omap3530/omap3530_drivers/i2c/i2c.cpp
changeset 0 6663340f3fc9
child 6 b277c89230a2
equal deleted inserted replaced
-1:000000000000 0:6663340f3fc9
       
     1 // Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 //
       
    13 // Description:
       
    14 // omap3530/omap3530_drivers/i2c/i2c.cpp
       
    15 // I2C Driver
       
    16 // Main interface, I2c, is declared in omap3530_i2c.h
       
    17 // A more restricted register orientated interface, I2cReg, is declared in omap3530_i2creg.h
       
    18 // This file is part of the Beagle Base port
       
    19 //
       
    20 
       
    21 #include <assp/omap3530_assp/omap3530_i2creg.h>
       
    22 
       
    23 #include <assp/omap3530_assp/omap3530_irqmap.h>
       
    24 #include <assp/omap3530_assp/omap3530_hardware_base.h>
       
    25 #include <assp/omap3530_assp/omap3530_ktrace.h>
       
    26 //#include <assp/omap3530_assp/omap3530_prm.h>
       
    27 #include <assp/omap3530_assp/omap3530_prcm.h>
       
    28 #include <nk_priv.h>
       
    29 #include <nklib.h>
       
    30 //#include <resourceman.h>
       
    31 
       
    32 _LIT(KDfcName, "I2C_DFC"); // Not used by the I2c dfc!
       
    33 DECLARE_STANDARD_EXTENSION()
       
    34 	{
       
    35 	return KErrNone;
       
    36 	}
       
    37 
       
    38 namespace I2c
       
    39 {
       
    40 const TInt KMaxDevicesPerUnit = 8; // arbitary - change if required
       
    41 const TInt KNumUnits = E3 + 1;
       
    42 
       
    43 // Each unit has KMaxDevicesPerUnit of these structures. At least one for each slave device on it's bus.
       
    44 struct TDeviceControl
       
    45 	{
       
    46 	TDeviceAddress iAddress; // the slave devices address; 7 or 10 bits
       
    47 	TDfcQue* iDfcQueue; // calling driver's DFC thread
       
    48 	NFastSemaphore iSyncSem; // used to block the calling thread during synchronous transfers
       
    49 	};
       
    50 
       
    51 // There are three instances of this structure - one for each I2C bus on the OMAP3530
       
    52 struct TUnitControl
       
    53 	{
       
    54 	TUnitControl();
       
    55 
       
    56 	TSpinLock iLock; // prevents concurrent access to the request queue
       
    57 	DMutex*	iOpenMutex;
       
    58 
       
    59 	enum
       
    60 		{
       
    61 		EIdle,
       
    62 		ERead,
       
    63 		EWrite
       
    64 		} iState;
       
    65 
       
    66 	// Configuration stored and checked during Open()
       
    67 	TRole iRole;
       
    68 	TMode iMode;
       
    69 	void* iExclusiveClient;
       
    70 	TRate iRate;
       
    71 	TDeviceAddress iOwnAddress;
       
    72 
       
    73 	// The DFC for this unit - it runs on the thread associated with the active transfer
       
    74 	TDfc iDfc;
       
    75 
       
    76 	// the slave devices on this unit's bus
       
    77 	TDeviceControl iDevice[KMaxDevicesPerUnit];
       
    78 	TInt iNumDevices;
       
    79 
       
    80 	// The queue of requested transfers - the active transfer is the head of the queue
       
    81 	TTransferPb* iTransferQ;
       
    82 	TTransferPb* iTransferQTail; // the last transfer on the queue
       
    83 
       
    84 	// the current phase of the sctive transfer
       
    85 	TTransferPb* iCurrentPhase;
       
    86 	};
       
    87 
       
    88 // The OMAP3530 register address
       
    89 const TUint KI2C_IE[KNumUnits] =
       
    90 	{Omap3530HwBase::TVirtual<0x48070004>::Value, Omap3530HwBase::TVirtual<0x48072004>::Value, Omap3530HwBase::TVirtual<0x48060004>::Value};
       
    91 const TUint KI2C_STAT[KNumUnits] =
       
    92 	{Omap3530HwBase::TVirtual<0x48070008>::Value, Omap3530HwBase::TVirtual<0x48072008>::Value, Omap3530HwBase::TVirtual<0x48060008>::Value};
       
    93 //const TUint KI2C_WE[KNumUnits] =
       
    94 //	{Omap3530HwBase::TVirtual<0x4807000C>::Value, Omap3530HwBase::TVirtual<0x4807200C>::Value, Omap3530HwBase::TVirtual<0x4806000C>::Value};
       
    95 const TUint KI2C_SYSS[KNumUnits] =
       
    96 	{Omap3530HwBase::TVirtual<0x48070010>::Value, Omap3530HwBase::TVirtual<0x48072010>::Value, Omap3530HwBase::TVirtual<0x48060010>::Value};
       
    97 const TUint KI2C_BUF[KNumUnits] =
       
    98 	{Omap3530HwBase::TVirtual<0x48070014>::Value, Omap3530HwBase::TVirtual<0x48072014>::Value, Omap3530HwBase::TVirtual<0x48060014>::Value};
       
    99 const TUint KI2C_CNT[KNumUnits] =
       
   100 	{Omap3530HwBase::TVirtual<0x48070018>::Value, Omap3530HwBase::TVirtual<0x48072018>::Value, Omap3530HwBase::TVirtual<0x48060018>::Value};
       
