|
1 // Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // \omap3530\omap3530_assp\prcm.cpp |
|
15 // Access to PRCM. And implimentation of device driver's power and clock control API |
|
16 // This file is part of the Beagle Base port |
|
17 // |
|
18 |
|
19 #include <e32cmn.h> |
|
20 #include <assp/omap3530_assp/omap3530_prcm.h> |
|
21 #include <assp/omap3530_assp/omap3530_ktrace.h> |
|
22 #include <assp/omap3530_assp/omap3530_irqmap.h> |
|
23 #include <assp/omap3530_assp/omap3530_hardware_base.h> |
|
24 #include <assp/omap3530_assp/omap3530_assp_priv.h> |
|
25 #include <nkern.h> |
|
26 |
|
27 #include "prcm_regs.h" |
|
28 |
|
29 // Dummy location for redirecting writes which have no effect on a particular clock |
|
30 // More efficient than having to test for it in code |
|
31 TUint32 __dummypoke; |
|
32 #define KDummy (TUint32)&__dummypoke |
|
33 |
|
34 namespace |
|
35 { |
|
36 |
|
37 // PLL modes |
|
38 const TUint32 KPllModeStop = 0x1; |
|
39 const TUint32 KPllModeBypass = 0x5; |
|
40 const TUint32 KPllModeFastRelock = 0x6; |
|
41 const TUint32 KPllModeLock = 0x7; |
|
42 const TUint32 KPllModeMask = 0x7; |
|
43 const TUint32 KPllAutoOff = 0x0; |
|
44 const TUint32 KPllAutoOn = 0x1; |
|
45 const TUint32 KPllAutoMask = 0x7; |
|
46 |
|
47 #ifdef _DEBUG // to stop warings about unused definitions |
|
48 const TUint KPllMaximumDivider = 127; |
|
49 const TUint KPllMaximumMultiplier = 2047; |
|
50 #endif |
|
51 const TUint KPllDividerMask = 127; |
|
52 const TUint KPllMultiplierMask = 2047; |
|
53 const TUint KPllFreqRangeMask = 15; |
|
54 const TUint KPllRampMask = 3; |
|
55 |
|
56 const TUint KPllLpModeMaximumFrequency = 600000000; |
|
57 |
|
58 // TPll to TClock lookup table |
|
59 static const Prcm::TClock KPllToClock [] = |
|
60 { |
|
61 Prcm::EClkMpu, |
|
62 Prcm::EClkIva2Pll, |
|
63 Prcm::EClkCore, |
|
64 Prcm::EClkPeriph, |
|
65 Prcm::EClkPeriph2 |
|
66 }; |
|
67 |
|
68 // struct of info on how to configure each PLL |
|
69 // this doesn't include settings which are the same for all PLLs |
|
70 struct TPllControlInfo |
|
71 { |
|
72 TUint32 iConfigRegister; // register containing configuration settings |
|
73 TUint32 iMulDivRegister; // register containing multiplier and divider setting |
|
74 TUint32 iStatusRegister; // register containing PLL status |
|
75 TUint iMultShift; // shift to move multiplier into position |
|
76 TUint iDivShift; // shift to move divider into position |
|
77 TUint iFreqSelShift; // shift to move frequency range selection into position |
|
78 TUint iRampShift; // shift to move ramp bits into position |
|
79 TUint iDriftShift; // shift to move driftsel into position |
|
80 TUint iLpShift; // shift to move LP bit into position |
|
81 TUint iLockBit; // bit number of lock flag in iStatusRegister |
|
82 }; |
|
83 |
|
84 static const TPllControlInfo KPllControlInfo[ Prcm::KSupportedPllCount ] = |
|
85 { |
|
86 // ConfReg MulDivReg StatusReg MulShift DivShift FreqShift RampShift DriftShift LpShift LockBit |
|
87 { KCM_CLKEN_PLL_MPU, KCM_CLKSEL1_PLL_MPU, KCM_IDLEST_PLL_MPU, 8, 0, 4, 8, 3, 10, 0 }, // DPLL1 (mpu) |
|
88 { KCM_CLKEN_PLL_IVA2, KCM_CLKSEL1_PLL_IVA2, KCM_IDLEST_PLL_IVA2, 8, 0, 4, 8, 3, 10, 0 }, // DPLL2 (iva2) |
|
89 { KCM_CLKEN_PLL, KCM_CLKSEL1_PLL, KCM_IDLEST_CKGEN, 16, 8, 4, 8, 3, 10, 0 }, // DPLL3 (core) |
|
90 { KCM_CLKEN_PLL, KCM_CLKSEL2_PLL, KCM_IDLEST_CKGEN, 8, 0, 20, 24, 19, 26, 1 }, // DPLL4 (periph) |
|
