[image: image1.png]symbian

Changes to System Definition
	
	
	
	

	Security Classification:
	Internal - Symbian
	Team/Department:
	SMG

	Document Reference:
	SGL.SM0015.006
	Author(s):
	Systems Engineering

	Status:
	Issued
	Owner(s):
	Systems Engineering

	Version:
	1.2
	Approver(s)
	Integration

	Last Revised Date:
	04/01/2008
	
	

	
	
	
	

Changes to System Definition
[image: image2.png]symbian

SGL.SM0015.006
Internal - Symbian
Issued v1.2

1 Introduction

1.1 Purpose and Scope

This document details the syntax changes to the System Definition XML between versions 1.4.1 and 2.0.0.
2 Summary of changes
In the XML examples, text in bold is new, optional parts are in gray.
2.1 Attribute usage

2.1.1 Names
Names of System Model items (identified below as name="name") are now required to be globally unique. In other words, two components cannot have the same name. More importantly, a collection (or other item) cannot share a name with a component (or other item). In XML terms, the name attribute is like an ID, except it is valid to contain spaces.
2.1.2 Booleans

Unless stated otherwise, any attribute with a value of yesno is implicitly “N”. The attribute should only be specified if the value is “Y”. For example, plugin="N" should not be used. This is to prevent clutter and make the document more human-readable.
2.1.3 Paths

Directory paths are used in locating the MRP and bld.inf files as well as in the build section to identify the location to execute special instructions. The most non-compatible change in the paths is that in the new version, paths will use the network-style separator (/) instead of the windows-style separator (\).

In the old syntax the root of the path is not entirely clear. The new version clarifies the behaviour and adds a new attribute, root, to indicate what file system the path is to be taken relative to. The root attribute is available in any elements which can contain paths, i.e. unit and specialInstructions. It specifies the environment variable which contains the base path. If root is not present, it defaults to “SRCROOT”, which usually has the value of “/src”.

Relative paths (e.g. common/generic/obex/group) are appended to the value of the variable indicated in root. So if SRCROOT is “/src”, the full path is “/src/common/generic/obex/group”. The resolution of absolute paths is dependant on the file system. For Unix file systems, an absolute path of “/product/devkit” is just “/product/devkit”. For a windows file system, an absolute path is taken relative to the drive specified in the root, e.g. “i:\product\devkit”.
The root attribute is not expected to be used internally in Symbian, since there is only one source tree. Licensees, however, may have multiple source trees, and need to be able to differentiate their own roots. The new attribute root is introduced to allow individual paths to be resolved relative to a specified source.
For example:

The following environment variables are set:

SRCROOT = "i:\src"

MYROOT = "k:\foo"

The following system definition paths:

<component name="OBEX Protocol">

 <unit bldFile="common/generic/obex/group" mrp="common/generic/obex/group/obex.mrp"/>
</component>

<component name="My Component">

 <unit bldFile="code/baz/bar/group" root="MYROOT" mrp="code/baz/mycomponent.mrp"/>
</component>

<component name="Product Devkit Pkgdefs">

 <unit mrp="/product/devkit/product_devkit_pkgdefs.mrp" filter="gt"/>

</component>

<specialInstructions … cwd="common/generic/plattest/group"…/>

translate to the following windows file system locations:
i:\src\common\generic\obex\group

i:\src\common\generic\obex\group\obex.mrp

k:\foo\code\baz\bar\group

k:\foo\code\baz\mycomponent.mrp
i:\product\devkit\product_devkit_pkgdefs.mrp

i:\src\common\generic\plattest\group
2.2 Header
All files using this syntax will start with <SystemDefinition schema="2.0.0" name="…">
2.3 Definition section
The following elements are unchanged from schema 1.4.0
<layer name="name" levels="list" span="integer"> …
The following elements are to be removed:

<package name="name" mrp="mrpfile" filter="filters" contract="conrtact"/>
<prebuilt name="name" version="version" late="yesno" filter="filters" contract="conrtact"/>
2.3.1 Architecture containers

	Old
	
	New

	<logicalset name="name"> …

	
	<block name="name" levels="list"
span="int" level="level"> …

	<logicalsubset name="name"> …
	
	<subblock name="name"> …

	<module name="name"> …
	
	<collection name="name" level="level" >…

A block can only contain subblocks or collections.
A subblock can only contain collections

A collection can only contain components.
The levels attribute can now also be used on blocks (since version 1.4.1). The levels specified for a block overrides any levels specified in its parent layer element. In other words, if levels are specified for a block, all collections in that block ignore the levels specified in its owning layer. Any level specified on a collection or block must be one of the values specified on the list in the collection’s closest ancestor.