   101 const TUint KI2C_DATA[KNumUnits] =
       
   102 	{Omap3530HwBase::TVirtual<0x4807001C>::Value, Omap3530HwBase::TVirtual<0x4807201C>::Value, Omap3530HwBase::TVirtual<0x4806001C>::Value};
       
   103 const TUint KI2C_SYSC[KNumUnits] =
       
   104 	{Omap3530HwBase::TVirtual<0x48070020>::Value, Omap3530HwBase::TVirtual<0x48072020>::Value, Omap3530HwBase::TVirtual<0x48060020>::Value};
       
   105 const TUint KI2C_CON[KNumUnits] =
       
   106 	{Omap3530HwBase::TVirtual<0x48070024>::Value, Omap3530HwBase::TVirtual<0x48072024>::Value, Omap3530HwBase::TVirtual<0x48060024>::Value};
       
   107 //const TUint KI2C_OA0[KNumUnits] =
       
   108 //	{Omap3530HwBase::TVirtual<0x48070028>::Value, Omap3530HwBase::TVirtual<0x48072028>::Value, Omap3530HwBase::TVirtual<0x48060028>::Value};
       
   109 const TUint KI2C_SA[KNumUnits] =
       
   110 	{Omap3530HwBase::TVirtual<0x4807002C>::Value, Omap3530HwBase::TVirtual<0x4807202C>::Value, Omap3530HwBase::TVirtual<0x4806002C>::Value};
       
   111 const TUint KI2C_PSC[KNumUnits] =
       
   112 	{Omap3530HwBase::TVirtual<0x48070030>::Value, Omap3530HwBase::TVirtual<0x48072030>::Value, Omap3530HwBase::TVirtual<0x48060030>::Value};
       
   113 const TUint KI2C_SCLL[KNumUnits] =
       
   114 	{Omap3530HwBase::TVirtual<0x48070034>::Value, Omap3530HwBase::TVirtual<0x48072034>::Value, Omap3530HwBase::TVirtual<0x48060034>::Value};
       
   115 const TUint KI2C_SCLH[KNumUnits] =
       
   116 	{Omap3530HwBase::TVirtual<0x48070038>::Value, Omap3530HwBase::TVirtual<0x48072038>::Value, Omap3530HwBase::TVirtual<0x48060038>::Value};
       
   117 //const TUint KI2C_SYSTEST[KNumUnits] =
       
   118 //	{Omap3530HwBase::TVirtual<0x4807003C>::Value, Omap3530HwBase::TVirtual<0x4807203C>::Value, Omap3530HwBase::TVirtual<0x4806003C>::Value};
       
   119 const TUint KI2C_BUFSTAT[KNumUnits] =
       
   120 	{Omap3530HwBase::TVirtual<0x48070040>::Value, Omap3530HwBase::TVirtual<0x48072040>::Value, Omap3530HwBase::TVirtual<0x48060040>::Value};
       
   121 const TUint KI2C_OA1[KNumUnits] =
       
   122 	{Omap3530HwBase::TVirtual<0x48070044>::Value, Omap3530HwBase::TVirtual<0x48072044>::Value, Omap3530HwBase::TVirtual<0x48060044>::Value};
       
   123 //const TUint KI2C_OA2[KNumUnits] =
       
   124 //	{Omap3530HwBase::TVirtual<0x48070048>::Value, Omap3530HwBase::TVirtual<0x48072048>::Value, Omap3530HwBase::TVirtual<0x48060048>::Value};
       
   125 //const TUint KI2C_OA3[KNumUnits] =
       
   126 //	{Omap3530HwBase::TVirtual<0x4807004C>::Value, Omap3530HwBase::TVirtual<0x4807204C>::Value, Omap3530HwBase::TVirtual<0x4806004C>::Value};
       
   127 //const TUint KI2C_ACTOA[KNumUnits] =
       
   128 //	{Omap3530HwBase::TVirtual<0x48070050>::Value, Omap3530HwBase::TVirtual<0x48072050>::Value, Omap3530HwBase::TVirtual<0x48060050>::Value};
       
   129 //const TUint KI2C_SBLOCK[KNumUnits] =
       
   130 //	{Omap3530HwBase::TVirtual<0x48070054>::Value, Omap3530HwBase::TVirtual<0x48072054>::Value, Omap3530HwBase::TVirtual<0x48060054>::Value};
       
   131 const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
       
   132 const TUint KCM_FCLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A00>::Value;
       
   133 
       
   134 // the Id's used when binding the interrupts
       
   135 const TOmap3530_IRQ KIrqId[KNumUnits] = {EOmap3530_IRQ56_I2C1_IRQ, EOmap3530_IRQ57_I2C2_IRQ, EOmap3530_IRQ61_I2C3_IRQ};
       
   136 
       
   137 // The three unit control blocks; one for each unit
       
   138 TUnitControl gUcb[KNumUnits];
       
   139 //TUint prmClientId;
       
   140 
       
   141 TUnit RawUnit(THandle aHandle);
       
   142 TUnit Unit(THandle aHandle);
       
   143 TUnitControl& UnitCb(THandle aHandle);
       
   144 TDeviceAddress Device(THandle aHandle);
       
   145 TDeviceControl& DeviceCb(THandle aHandle);
       
   146 THandle Handle(TUnit aUnit, TDeviceAddress aDeviceAddress);
       
   147 void Complete(TUnitControl& aUnit, TInt aResult);
       