91 { KCM_CLKEN2_PLL, KCM_CLKSEL4_PLL, KCM_IDLEST2_CKGEN, 8, 0, 4, 8, 3, 10, 0 } // DPLL5 (periph2) |
|
92 }; |
|
93 __ASSERT_COMPILE( (sizeof(KPllControlInfo) / sizeof( KPllControlInfo[0] )) == Prcm::KSupportedPllCount ); |
|
94 |
|
95 struct TPllModeInfo |
|
96 { |
|
97 TUint32 iModeRegister; |
|
98 TUint32 iAutoRegister; |
|
99 TUint8 iModeShift; |
|
100 TUint8 iAutoShift; |
|
101 TUint8 _spare[2]; |
|
102 }; |
|
103 |
|
104 static const TPllModeInfo KPllMode[] = |
|
105 { |
|
106 // iModeRegister iAutoRegister iModeShift iAutoShift |
|
107 { KCM_CLKEN_PLL_MPU, KCM_AUTOIDLE_PLL_MPU, 0, 0 }, |
|
108 { KCM_CLKEN_PLL_IVA2, KCM_AUTOIDLE_PLL_IVA2, 0, 0 }, |
|
109 { KCM_CLKEN_PLL, KCM_AUTOIDLE_PLL, 0, 0 }, |
|
110 { KCM_CLKEN_PLL, KCM_AUTOIDLE_PLL, 16, 3 }, |
|
111 { KCM_CLKEN2_PLL, KCM_AUTOIDLE2_PLL, 0, 3 } |
|
112 }; |
|
113 __ASSERT_COMPILE( (sizeof(KPllMode) / sizeof( KPllMode[0] )) == Prcm::KSupportedPllCount ); |
|
114 |
|
115 |
|
116 // All dividers in the PRCM fall into one of these classes |
|
117 // Some are unique to a particular peripheral but some |
|
118 // are used by multiple peripherals so we can share that implementation |
|
119 enum TDivType |
|
120 { |
|
121 EDivNotSupported, |
|
122 EDiv_1_2, |
|
123 EDivCore_1_2_4, |
|
124 EDivCore_3_4_6_96M, |
|
125 EDivPll_1_To_16, |
|
126 EDivPll_1_To_31, |
|
127 EDivUsimClk, |
|
128 EDivClkOut_1_2_4_8_16, |
|
129 }; |
|
130 |
|
131 struct TDividerInfo |
|
132 { |
|
133 TUint32 iRegister; |
|
134 TUint32 iMask; // mask of bits to modify in register |
|
135 TDivType iDivType : 8; |
|
136 TUint8 iShift; // number of bits to shift to move divide value into position |
|
137 }; |
|
138 |
|
139 static const TDividerInfo KDividerInfo[] = |
|
140 { |
|
141 { KCM_CLKSEL2_PLL_MPU, 0x1F, EDivPll_1_To_16, 0 }, // EClkMpu, ///< DPLL1 |
|
142 { KCM_CLKSEL2_PLL_IVA2, 0x1F, EDivPll_1_To_16, 0 }, |
|
143 { KCM_CLKSEL1_PLL, 0x1FU << 27, EDivPll_1_To_31, 27 }, // EClkCore, ///< DPLL3 |
|
144 { KDummy, 0, EDivNotSupported, 0 }, // EClkPeriph, ///< DPLL4 |
|
145 { KDummy, 0, EDivNotSupported, 0 }, // EClkPeriph2, ///< DPLL5 |
|
146 |
|
147 { KDummy, 0, EDivNotSupported, 0 }, // EClkPrcmInterface, |
|
148 |
|
149 { KDummy, 0, EDivNotSupported, 0 }, // EClkEmu, ///< Emulation clock |
|
150 { KDummy, 0, EDivNotSupported, 0 }, // EClkNeon, |
|
151 |
|
152 { KCM_CLKSEL_CORE, KBit0 | KBit1, EDiv_1_2, 0 }, // EClkL3Domain, |
|
153 { KCM_CLKSEL_CORE, KBit2 | KBit3, EDiv_1_2, 2 }, // EClkL4Domain, |
|
154 |
|
155 { KCM_CLKSEL1_PLL_MPU, KBit19 | KBit20 | KBit21, EDivCore_1_2_4, 19 }, // EClkMpuPll_Bypass, ///< DPLL1 bypass frequency |
|
156 { KCM_CLKSEL1_PLL_IVA2, KBit19 | KBit20 | KBit21, EDivCore_1_2_4, 19 }, // EClkIva2Pll_Bypass, ///< DPLL2 bypass frequency |
|
157 { KCM_CLKSEL_WKUP, KBit1 | KBit2, EDiv_1_2, 1 }, // EClkRM_F, ///< Reset manager functional clock |
|
158 { KCM_CLKSEL3_PLL, 0x1F, EDivPll_1_To_16, 0 }, // EClk96M ///< 96MHz clock |
|
159 { KCM_CLKSEL5_PLL, 0x1F, EDivPll_1_To_16, 0 }, // EClk120M ///< 120MHz clock |
|
160 { KCM_CLKOUT_CTRL, KBit3 | KBit4 | KBit5, EDivClkOut_1_2_4_8_16, 3 }, // EClkSysOut |
|
161 |
|
162 // Functional clocks |
|
163 { KCM_CLKSEL_DSS, 0x1FU << 8, EDivPll_1_To_16, 8 }, // EClkTv_F, |
|
164 { KCM_CLKSEL_DSS, 0x1F, EDivPll_1_To_16, 0 }, // EClkDss1_F, |
|
165 { KDummy, 0, EDivNotSupported, 0 }, // EClkDss2_F, |
|
166 { KDummy, 0, EDivNotSupported, 0 }, // EClkCsi2_F, |
|
167 { KCM_CLKSEL_CAM, 0x1F, EDivPll_1_To_16, 0 }, // EClkCam_F, |
|
