assertRaises(ValueError, self.gen.getrandbits, -1)
       
   420 
       
   421     def test_randbelow_logic(self, _log=log, int=int):
       
   422         # check bitcount transition points:  2**i and 2**(i+1)-1
       
   423         # show that: k = int(1.001 + _log(n, 2))
       
   424         # is equal to or one greater than the number of bits in n
       
   425         for i in xrange(1, 1000):
       
   426             n = 1L << i # check an exact power of two
       
   427             numbits = i+1
       
   428             k = int(1.00001 + _log(n, 2))
       
   429             self.assertEqual(k, numbits)
       
   430             self.assert_(n == 2**(k-1))
       
   431 
       
   432             n += n - 1      # check 1 below the next power of two
       
   433             k = int(1.00001 + _log(n, 2))
       
   434             self.assert_(k in [numbits, numbits+1])
       
   435             self.assert_(2**k > n > 2**(k-2))
       
   436 
       
   437             n -= n >> 15     # check a little farther below the next power of two
       
   438             k = int(1.00001 + _log(n, 2))
       
   439             self.assertEqual(k, numbits)        # note the stronger assertion
       
   440             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
       
   441 
       
   442     def test_randrange_bug_1590891(self):
       
   443         start = 1000000000000
       
   444         stop = -100000000000000000000
       
   445         step = -200
       
   446         x = self.gen.randrange(start, stop, step)
       
   447         self.assert_(stop < x <= start)
       
   448         self.assertEqual((x+stop)%step, 0)
       
   449 
       
   450 _gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
       
   451               771.3234287757674,  -176.6150291498386, 12.50734324009056,
       
   452               -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
       
   453 
       
   454 def gamma(z, cof=_gammacoeff, g=7):
       
   455     z -= 1.0
       
   456     sum = cof[0]
       
   457     for i in xrange(1,len(cof)):
       
   458         sum += cof[i] / (z+i)
       
   459     z += 0.5
       
   460     return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum
       
   461 
       
   462 class TestDistributions(unittest.TestCase):
       
   463     def test_zeroinputs(self):
       
   464         # Verify that distributions can handle a series of zero inputs'
       
   465         g = random.Random()
       
   466         x = [g.random() for i in xrange(50)] + [0.0]*5
       
   467         g.random = x[:].pop; g.uniform(1,10)
       
   468         g.random = x[:].pop; g.paretovariate(1.0)
       
   469         g.random = x[:].pop; g.expovariate(1.0)
       
   470         g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
       
   471         g.random = x[:].pop; g.normalvariate(0.0, 1.0)
       
   472         g.random = x[:].pop; g.gauss(0.0, 1.0)
       
   473         g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
       
   474         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
       
   475         g.random = x[:].pop; g.gammavariate(0.01, 1.0)
       
   476         g.random = x[:].pop; g.gammavariate(1.0, 1.0)
       
   477         g.random = x[:].pop; g.gammavariate(200.0, 1.0)
       
   478         g.random = x[:].pop; g.betavariate(3.0, 3.0)
       
   479 
       
   480     def test_avg_std(self):
       
   481         # Use integration to test distribution average and standard deviation.
       
   482         # Only works for distributions which do not consume variates in pairs
       
   483         g = random.Random()
       
   484         N = 5000
       
   485         x = [i/float(N) for i in xrange(1,N)]
       
   486         for variate, args, mu, sigmasqrd in [
       
   487                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
       
   488                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
       
   489                 (g.paretovariate, (5.0,), 5.0/(5.0-1),
       
   490                                   5.0/((5.0-1)**2*(5.0-2))),
       
   491                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
       
   492                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
       
   493             g.random = x[:].pop
       
   494             y = []
       
   495             for i in xrange(len(x)):
       
   496                 try:
       
   497                     y.append(variate(*args))
       
   498                 except IndexError:
       
   499                     pass
       
   500             s1 = s2 = 0
       
   501             for e in y:
       
   502                 s1 += e
       
   503                 s2 += (e - mu) ** 2
       
   504             N = len(y)
       
   505             self.assertAlmostEqual(s1/N, mu, 2)
       
   506             self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
       
   507 
       
   508 class TestModule(unittest.TestCase):
       
   509     def testMagicConstants(self):
       
   510         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
       
   511         self.assertAlmostEqual(random.TWOPI, 6.28318530718)
       
   512         self.assertAlmostEqual(random.LOG4, 1.38629436111989)
       
   513         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
       
   514 
       
   515     def test__all__(self):
       
   516         # tests validity but not completeness of the __all__ list
       
   517         self.failUnless(set(random.__all__) <= set(dir(random)))
       
   518 
       
   519     def test_random_subclass_with_kwargs(self):
       
   520         # SF bug #1486663 -- this used to erroneously raise a TypeError
       
   521         class Subclass(random.Random):
       
   522             def __init__(self, newarg=None):
       
   523                 random.Random.__init__(self)
       
   524         Subclass(newarg=1)
       
   525 
       
   526 
       
   527 def test_main(verbose=None):
       
   528     testclasses =    [WichmannHill_TestBasicOps,
       
   529                       MersenneTwister_TestBasicOps,
       
   530                       TestDistributions,
       
   531                       TestModule]
       
   532 
       
   533     try:
       
   534         random.SystemRandom().random()
       
   535     except NotImplementedError:
       
   536         pass
       
   537     else:
       
   538         testclasses.append(SystemRandom_TestBasicOps)
       
   539 
       
   540     test_support.run_unittest(*testclasses)
       
   541 
       
   542     # verify reference counting
       
   543     import sys
       
   544     if verbose and hasattr(sys, "gettotalrefcount"):
       
   545         counts = [None] * 5
       
   546         for i in xrange(len(counts)):
       
   547             test_support.run_unittest(*testclasses)
       
   548             counts[i] = sys.gettotalrefcount()
       
   549         print counts
       
   550 
       
   551 if __name__ == "__main__":
       
   552     test_main(verbose=True)