The value of level must be one of the values specified in the space-separated list of levels in the levels attribute of either the containing block (if present) or layer. With schema 1.4.0 level was only valid for collections. From schema 1.4.1, it is valid for blocks as well. The block’s level has the same meaning as a level on a collection: it is used for sublayering items in a layer to indicate their relative usage. Unlike a collection, a block can span more than one level. The span attribute specifies the number of levels (as defined in the layer) spanned by the block. If no span is present, it defaults to “1”.
2.3.2 Components

In the 1.x schemas of the system definition, the component is just a container for any number of somewhat-related CBR items. Each CBR item (indicated by unit, package or prebuilt) contains all the information necessary to process the item. A component can even have no CBR items, indicating that it’s architecturally meaningful, but there’s no way to isolate it on the package level.

The significant change in schema 2.0.0 introduces a much more rigid structure. There is now a one-to-one mapping between CBR components and system definition components. The component element now has a number of informational attributes. These are persistent properties of the component unrelated to how it is actually built. Instead, they cover how it is used (e.g. is it a plug-in? when was it introduced?). Every component contains some number of units (usually one). The unit contains the build data for the component. Since build data can change over time, there can be any number of units. However, each unit must contain the same CBR package. Multiple units in a component refer to different versions of that component. This could be a change to a new MRP file, or just a change in the properties, like the priority.
Old syntax:

<component name="name"> …
New syntax:

<component name="name" deprecated="release-number" introduced="release-number" plugin="yesno" contract="contract" supports="name" class="classes" filter="filters"> …
2.3.2.1 Informational attributes:

deprecated
the release number (e.g “7.0s”) when the component was deprecated (there is no need for a removed since that can be controlled by filters). If this is not present then the component has not been deprecated.

introduced
the release number (e.g “7.0”) when the component was first added. If this is not present, the age of the component is unknown.

plugin
set to “y” or “Y” if a component is a plug-in. A plug-in exposes a standard interface defined elsewhere. In other words, a plug-in component must have another component which contains the plug-in’s framework. Implicit in this is the notion that a plug-in is only created when it is expected to be removed, extended or replaced.
contract
the name of the contract which applies to this component. This must match up to a contract specified in a <Contract name="contract"> in a Licenses XML file (unchanged).

supports
the name of another System Model item (component, layer, collection, etc) to which this component is “attached”. This is used to indicate that this component provides something used by the other item, e.g. this component documents another component, or tests an entire collection of components. The supports attribute is always used in conjunction with class to indicate the relationship.
class
a space-separated list of informational tags which indicate functional properties of the component. This differs from filter in that filter indicates build-related properties of the component. For example, a filter will say “this is part of a gt build” or “this is not part of 9.1”, while a class can say “this contains documentation” or “this is part of the Core OS”. A component’s classes are used in conjunction with supports to indicate the relationship between it and its supported item.

Valid class values:

doc
component contains only documentation. Used with supports to indicate what the component documents. The component will be hidden by default in the System Model.

test
component contains only tests. Used with supports to indicate which component(s) this one tests. The component will be hidden by default in the System Model.

config
component contains configuration files used by another component. Used with supports to indicate which component(s) this provides configuration files for. The component will be hidden by default in the System Model.

placeholder
component has not yet been delivered. The entry in the system definition is to capture the proposed properties and location of the component. A placeholder component will have no units.
PC
component is intended to be run on a PC as opposed to a phone. M-Router and many tools are run on a PC and not intended for a phone.

2.3.2.2 Build-related attributes

filter
a comma-separated list of filters which apply to this component. The filter attribute can exist on both unit and component. If specified on both, the values are concatenated and treated as a single value. For example:
<component name="my component" filter="techview,java">

<unit … filter="!foo" />

<!--equivalent to filter="techview,java,!foo"-->

<unit … filter="foo" />

<!--equivalent to filter="techview,java,foo"-->
</component>

2.3.3 Units

The old notation of unit, package, and prebuilt is now captured entirely in the unit element. The usage is deduced by the content.

A buildable component is equivalent to the old unit. This has an MRP and a bld.inf file.