   148 void Configure(TUnit); // reset and configure an I2C unit
       
   149 void Deconfigure(TUnit);
       
   150 void TheIsr(void*);
       
   151 void TheDfc(TAny* aUnit);
       
   152 
       
   153 EXPORT_C TConfigPb::TConfigPb() :
       
   154 	iUnit((TUnit)-1), // ensure that an un-initialised cpb will return KErrArgument from Open()
       
   155 	iExclusiveClient(0),
       
   156 	iDeviceAddress(1)
       
   157 	{}
       
   158 
       
   159 EXPORT_C TTransferPb::TTransferPb() :
       
   160 	iNextPhase(0)
       
   161 	{}
       
   162 
       
   163 EXPORT_C THandle Open(const TConfigPb& aConfig)
       
   164 	{
       
   165 	//TInt r = PowerResourceManager::RegisterClient( prmClientId, KDfcName );
       
   166 	//__NK_ASSERT_ALWAYS(r==KErrNone);
       
   167 	THandle h;
       
   168 	__NK_ASSERT_ALWAYS(aConfig.iVersion == I2C_VERSION);
       
   169 	if (aConfig.iUnit >= E1 && aConfig.iUnit <= E3)
       
   170 		{
       
   171 		TUnitControl& unit = gUcb[aConfig.iUnit];
       
   172 		Kern::MutexWait( *unit.iOpenMutex );
       
   173 
       
   174 		if (unit.iNumDevices == 0)
       
   175 			{
       
   176 			if (aConfig.iRole == EMaster &&
       
   177 				aConfig.iMode == E7Bit &&
       
   178 				aConfig.iRate >= E100K && aConfig.iRate <= E400K)
       
   179 				{
       
   180 				unit.iRole = aConfig.iRole;
       
   181 				unit.iMode = aConfig.iMode;
       
   182 				unit.iExclusiveClient = aConfig.iExclusiveClient;
       
   183 				unit.iRate = aConfig.iRate;
       
   184 				unit.iDevice[unit.iNumDevices].iAddress = aConfig.iDeviceAddress;
       
   185 				unit.iDevice[unit.iNumDevices++].iDfcQueue = aConfig.iDfcQueue;
       
   186 				h = Handle(aConfig.iUnit, aConfig.iDeviceAddress);
       
   187 				Configure(aConfig.iUnit);
       
   188 				TInt r = Interrupt::Bind(KIrqId[aConfig.iUnit], TheIsr, (void*) aConfig.iUnit);
       
   189 				__NK_ASSERT_DEBUG(r == KErrNone);
       
   190 				}
       
   191 			else
       
   192 				{
       
   193 				h = KErrArgument;
       
   194 				}
       
   195 			}
       
   196 		else // unit is already open
       
   197 			{
       
   198 			if (unit.iNumDevices < KMaxDevicesPerUnit)
       
   199 				{
       
   200 				if (unit.iRole == aConfig.iRole &&
       
   201 						unit.iMode == aConfig.iMode &&
       
   202 						unit.iExclusiveClient == aConfig.iExclusiveClient &&
       
   203 						unit.iRate == aConfig.iRate)
       
   204 					{
       
   205 					h = 0;
       
   206 					for (TInt i = 0; i < unit.iNumDevices; i++)
       
   207 						{
       
   208 						if (unit.iDevice[i].iAddress == aConfig.iDeviceAddress)
       
   209 							{
       
   210 							h = KErrInUse;
       
   211 							break;
       
   212 							}
       
   213 						}
       
   214 					if (h == 0)
       
   215 						{
       
   216 						unit.iDevice[unit.iNumDevices].iAddress = aConfig.iDeviceAddress;
       
   217 						unit.iDevice[unit.iNumDevices++].iDfcQueue = aConfig.iDfcQueue;
       
   218 						h = Handle(aConfig.iUnit, aConfig.iDeviceAddress);
       
   219 						}
       
   220 					}
       
   221 				else
       
   222 					{
       
   223 					h = KErrInUse;
       
   224 					}
       
   225 				}
       
   226 			else
       
   227 				{
       
   228 				h = KErrTooBig;
       
   229 				}
       
   230 			}
       
   231 		Kern::MutexSignal( *unit.iOpenMutex );
       
   232 		}
       
   233 	else
       
   234 		{
       
   235 		h = KErrArgument;
       
   236 		}
       
   237 	return h;
       
   238 	}
       
   239 
       
   240 EXPORT_C void Close(THandle& aHandle)
       
   241 	{
       
   242 	TUnit unitI = RawUnit(aHandle);
       
   243 
       
   244 	if (unitI >= E1 && unitI <= E3)
       
   245 		{
       
   246 		TUnitControl& unit = gUcb[unitI];
       
   247 		Kern::MutexWait( *unit.iOpenMutex );
       
   248 
       
   249 		TInt i = 0;
       
   250 		for (; i < unit.iNumDevices; i++)
       
   251 			{
       
   252 			if (unit.iDevice[i].iAddress == Device(aHandle))
       
   253 				{
       
   254 				unit.iNumDevices--;
       
   255 				break;
       
   256 				}
       
   257 			}
       
   258 		for (; i < unit.iNumDevices; i++)
       
   259 			{
       
   260 			unit.iDevice[i] = unit.iDevice[i + 1];
       