168 { KDummy, 0, EDivNotSupported, 0 }, // EClkIva2_F, |
|
169 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc1_F, |
|
170 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc2_F, |
|
171 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc3_F, |
|
172 { KDummy, 0, EDivNotSupported, 0 }, // EClkMsPro_F, |
|
173 { KDummy, 0, EDivNotSupported, 0 }, // EClkHdq_F, |
|
174 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp1_F, |
|
175 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp2_F, |
|
176 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp3_F, |
|
177 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp4_F, |
|
178 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp5_F, |
|
179 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi1_F, |
|
180 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi2_F, |
|
181 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi3_F, |
|
182 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi4_F, |
|
183 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c1_F, |
|
184 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c2_F, |
|
185 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c3_F, |
|
186 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart1_F, |
|
187 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart2_F, |
|
188 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart3_F, |
|
189 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt1_F, |
|
190 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt2_F, |
|
191 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt3_F, |
|
192 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt4_F, |
|
193 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt5_F, |
|
194 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt6_F, |
|
195 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt7_F, |
|
196 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt8_F, |
|
197 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt9_F, |
|
198 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt10_F, |
|
199 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt11_F, |
|
200 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsbTll_F, |
|
201 { KDummy, 0, EDivNotSupported, 0 }, // EClkTs_F, |
|
202 { KDummy, 0, EDivNotSupported, 0 }, // EClkCpeFuse_F, |
|
203 |
|
204 { KCM_CLKSEL_SGX, KBit0 | KBit1 | KBit2, EDivCore_3_4_6_96M, 0 }, // EClkSgx_F, |
|
205 |
|
206 { KCM_CLKSEL_WKUP, KBit3 | KBit4 | KBit5 | KBit6, EDivUsimClk, 3 }, // EClkUsim_F, |
|
207 { KDummy, 0, EDivNotSupported, 0 }, // EClkSmartReflex2_F, |
|
208 { KDummy, 0, EDivNotSupported, 0 }, // EClkSmartReflex1_F, |
|
209 { KDummy, 0, EDivNotSupported, 0 }, // EClkWdt2_F, |
|
210 { KDummy, 0, EDivNotSupported, 0 }, // EClkWdt3_F, |
|
211 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio1_F, |
|
212 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio2_F, |
|
213 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio3_F, |
|
214 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio4_F, |
|
215 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio5_F, |
|
216 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio6_F, |
|
217 |
|
218 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsb120_F, ///< USB host 120MHz functional clock |
|
219 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsb48_F, ///< USB host 48MHz functional clock |
|
220 |
|
221 |
|
222 // Interface clocks |
|