Old syntax:

<unit unitID="id" name="name" mrp="mrpfile" bldFile="bldinf" filter="filters" priority="pirority"

contract="contract"/>

New syntax:

<component name="name" filter="filters" contract="contract" …>

<unit mrp="mrpfile" bldFile="bldinf" filter="filters" priority="pirority"

version="version" root="sourceroot"/>

</component>

A package component has an MRP, but no bld.inf files. This means it is not built, and cannot have a priority.
Old syntax:

<package name="name" mrp="mrpfile" filter="filters" contract="contract"/>

New syntax:

<component name="name" filter="filters" contract="contract" …>

<unit mrp="mrpfile" filter="filters" version="version" root="sourceroot" />

</component>

A pre-built component is one that is acquired via CBR instead of through the file system. It has no bld.inf or MRP file, but it does require the name and version of the CBR package.
Old syntax:

<prebuilt name="name" version="version-name" late="yesno" filter="filters" contract="contract"/>
New syntax:

<component name="name" filter="filters" contract="contract" …>

<unit version="cmp-version" prebuilt="mrp-name" late="yesno" filter="filters"/>

</component>

2.3.3.1 Unit attributes

mrp
the name and location of the MRP file. See section 2.1.3 for changes.
root
the name of the environment variable that the path in mrp is relative to. If not specified this defaults to “SRCROOT”.
filter
a comma-separated list of filters which apply to this component (unchanged).

bldFile
the directory containing the bld.inf file. See section 2.1.3 for changes.
priority
a numeric value indicating the order of processing the bld.inf when building all components (unchanged).

version
an identifier which differentiates between multiple units in a component. The value is a word (no spaces) and must be unique within the component. In cases of prebuilt components, the attribute is mandatory and its value must be the CBR version (e.g. “M04066_Symbian_OS”). For non-prebuilt components, the version is only mandatory if there is more than one unit. In this case the version can be any unique value, though it should ideally be a number in the form version="1", version="2" or even version="3.1.4". The version number is used to bind variation points to different versions of the OS. A specific unit is uniquely identified by a combination of the component’s name and the unit’s version.
prebuilt
the name of the pre-built CBR package (e.g. “mas”) to be used in the build. This is only valid for pre-built components. If this is present, version must also be specified. This has the same value as the old prebuilt name attribute.

late
set to “Y” if the component should be acquired via CBR’s getrel command after building all the non-prebuilt components. This is only valid for pre-built components and is used to ensure the rest of the system has no compile-time dependencies on this component. Moved from prebuilt (unchanged).
2.3.3.2 Multiple units

A component is a single architectural element of the system. For any given release, there will be a single CBR package for each component. The system definition allows any number of units for a component, but the units are a list of alternatives. A combination of filters and variation point bindings will leave at most one unit to be included in a release
. A component can have one, multiple or zero units. The most common usage is a single unit. This means that the component has only a single version delivered by the system definition. In some cases it is necessary to have multiple versions of the component described in the same system definition. Most commonly this will be used to point to different MRP files. This can also be used to specify different properties in the XML, like filters or contracts.
Examples:
In all examples units are selected by external bindings
In this case there is a single CBR package with different source locations in different OS versions:

<component name="ESock Server">

 <unit version="2" bldFile="common/generic/comms-infras/esock/version2/group"

mrp="common/generic/comms-infras/esock/version2/group/comms-infras_esock.mrp"/>

 <unit version="3" bldFile="common/generic/comms-infras/esock/group"

mrp="common/generic/comms-infras/esock/group/comms-infras_esock.mrp"/>

</component>
This case has multiple pre-built packages
<component name="Mobile Active Sync">

 <unit prebuilt="MAS" version="M04372_Symbian_OS"/>
 <unit prebuilt="MAS" version="93_061_Symbian_OS"/>

</component>
The component name and priority has changed names between releases. While the name has changed, it is effectively the same component: it has the same API and usage, even if does change significantly between the releases.
<component name="HTTP Transport Framework">

 <unit version="1" bldFile="common/generic/application-protocols/http/group"

mrp="common/generic/application-protocols/http/group/application-protocols_http.mrp"

priority="10"/>

 <unit version="2" bldFile="common/generic/application-protocols/http/framework/group"

mrp="common/generic/application-protocols/http/framework/group/http_transport-framework.mrp"/>

</component>

The component was not buildable, but now it is. This may be possible if a configuration component used to have all the data files built by hand, but now they are generated as part of the build.
<component name="Stuff Data">

 <unit version="1" mrp="common/generic/stuff/group/stuff-data.mrp"/>

 <unit version="2" bldFile="common/generic/stuff/group"
mrp="common/generic/stuff/group/stuff-data.mrp"/>

</component>

A component with multiple units must never be used to collect multiple CBR packages.