   261 			}
       
   262 
       
   263 		if (unit.iNumDevices == 0)
       
   264 			{
       
   265 			(void) Interrupt::Unbind(KIrqId[unitI]);
       
   266 			Deconfigure(TUnit(unitI));
       
   267 			}
       
   268 		Kern::MutexSignal( *unit.iOpenMutex );
       
   269 		}
       
   270 	aHandle = -1;
       
   271 	//PowerResourceManager::DeRegisterClient(prmClientId);
       
   272 	//prmClientId=0;
       
   273 	}
       
   274 
       
   275 void AddToQueue( TUnitControl& aUnit, TDeviceControl& aDcb, TTransferPb& aWcb )
       
   276 	{
       
   277 	TInt irq = __SPIN_LOCK_IRQSAVE(aUnit.iLock);
       
   278 
       
   279 	if (aUnit.iTransferQ == 0)
       
   280 		{
       
   281 		__NK_ASSERT_DEBUG(aUnit.iState == TUnitControl::EIdle);
       
   282 		aUnit.iTransferQ = &aWcb;
       
   283 		aUnit.iCurrentPhase = &aWcb;
       
   284 		aUnit.iTransferQTail = &aWcb;
       
   285 		aUnit.iDfc.SetDfcQ(aDcb.iDfcQueue);
       
   286 		aUnit.iDfc.Enque();
       
   287 		}
       
   288 	else
       
   289 		{
       
   290 		__NK_ASSERT_DEBUG(aUnit.iTransferQTail->iNextTransfer == 0);
       
   291 		aUnit.iTransferQTail->iNextTransfer = &aWcb;
       
   292 		aUnit.iTransferQTail = &aWcb;
       
   293 		}
       
   294 	__SPIN_UNLOCK_IRQRESTORE(unit.iLock, irq);
       
   295 	}
       
   296 
       
   297 
       
   298 EXPORT_C TInt TransferS(THandle aHandle, TTransferPb& aWcb)
       
   299 	{
       
   300 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("+I2C:TransferS")));
       
   301 
       
   302 	CHECK_PRECONDITIONS(MASK_NOT_ISR, "I2c::TransferS");
       
   303 
       
   304 	aWcb.iNextTransfer = 0;
       
   305 	aWcb.iCompletionDfc = 0; // indicate that it is a sync transfer and the FSM needs to Signal the semaphore
       
   306 	TDeviceControl& dcb = DeviceCb(aHandle);
       
   307 	aWcb.iDcb = &dcb;
       
   308 	aWcb.iResult = (TInt)&dcb.iSyncSem; // use the async tranfer result member to store the semaphore // Todo: store ptr to dcb in aWcb 
       
   309 
       
   310 	NKern::FSSetOwner(&dcb.iSyncSem, 0);
       
   311 
       
   312 	TUnitControl& unit = UnitCb(aHandle);
       
   313 
       
   314 	AddToQueue( unit, dcb, aWcb );
       
   315 
       
   316 	NKern::FSWait(&dcb.iSyncSem);
       
   317 
       
   318 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("-I2C:TransferS:%d", aWcb.iResult)));
       
   319 
       
   320 	return aWcb.iResult;
       
   321 	}
       
   322 
       
   323 EXPORT_C void TransferA(THandle aHandle, TTransferPb& aWcb)
       
   324 	{
       
   325 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("+I2C:TransferA")));
       
   326 
       
   327 	CHECK_PRECONDITIONS(MASK_NOT_ISR, "I2c::TransferA");
       
   328 
       
   329 	aWcb.iNextTransfer = 0;
       
   330 	TDeviceControl& dcb = DeviceCb(aHandle);
       
   331 	aWcb.iDcb = &dcb;
       
   332 	TUnitControl& unit = UnitCb(aHandle);
       
   333 
       
   334 	AddToQueue( unit, dcb, aWcb );
       
   335 
       
   336 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("-I2C:TransferA")));
       
   337 	}
       
   338 
       
   339 EXPORT_C void CancelATransfer(THandle)
       
   340 	{
       
   341 	}
       
   342 
       
   343 inline TBool BitSet(TUint32 aWord, TUint32 aMask)
       
   344 	{
       
   345 	return (aWord & aMask) != 0;
       
   346 	}
       
   347 const TUint32 KStatBb = 1 << 12;
       
   348 const TUint32 KStatNack = 1 << 1;
       
   349 const TUint32 KStatAl = 1 << 0;
       
   350 const TUint32 KStatArdy = 1 << 2;
       
   351 const TUint32 KStatRdr = 1 << 13;
       
   352 const TUint32 KStatRRdy = 1 << 3;
       
   353 const TUint32 KStatXdr = 1 << 14;
       
   354 const TUint32 KStatXrdy = 1 << 4;
       
   355 const TUint32 KStatBf = 1 << 8;
       
   356 const TUint32 KStatInterupts = KStatXdr | KStatRdr | KStatBf | KStatXrdy | KStatRRdy | KStatArdy | KStatNack | KStatAl;
       
   357 
       
   358 const TUint32 KConMst = 1 << 10;
       
   359 const TUint32 KConI2cEn = 1 << 15;
       
   360 const TUint32 KConTrx = 1 << 9;
       
   361 const TUint32 KConStp = 1 << 1;
       
   362 const TUint32 KConStt = 1 << 0;
       