223 { KDummy, 0, EDivNotSupported, 0 }, // EClkDss_I, |
|
224 { KDummy, 0, EDivNotSupported, 0 }, // EClkCam_I, |
|
225 { KDummy, 0, EDivNotSupported, 0 }, // EClkIcr_I, |
|
226 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc1_I, |
|
227 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc2_I, |
|
228 { KDummy, 0, EDivNotSupported, 0 }, // EClkMmc3_I, |
|
229 { KDummy, 0, EDivNotSupported, 0 }, // EClkMsPro_I, |
|
230 { KDummy, 0, EDivNotSupported, 0 }, // EClkHdq_I, |
|
231 { KDummy, 0, EDivNotSupported, 0 }, // EClkAes1_I, |
|
232 { KDummy, 0, EDivNotSupported, 0 }, // EClkAes2_I, |
|
233 { KDummy, 0, EDivNotSupported, 0 }, // EClkSha11_I, |
|
234 { KDummy, 0, EDivNotSupported, 0 }, // EClkSha12_I, |
|
235 { KDummy, 0, EDivNotSupported, 0 }, // EClkDes1_I, |
|
236 { KDummy, 0, EDivNotSupported, 0 }, // EClkDes2_I, |
|
237 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp1_I, |
|
238 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp2_I, |
|
239 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp3_I, |
|
240 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp4_I, |
|
241 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcBsp5_I, |
|
242 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c1_I, |
|
243 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c2_I, |
|
244 { KDummy, 0, EDivNotSupported, 0 }, // EClkI2c3_I, |
|
245 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart1_I, |
|
246 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart2_I, |
|
247 { KDummy, 0, EDivNotSupported, 0 }, // EClkUart3_I, |
|
248 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi1_I, |
|
249 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi2_I, |
|
250 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi3_I, |
|
251 { KDummy, 0, EDivNotSupported, 0 }, // EClkMcSpi4_I, |
|
252 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt1_I, |
|
253 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt2_I, |
|
254 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt3_I, |
|
255 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt4_I, |
|
256 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt5_I, |
|
257 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt6_I, |
|
258 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt7_I, |
|
259 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt8_I, |
|
260 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt9_I, |
|
261 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt10_I, |
|
262 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt11_I, |
|
263 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpt12_I, |
|
264 { KDummy, 0, EDivNotSupported, 0 }, // EClkMailboxes_I, |
|
265 { KDummy, 0, EDivNotSupported, 0 }, // EClkOmapSCM_I, |
|
266 { KDummy, 0, EDivNotSupported, 0 }, // EClkHsUsbOtg_I, |
|
267 { KDummy, 0, EDivNotSupported, 0 }, // EClkSdrc_I, |
|
268 { KDummy, 0, EDivNotSupported, 0 }, // EClkPka_I, |
|
269 { KDummy, 0, EDivNotSupported, 0 }, // EClkRng_I, |
|
270 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsbTll_I, |
|
271 |
|
272 { KDummy, 0, EDivNotSupported, 0 }, // EClkSgx_I, |
|
273 |
|
274 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsim_I, |
|
275 { KDummy, 0, EDivNotSupported, 0 }, // EClkWdt1_I, |
|
276 { KDummy, 0, EDivNotSupported, 0 }, // EClkWdt2_I, |
|
277 { KDummy, 0, EDivNotSupported, 0 }, // EClkWdt3_I, |
|
278 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio1_I, |
|