[image: image3.png]symbian

<component name="PLP Variant">

<unit bldFile="common/generic/connectivity/legacy/plp/PLPVARIANT"

mrp="common/generic/connectivity/legacy/PLP/PLPVARIANT/connectivity_legacy_plp_plpvariant.mrp"/>

<unit bldFile="common/generic/connectivity/legacy/plp/PLPGRP"

mrp="common/generic/connectivity/legacy/PLP/plpgrp/connectivity_legacy_plp_plpgrp.mrp"/>

<unit bldFile="common/generic/connectivity/legacy/BRDCST/GROUP"

mrp="common/generic/connectivity/legacy/brdcst/group/connectivity_legacy_brdcst.mrp"/>

</component>
2.3.3.3 Zero units

Empty components can be included in the model, but only in certain well-defined cases. An empty component will not be built (of course), but will appear on the model (unless filtered out).
One use of an empty component is for an unused component. This syntax will only be used by licensees when merging their System Definitions with Symbian’s. In this syntax an unused component is one which Symbian provides, but is not a part of the licensee’s model. When merging this with another system definition, this empty component overrides the component with the same name in the other system definition. The full details on merging system definitions for building the System Model will be made available in the SITK.

<component name="name" filter="not_used"/>
In this case, the Symbian’s version of the name component is replaced by the above empty component. The effect of the not_used filter is to filter the component out when using the final system definition.

The other use of an empty component is a placeholder for a future component. In this case the component has been defined and agreed upon, but has not delivered any code yet. Placeholders can have any attributes, but must not have any unit content. A placeholder should also contain or be followed by a comment explaining its use, e.g. <-- placeholder for proposed Fubar component -->.

<component name="name" … class="placeholder">

<!-- description -->

</component>

or

<component name="name" … class="placeholder"/>

<!-- description -->
3 Build section
 The build section is to be moved to a separate file from the same document as the system model. The build element is replaced with SystemBuild – the new root node for the build document:
	Old
	
	New

	<build> …
	
	<SystemBuild schema="1.0.0">…

The SystemBuild element can contain itemLists instead of the old unitLists.
3.1.1 Changed elements
	Old
	
	New

	<unitList name="id" description="description"> …
	
	<list name="id" description="description"> …

	<unitListRef unitList="idref"/>
	
	<listRef list="idref"/>

	<unitRef unit="idref"/>
	
	<ref item="name"/>

	<specialInstructions
name="name" cwd="path" command="cmd"/>
	
	<specialInstructions root="sourceroot"
name="name" cwd="path" command="cmd"/>

The following elements are to be removed:

<layerRef layerName="name"/>

A list is a group of components used for a specific build purpose. A list is defined by including a number of refs. Each ref contains the name of a system model item (i.e. component, collection, etc). The list has an id which is a reference from a listRef element.
Old syntax:

<unitList name="SYSTEMTEST_LIST" description="System Test Code">

<unitRef unit="SYSTEMTEST_OS"/>

<unitRef unit="SYSTEMTEST_TOOLS"/>

</unitList>

…

 <configuration name="TV_9.4" description="9.4 Techview build" filter="9.4,techview">

<layerRef layerName="UI"/>

…

<task>

<unitListRef unitList="SYSTEMTEST_LIST"/>

<buildLayer command="bldmake bldfiles" unitParallel="Y"/>

</task>
New syntax:

<list name="SYSTEMTEST_LIST" description="System Test Code">

<ref item="System Test OS"/>

<ref item="System Test Tools"/>

</list>

…

<configuration name="TV_9.3" description="9.3 Techview build" filter="9.3,techview">

<ref layerName="UI"/>

…

<task>

<listRef list="SYSTEMTEST_LIST"/>

<buildLayer command="bldmake bldfiles" unitParallel="Y"/>

</task>

One implication of the changes is that units no longer have names, and thus cannot be referenced from the build section. This is not a problem since the combination of filters and variation point bindings means that each component will be built with a single unit.