   363 
       
   364 void TheDfc(TAny* aUnit)
       
   365 	{
       
   366 	TUnit unitI = (TUnit)(TInt)aUnit;
       
   367 	TUnitControl& unit = gUcb[unitI];
       
   368 
       
   369 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("I2C:DFC:S%d", unit.iState)) );
       
   370 
       
   371 	switch (unit.iState)
       
   372 		{
       
   373 	case TUnitControl::EIdle:
       
   374 		{
       
   375 // 18.5.1.1.2
       
   376 // 1
       
   377 		TTransferPb& tpb = *unit.iTransferQ;
       
   378 		TTransferPb& ppb = *unit.iCurrentPhase;
       
   379 
       
   380 		TUint32 con = KConI2cEn | KConMst;
       
   381 		if (ppb.iType == TTransferPb::EWrite)
       
   382 			{
       
   383 			con |= KConTrx;
       
   384 			}
       
   385 		AsspRegister::Write16(KI2C_CON[unitI], con);
       
   386 // 18.5.1.1.3
       
   387 		TUint32 sa = AsspRegister::Read16(KI2C_SA[unitI]);
       
   388 		__KTRACE_OPT(KI2C, Kern::Printf("I2C:SA[%d]: 0x%04x<-0x%04x", unitI, sa, tpb.iDcb->iAddress));
       
   389 		AsspRegister::Write16(KI2C_SA[unitI], tpb.iDcb->iAddress);
       
   390 		TUint32 cnt = AsspRegister::Read16(KI2C_CNT[unitI]);
       
   391 		__KTRACE_OPT(KI2C, Kern::Printf("I2C:CNT[%d]: 0x%04x<-0x%04x", unitI, cnt, ppb.iLength));
       
   392 		AsspRegister::Write16(KI2C_CNT[unitI], ppb.iLength);
       
   393 // 18.5.1.1.4
       
   394 		if (ppb.iNextPhase == 0) // last phase
       
   395 			{
       
   396 			con |= KConStp; // STP
       
   397 			}
       
   398 		con |= KConStt; // STT			
       
   399 		if (&tpb == &ppb) // first phase
       
   400 			{
       
   401 			TInt im = NKern::DisableAllInterrupts(); // ensure that the transaction is started while the bus is free
       
   402 			TUint32 stat = AsspRegister::Read16(KI2C_STAT[unitI]);
       
   403 			__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
       
   404 			__NK_ASSERT_ALWAYS(!BitSet(stat, KStatBb)); // if multi-master then need a polling state with a timeout
       
   405 			AsspRegister::Write16(KI2C_CON[unitI], con);
       
   406 			NKern::RestoreInterrupts(im);
       
   407 			}
       
   408 		else // a follow on phase
       
   409 			{
       
   410 			AsspRegister::Write16(KI2C_CON[unitI], con);
       
   411 			}
       
   412 		__KTRACE_OPT(KI2C, Kern::Printf("I2C:CON[%d]: 0x%04x", unitI, con));
       
   413 __KTRACE_OPT(KI2C, Kern::Printf("I2C:..CNT[%d]: 0x%04x", unitI, AsspRegister::Read16(KI2C_CNT[unitI])));
       
   414 
       
   415 		if (ppb.iType == TTransferPb::ERead)
       
   416 			{
       
   417 			unit.iState = TUnitControl::ERead;
       
   418 			}
       
   419 		else
       
   420 			{
       
   421 			unit.iState = TUnitControl::EWrite;
       
   422 			}
       
   423 		}
       
   424 		break;
       
   425 	case TUnitControl::ERead:
       
   426 	case TUnitControl::EWrite:
       
   427 		{
       
   428 		TTransferPb& ppb = *unit.iCurrentPhase;
       
   429 		TUint32 stat = AsspRegister::Read16(KI2C_STAT[unitI]);
       
   430 		__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
       
   431 		do
       
   432 			{
       
   433 			if (BitSet(stat, KStatNack))
       
   434 				{
       
   435 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:N"));
       
   436 				Configure(unitI); // reset the whole unit. Need more testing to determine the correct behavior.
       
   437 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:CON|STAT[%d]: 0x%04x|0x%04x", unitI, AsspRegister::Read16(KI2C_CON[unitI]), AsspRegister::Read16(KI2C_STAT[unitI])));
       
   438 				Complete(unit, KErrGeneral);
       
   439 				return;
       
   440 				}
       
   441 			if (BitSet(stat, KStatAl))
       
   442 				{
       
   443 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:A"));
       
   444 				AsspRegister::Write16(KI2C_STAT[unitI], KStatAl);
       
   445 				
       
   446 				if((AsspRegister::Read16(KI2C_CON[unitI]) & (KConMst | KConStp)) == 0)
       
   447 					{
       
   448 					AsspRegister::Modify16(KI2C_CON[unitI], KClearNone, KConStp);
       
   449 					Complete(unit, KErrGeneral);
       
   450 					return;
       
   451 					}
       
   452 				}
       
   453 			if (BitSet(stat, KStatArdy))
       
   454 				{
       
   455 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:Y"));
       
   456 				AsspRegister::Write16(KI2C_STAT[unitI], KStatArdy);
       
   457 
       
   458 				if (ppb.iNextPhase != 0)
       
   459 					{
       
   460 					unit.iCurrentPhase = ppb.iNextPhase;
       
   461 					unit.iState = TUnitControl::EIdle;
       
   462 					unit.iDfc.Enque();
       
   463 					return;
       
   464 					}
       
   465 				else
       
   466 					{
       
   467 					Complete(unit, KErrNone);
       
   468 					return;
       
   469 					}
       
   470 				}
       
   471 			if (BitSet(stat, KStatRdr))
       
   472 				{
       
   473 				__NK_ASSERT_DEBUG(unit.iState == TUnitControl::ERead);
       
   474 				TUint32 rxstat = AsspRegister::Read16(KI2C_BUFSTAT[unitI]) >> 8;
       
   475 				rxstat &= 0x3f;
       
   476 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:R%d", rxstat));
       
   477 				for (TUint i = 0; i < rxstat; i++)
       
   478 					{
       
   479 					TUint8* d = const_cast<TUint8*>(ppb.iData++);
       
   480 					*d = (TUint8) AsspRegister::Read16(KI2C_DATA[unitI]);
       
   481 					}
       
   482 				AsspRegister::Write16(KI2C_STAT[unitI], KStatRdr);
       
   483 				}
       
   484 			else if (BitSet(stat, KStatRRdy))
       
   485 				{
       
   486 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:..BUF:%x BUFSTAT:%x", AsspRegister::Read16(KI2C_BUF[unitI]), AsspRegister::Read16(KI2C_BUFSTAT[unitI])));
       
   487 				__NK_ASSERT_DEBUG(unit.iState == TUnitControl::ERead);
       
   488 				TUint32 rtrsh = AsspRegister::Read16(KI2C_BUF[unitI]) >> 8;
       
   489 				rtrsh &= 0x3f;
       
   490 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:RD%d", rtrsh + 1));
       
   491 				for (TUint i = 0; i < rtrsh + 1; i++)
       
   492 					{
       
   493 					TUint8* d = const_cast<TUint8*>(ppb.iData++);
       
   494 					*d = (TUint8) AsspRegister::Read16(KI2C_DATA[unitI]);
       
   495 					}
       
   496 				AsspRegister::Write16(KI2C_STAT[unitI], KStatRRdy);
       
   497 				}
       
   498 			if (BitSet(stat, KStatXdr))
       
   499 				{
       
   500 				__NK_ASSERT_DEBUG(unit.iState == TUnitControl::EWrite);
       
   501 				TUint32 txstat = AsspRegister::Read16(KI2C_BUFSTAT[unitI]);
       
   502 				txstat &= 0x3f;
       
   503 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:W%d", txstat));
       
   504 				for (TUint i = 0; i < txstat; i++)
       
   505 					{
       
   506 					AsspRegister::Write16(KI2C_DATA[unitI], *ppb.iData++);
       
   507 					}
       
   508 				AsspRegister::Write16(KI2C_STAT[unitI], KStatXdr);
       
   509 				}
       
   510 			else if (BitSet(stat, KStatXrdy))
       
   511 				{
       
   512 				__NK_ASSERT_DEBUG(unit.iState == TUnitControl::EWrite);
       
   513 				TUint32 xtrsh = AsspRegister::Read16(KI2C_BUF[unitI]);
       
   514 				xtrsh &= 0x3f;
       
   515 				__KTRACE_OPT(KI2C, Kern::Printf("I2C:WD%d", xtrsh + 1));
       
   516 				for (TUint i = 0; i < xtrsh + 1; i++)
       
   517 					{
       
   518 					AsspRegister::Write16(KI2C_DATA[unitI], *ppb.iData++);
       
   519 					}
       
   520 				AsspRegister::Write16(KI2C_STAT[unitI], KStatXrdy);
       
   521 				}
       
   522 /*			if (stat == KStatBf)
       
   523 				{
       
   524 				__KTRACE_OPT(KI2C, Kern::Printf("F"));
       
   525 				__NK_ASSERT_ALWAYS(ppb.iNextPhase == 0);
       
   526 				AsspRegister::Write16(KI2C_STAT[unitI], KStatBf);
       
   527 				Complete(unit, KErrNone);
       
   528 				return;
       
   529 				}
       
   530 */			stat = AsspRegister::Read16(KI2C_STAT[unitI]);
       
   531 			__KTRACE_OPT(KI2C, Kern::Printf("I2C:STAT[%d]: 0x%04x", unitI, stat));
       
   532 			} while (BitSet(stat, KStatInterupts));
       
   533 		}
       
   534 		break;
       
   535 		}
       
   536 	Interrupt::Enable(KIrqId[unitI]);
       
   537 	}
       
   538 
       
   539 TUnitControl::TUnitControl() :
       
   540 	iLock(/*TSpinLock::EOrderGenericIrqLow1*/),
       
   541 	iDfc(TheDfc, 0, 1),
       
   542 	iNumDevices(0),
       
   543 	iTransferQ(0)
       
   544 	{
       
   545 	iDfc.iPtr = (void*)(this - gUcb); // unit index
       
   546 	__ASSERT_ALWAYS( Kern::MutexCreate( iOpenMutex, KNullDesC, KMutexOrdGeneral0 ) == KErrNone, Kern::Fault( "I2C", __LINE__ ) );
       
   547 	}
       
   548 
       
   549 void TheIsr(void* aUnit)
       