For example:
system_defintion.xml

<component name="my component"/>

<unit bldFile="common/generic/foo/group" mrp="common/generic/foo/mine.mrp" filer="!bar"/>

<unit bldFile="common/generic/bar/group" mrp="common/generic/bar/mine.mrp" filter="bar"/>

</component>
system_build.xml

<list name="MY_LIST" description="My Code">

<ref item="my component"/>

</list>
…

<configuration name="Blah" description="Blah build" filter="!bar">

<task>

<listRef list="MY_LIST"/>

<buildLayer command="bldmake bldfiles" unitParallel="Y"/>

</task>
3.1.2 Unchanged

<configuration name="id" description="description" filter="filters"> …

<task> …

<targetList name="id" description="description" target="idrefs"/>

<target name="id" abldTarget="abld" description="description"/>

<option name="id" abldOption="option" description="description" enable="yesno"/>

<buildLayer command="command" targetList="idrefs" unitParallel="yesno" targetParallel=”yesno"/>

A configuration can now only contain listRefs, refs and tasks.

A task can now only contain listRefs, a buildLayer or a specialInstructions.

4 DTD Changes
4.1 System Definition DTD
<!ELEMENT SystemDefinition (systemModel?, build?)>

<!ATTLIST SystemDefinition

 name CDATA #REQUIRED

 schema CDATA #REQUIRED

>

<!-- all paths are relative to the environment variable specified by the root attribute, or SRCROOT if not. -->

<!-- System Model Section of DTD -->

<!ELEMENT systemModel (layer+)>

<!ELEMENT layer (logicalsetblock* | modulecollection*)*>

<!-- Kernel Services, Base Services, OS Services, Etc -->

<!ATTLIST layer

 name CDATA #REQUIRED

levels CDATANMTOKENS #IMPLIED

 (space-separtated list of names
 span CDATA #IMPLIED

>

<!ELEMENT logicalsetblock (logicalsubsetsubblock* | modulecollection* | unit* | package* | prebuilt*)*>

 <!-- Generic OS services, Comms Services, etc -->

<!ATTLIST logicalsetblock
levels NMTOKENS #IMPLIED

span CDATA #IMPLIED

level NMTOKEN #IMPLIED
 name CDATA #REQUIRED

>

<!ELEMENT logicalsubsetsubblock (modulecollection* | unit* | package* | prebuilt*)*>

<!-- Telephony services, Networking Services, etc -->

<!ATTLIST logicalsubsetsubblock
 name CDATA #REQUIRED

>

<!ELEMENT modulecollection (component* | unit* | package* | prebuilt*)*>

<!-- Screen Driver, Content Handling, etc -->

<!ATTLIST modulecollection
 name CDATA #REQUIRED

 level NMTOKENCDATA #IMPLIED

 (a name
>

<!ELEMENT component (unit* | package* | prebuilt*)*>

<!-- contains units or is a packages or prebuilt -->

<!ATTLIST component

name CDATA #REQUIRED

 deprecated CDATA #IMPLIED
 introduced CDATA #IMPLIED

 contract CDATA #IMPLIED

 plugin (Y|N) "N"

filter CDATA #IMPLIED
class NMTOKENS #IMPLIED
 supports CDATA #IMPLIED

>

<!ELEMENT unit EMPTY >

<!-- must be buildable (bld.inf) -->

<!-- bldFile will soon may someday be removed in favour of mrp -->

<!ATTLIST unit

 unitID ID #REQUIRED

 name CDATA #REQUIRED

 mrp CDATA #REQUIRED

(temporarily required for pre-built
 filter CDATA #IMPLIED

bldFile CDATA #IMPLIEDREQUIRED

(only used for buildable components
 root CDATA #IMPLIED
 version NMTOKEN #IMPLIED
 prebuilt NMTOKEN #IMPLIED
 late (Y|N) #IMPLIED

(while “plugin” is either “yes” or “no”, “late” is “yes”, “no” or not present
 priority CDATA #IMPLIED

 contract CDATA #IMPLIED

>

<!ELEMENT package EMPTY >

<!-- like a unit, but not buildable -->

<!ATTLIST package

 name CDATA #REQUIRED

 mrp CDATA #REQUIRED

 filter CDATA #IMPLIED

 contract CDATA #IMPLIED

>

<!ELEMENT prebuilt EMPTY>

<!-- pre-built CBR component -->

<!ATTLIST prebuilt

 name CDATA #REQUIRED

 version CDATA #REQUIRED

 late (Y|N) #IMPLIED

 filter CDATA #IMPLIED

 contract CDATA #IMPLIED

>

everyting from this point on is deleted
4.2 Build DTD

Changes shown are changed from the system definition DTD.
<!-- Build Section of DTD -->
<!ELEMENT SystemBbuild (option* | target+ | targetList+ | unitLlist+ | configuration+)*>