   550 	{
       
   551 	TUnit unitI = (TUnit)(TInt)aUnit;
       
   552 	Interrupt::Disable(KIrqId[unitI]);
       
   553 
       
   554 	TUnitControl& unit = gUcb[unitI];
       
   555 	__KTRACE_OPT(KI2C, __KTRACE_OPT(KI2C, Kern::Printf("=I2C:DFC:u%x", &unit )));
       
   556 	unit.iDfc.Add();
       
   557 	}
       
   558 
       
   559 void Configure(TUnit aUnitI)
       
   560 	{
       
   561 	__ASSERT_NO_FAST_MUTEX;
       
   562 	__NK_ASSERT_ALWAYS(aUnitI<3);
       
   563 // 18.5.1.1.1
       
   564 // 1
       
   565 	//TInt r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_F+aUnitI, Prcm::EClkOn );
       
   566 	//r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_I+aUnitI, Prcm::EClkOn );
       
   567 	TUint32 iClkEn = AsspRegister::Read16(KCM_ICLKEN1_CORE);
       
   568 	TUint32 fClkEn = AsspRegister::Read16(KCM_FCLKEN1_CORE);
       
   569 	__KTRACE_OPT(KI2C, Kern::Printf("I2C:CM_I|FCLKEN1[%d]: 0x%04x|0x%04x", aUnitI, iClkEn, fClkEn));
       
   570 	AsspRegister::Modify32(KCM_ICLKEN1_CORE, 0, 1 << 15 + aUnitI);
       
   571 	AsspRegister::Modify32(KCM_FCLKEN1_CORE, 0, 1 << 15 + aUnitI);
       
   572 // Reset
       
   573 	AsspRegister::Write16(KI2C_SYSC[aUnitI], 0x0002);
       
   574 
       
   575 	if (gUcb[aUnitI].iRate == E100K)
       
   576 		{
       
   577 // 2
       
   578 		AsspRegister::Write16(KI2C_PSC[aUnitI], 23);
       
   579 // 3 + 4
       
   580 		AsspRegister::Write16(KI2C_SCLL[aUnitI], 0x000d); // 100kHz F/S, 400kHz HS
       
   581 		AsspRegister::Write16(KI2C_SCLH[aUnitI], 0x000f);
       
   582 		}
       
   583 	else if (gUcb[aUnitI].iRate == E400K)
       
   584 		{
       
   585 // 2
       
   586 		AsspRegister::Write16(KI2C_PSC[aUnitI], 9);
       
   587 // 3 + 4
       
   588 		AsspRegister::Write16(KI2C_SCLL[aUnitI], 0x0005); // 400kHz F/S, 400kHz HS
       
   589 		AsspRegister::Write16(KI2C_SCLH[aUnitI], 0x0007);
       
   590 		}
       
   591 // 6
       
   592 	AsspRegister::Write16(KI2C_OA1[aUnitI], gUcb[aUnitI].iOwnAddress);
       
   593 // 7
       
   594 	TUint32 buf = AsspRegister::Read16(KI2C_BUF[aUnitI]);
       
   595 	__KTRACE_OPT(KI2C, Kern::Printf("I2C:I2C_BUF[%d]: 0x%04x", aUnitI, buf));
       
   596 // 8
       
   597 	TUint32 con = AsspRegister::Read16(KI2C_CON[aUnitI]);
       
   598 	__KTRACE_OPT(KI2C, Kern::Printf("I2C:I2C_CON[%d]: 0x%04x<-0x%04x", aUnitI, con, con | 1 << 15));
       
   599 	AsspRegister::Modify16(KI2C_CON[aUnitI], 0, 1 << 15);
       
   600 
       
   601 	TUint32 syss = AsspRegister::Read16(KI2C_SYSS[aUnitI]);
       
   602 	__NK_ASSERT_DEBUG(syss == 0x1);
       
   603 
       
   604 	// set-up interrupts
       
   605 	TUint32 ie = AsspRegister::Read16(KI2C_IE[aUnitI]);
       
   606 	__KTRACE_OPT(KI2C, Kern::Printf("I2C:IE[%d]: 0x%04x<-0x%04x", aUnitI, ie, KStatInterupts));
       
   607 	AsspRegister::Write16(KI2C_IE[aUnitI], KStatInterupts);
       
   608 	}
       
   609 
       
   610 void Deconfigure(TUnit aUnitI)
       
   611 	{
       
   612 	__ASSERT_NO_FAST_MUTEX;
       
   613 	__NK_ASSERT_ALWAYS(aUnitI<3);
       
   614 	//TInt r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_F+aUnitI, Prcm::EClkOff  );
       
   615 	//__KTRACE_OPT(KBOOT, Kern::Printf("EPrmClkI2c%d_F DIS %d", aUnitI, r));
       
   616 	//r = PowerResourceManager::ChangeResourceState( prmClientId, Omap3530Prm::EPrmClkI2c1_I+aUnitI, Prcm::EClkOff );
       
   617 	//__KTRACE_OPT(KBOOT, Kern::Printf("EPrmClkI2c%d_I DIS %d", aUnitI, r));
       
   618 	AsspRegister::Modify32(KCM_ICLKEN1_CORE, 1 << 15 + aUnitI, 0);
       
   619 	AsspRegister::Modify32(KCM_FCLKEN1_CORE, 1 << 15 + aUnitI, 0);
       
   620 	}
       
   621 
       
   622 THandle Handle(TUnit aUnit, TDeviceAddress aDeviceAddress)
       
   623 	{
       
   624 	return THandle(aUnit << 16 | aDeviceAddress);
       