<!ATTLIST SystemBuild
 schema CDATA #REQUIRED

>
<!ELEMENT unitLlist (unitRref+)>

<!-- e.g. common, beech, cedar, etc -->

<!ATTLIST unitLlist

 name ID #REQUIRED

 description CDATA #REQUIRED

>

<!ELEMENT unitRref EMPTY>

<!-- Reference to unita named entity in System Model -->

<!ATTLIST unitRref

unit IDREF #REQUIRED
item CDATA #REQUIRED
>

<!ELEMENT targetList EMPTY>

<!-- e.g. DEFAULT_7.0S, TOOLS_7.0S, etc -->

<!ATTLIST targetList

 name ID #REQUIRED

 description CDATA #REQUIRED

 target IDREFS #REQUIRED

>

<!ELEMENT target EMPTY>

<!-- e.g. WINS, WINSCW, ARM4, etc -->

<!ATTLIST target

 name ID #REQUIRED

 abldTarget CDATA #REQUIRED

 description CDATA #REQUIRED

>

<!ELEMENT option EMPTY>

<!-- e.g. Keepgoing, SaveSpace, etc -->

<!ATTLIST option

 name ID #REQUIRED

 abldOption CDATA #REQUIRED

 description CDATA #REQUIRED

 enable (Y | N | y | n) #REQUIRED

>

<!ELEMENT configuration (unitLlistRef+ | layerRref+ | task+)*>

<!-- 7.0s, 8.0a, 8.0b, cuskit, etc -->

<!ATTLIST configuration

 name ID #REQUIRED

 description CDATA #REQUIRED

 filter CDATA #REQUIRED

>

<!ELEMENT task (unitLlistRef * , (buildLayer | specialInstructions))>

<!ELEMENT unitLlistRef EMPTY>

<!-- Reference to unitList -->

<!ATTLIST unitLlistRef
 unitLlist IDREFCDATA #REQUIRED

>

<!ELEMENT layerRef EMPTY>

<!-- Reference to named entity in the model, usually a layer -->
<!ATTLIST layerRef

 layerName CDATA #REQUIRED

>

<!ELEMENT buildLayer EMPTY>

<!-- bldmake, abld export, etc -->

<!ATTLIST buildLayer

 command CDATA #REQUIRED

 targetList IDREFS #IMPLIED

 unitParallel (Y | N | y | n) #REQUIRED

 targetParallel (Y | N | y | n) #IMPLIED"N"
>

<!ELEMENT specialInstructions EMPTY>

<!-- BootStrap -->

<!ATTLIST specialInstructions

 name CDATA #REQUIRED

cwd CDATA #REQUIRED

 root CDATA #IMPLIED
 command CDATA #REQUIRED

>
5 Further Information

5.1 People

	Role
	Person / People

	Reviewers
	System Engineering, Integration, Product Delivery

	Contributors
	System Engineering

	Distribution
	SWE

5.2 Glossary

	Term
	Definition

	plug-in component
	An atomic set of binaries which exposes a standard interface that is defined outside of the component

	System Model item
	A component, collection, sub-block, block or layer

	sysdef
	A System Definition XML file

5.3 Document History

	Date
	Version
	Status
	Description

	04-01-2008
	1.2
	Issued
	More explanation on <prebuilt>

	25-05-2007
	1.1
	Issued
	Re-introduce units to control versioning

	27-03-2007
	1.0
	Issued
	Final changes after review

	09-03-2007
	0.4
	Draft
	Vendor keywords replaced with root attribute. Added placeholder component.

	10-01-2007
	0.3
	Draft
	Post-review changes

	07-12-2006
	0.2
	Draft
	Split off the build section, removed target attribute and added root path.

	30-11-2006
	0.1
	Draft
	First draft based

BAD!

� This is a slight oversimplification. There is nothing wrong with delivering multiple versions of a component, but the end product (i.e. a phone) or use (i.e. development environment) can only use one at a time.

Copyright © Symbian Software Ltd. 2008.
Internal - Symbian
Page 1 of 13
All rights reserved
Copyright © Symbian Software Ltd. 2008.
Internal - Symbian
Page 9 of 13
All rights reserved

_1139388098

_1139388101