   625 	}
       
   626 
       
   627 TUnit RawUnit(THandle aHandle)
       
   628 	{
       
   629 	TUnit r = TUnit(aHandle >> 16);
       
   630 	return r;
       
   631 	}
       
   632 
       
   633 TUnit Unit(THandle aHandle)
       
   634 	{
       
   635 	TUnit r = RawUnit(aHandle);
       
   636 	if (r < E1 || r > E3)
       
   637 		{
       
   638 		__KTRACE_OPT(KI2C, Kern::Printf("I2C Unit out of range: %d", r));
       
   639 		r = E1;
       
   640 		}
       
   641 	return r;
       
   642 	}
       
   643 
       
   644 TUnitControl& UnitCb(THandle aHandle)
       
   645 	{
       
   646 	return gUcb[Unit(aHandle)];
       
   647 	}
       
   648 
       
   649 TDeviceAddress Device(THandle aHandle)
       
   650 	{
       
   651 	TDeviceAddress r = TDeviceAddress(aHandle & 0x0000ffff);
       
   652 	if (r < 0 || r > 1023)
       
   653 		{
       
   654 		__KTRACE_OPT(KI2C, Kern::Printf("I2C Device out of range: %d", r));
       
   655 		}
       
   656 	return r;
       
   657 	}
       
   658 
       
   659 TDeviceControl& DeviceCb(THandle aHandle)
       
   660 	{
       
   661 	TUnitControl& unit = UnitCb(aHandle);
       
   662 	TDeviceAddress device = Device(aHandle);
       
   663 	TInt i = 0;
       
   664 	for (; i < unit.iNumDevices; i++)
       
   665 		{
       
   666 		if (unit.iDevice[i].iAddress == device)
       
   667 			{
       
   668 			break;
       
   669 			}
       
   670 		}
       
   671 	return unit.iDevice[i];
       
   672 	}
       
   673 
       
   674 void Complete(TUnitControl& aUnit, TInt aResult)
       
   675 	{
       
   676 	aUnit.iTransferQ->iResult = aResult;
       
   677 	aUnit.iState = TUnitControl::EIdle;
       
   678 
       
   679 	TInt irq = __SPIN_LOCK_IRQSAVE(aUnit.iLock);
       
   680 	TTransferPb& tpb = *aUnit.iTransferQ;
       
   681 	aUnit.iTransferQ = aUnit.iTransferQ->iNextTransfer;
       
   682 	__SPIN_UNLOCK_IRQRESTORE(aUnit.iLock, irq);
       
   683 
       
   684 	if (tpb.iCompletionDfc == 0)
       
   685 		{
       
   686 		NKern::FSSignal(&tpb.iDcb->iSyncSem);
       
   687 		}
       
   688 	else
       
   689 		{
       
   690 		tpb.iCompletionDfc->Enque();
       
   691 		}	
       
   692 	}
       
   693 
       
   694 } // namespace I2c
       
   695 
       
   696 namespace I2cReg
       
   697 {
       
   698 EXPORT_C TUint8 ReadB(I2c::THandle aH, TUint8 aAddr)
       
   699 	{
       
   700 	const TUint8 KAddress = aAddr;
       
   701 	I2c::TTransferPb addressPhase;
       
   702 	addressPhase.iType = I2c::TTransferPb::EWrite;
       
   703 	addressPhase.iLength = 1;
       
   704 	addressPhase.iData = &KAddress;
       
   705 
       
   706 	TUint8 readData;
       
   707 	I2c::TTransferPb dataPhase;
       
   708 	dataPhase.iType = I2c::TTransferPb::ERead;
       
   709 	dataPhase.iLength = 1;
       
   710 	dataPhase.iData = &readData;
       
   711 
       
   712 	addressPhase.iNextPhase = &dataPhase; // link into a two phase transfer
       
   713 
       
   714 	TInt r = KErrNone;
       
   715 	TInt retryCount = 0;
       
   716 
       
   717 	do
       
   718 		{
       
   719 		r=I2c::TransferS(aH, addressPhase);
       
   720 		retryCount++;
       
   721 		}
       
   722 	while (r != KErrNone && retryCount < 5);
       
   723 	
       
   724 	__NK_ASSERT_ALWAYS(r == KErrNone);
       
   725 	
       
   726 	return readData;
       
   727 	}
       
   728 
       
   729 EXPORT_C void WriteB(I2c::THandle aH, TUint8 aAddr, TUint8 aData)
       
   730 	{
       
   731 	const TUint8 KAddrData[2] = {aAddr, aData};
       
   732 	I2c::TTransferPb fullTransfer;
       
   733 	fullTransfer.iType = I2c::TTransferPb::EWrite;
       
   734 	fullTransfer.iLength = 2;
       
   735 	fullTransfer.iData = KAddrData;
       
   736 	
       
   737 	TInt r = KErrNone;
       
   738 	TInt retryCount = 0;
       
   739 
       
   740 	do
       
   741 		{
       
   742 		r=I2c::TransferS(aH, fullTransfer);
       
   743 		retryCount++;
       
   744 		}
       
   745 	while (r != KErrNone && retryCount < 5);
       
   746 
       
   747 	__NK_ASSERT_ALWAYS(r == KErrNone);
       
   748 	}
       
   749 } // namespace I2cReg