279 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio2_I, |
|
280 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio3_I, |
|
281 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio4_I, |
|
282 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio5_I, |
|
283 { KDummy, 0, EDivNotSupported, 0 }, // EClkGpio6_I, |
|
284 { KDummy, 0, EDivNotSupported, 0 }, // EClk32Sync_I, |
|
285 |
|
286 { KDummy, 0, EDivNotSupported, 0 }, // EClkUsb_I, ///< USB host interface clock |
|
287 |
|
288 { KDummy, 0, EDivNotSupported, 0 }, // EClk48M |
|
289 { KDummy, 0, EDivNotSupported, 0 }, // EClk12M |
|
290 |
|
291 { KDummy, 0, EDivNotSupported, 0 }, // EClkSysClk, |
|
292 { KDummy, 0, EDivNotSupported, 0 }, // EClkAltClk, |
|
293 { KDummy, 0, EDivNotSupported, 0 }, // EClkSysClk32k, |
|
294 }; |
|
295 __ASSERT_COMPILE( (sizeof(KDividerInfo) / sizeof( KDividerInfo[0] )) == Prcm::KSupportedClockCount ); |
|
296 |
|
297 // Special case divider and mux info for USIM |
|
298 struct TUsimDivMuxInfo |
|
299 { |
|
300 Prcm::TClock iClock : 8; // source clock |
|
301 TUint8 iDivider; // divider factor |
|
302 }; |
|
303 static const TUsimDivMuxInfo UsimDivMuxInfo[16] = |
|
304 { |
|
305 { Prcm::EClkSysClk, 1 }, // 0x0 |
|
306 { Prcm::EClkSysClk, 1 }, // 0x1 |
|
307 { Prcm::EClkSysClk, 2 }, // 0x2 |
|
308 { Prcm::EClk96M, 2 }, // 0x3 |
|
309 { Prcm::EClk96M, 4 }, // 0x4 |
|
310 { Prcm::EClk96M, 8 }, // 0x5 |
|
311 { Prcm::EClk96M, 10 }, // 0x6 |
|
312 { Prcm::EClk120M, 4 }, // 0x7 |
|
313 { Prcm::EClk120M, 8 }, // 0x8 |
|
314 { Prcm::EClk120M, 16 }, // 0x9 |
|
315 { Prcm::EClk120M, 20 }, // 0xA |
|
316 { Prcm::EClkSysClk, 1 }, // 0xB |
|
317 { Prcm::EClkSysClk, 1 }, // 0xC |
|
318 { Prcm::EClkSysClk, 1 }, // 0xD |
|
319 { Prcm::EClkSysClk, 1 }, // 0xE |
|
320 { Prcm::EClkSysClk, 1 } // 0xF |
|
321 }; |
|
322 |
|
323 // Structure representing a register, mask and enable/disable values |
|
324 struct TRegisterBitDef |
|
325 { |
|
326 TUint32 iRegister; |
|
327 TUint32 iMask; |
|
328 TUint32 iEnablePattern; |
|
329 TUint32 iDisablePattern; |
|
330 }; |
|
331 |
|
332 // Structure for holding information on clock enable and auto mode |
|
333 struct TClockEnableAutoInfo |
|
334 { |
|
335 TRegisterBitDef iGate; |
|
336 TRegisterBitDef iAuto; |
|
337 }; |
|
338 |
|
339 const TUint32 KDummyReadAsDisabled = 1; |
|
340 const TUint32 KDummyReadAsEnabled = 0; |
|
341 const TUint32 KBit012 = KBit0 | KBit1 | KBit2; |
|
342 const TUint32 KBit345 = KBit3 | KBit4 | KBit5; |
|
343 const TUint32 KBit16_17_18 = KBit16 | KBit17 | KBit18; |
|
344 |
|
345 // Table of bits to set to enable each clock |
|
346 // Note where a function doesn't exist, use { KDummy, 0, V, 0 } which will cause a write to harmlessly write |
|
347 // to __dummypoke and a read to find that the item is disabled if V==KDummyReadAsDisabled and enabled if V=KDummyReadAsEnabled |
|
348 static const TClockEnableAutoInfo KClockControlTable[] = |
|
349 { |
|
350 { { KDummy, 0, 0, 0 }, { KCM_AUTOIDLE_PLL_MPU, KBit012, 1, 0 } }, // EClkMpu, |
|
351 { { KCM_CLKEN_PLL_IVA2, KBit012, 7, 1 }, { KCM_AUTOIDLE_PLL_IVA2, KBit0, 1, 0 } }, // EClkIva2Pll, |
|
352 { { KCM_CLKEN_PLL, KBit012, 0x7, 0x5 }, { KCM_AUTOIDLE_PLL, KBit012, 1, 0 } }, // EClkCore, ///< DPLL3 |
|
353 { { KCM_CLKEN_PLL, KBit16_17_18, KBit16_17_18, KBit16 }, { KCM_AUTOIDLE_PLL, KBit345, KBit3, 0 } }, // EClkPeriph, ///< DPLL4 |
|
354 { { KCM_CLKEN2_PLL, KBit012, 0x7, 0x1 }, { KCM_AUTOIDLE2_PLL, KBit012, 1, 0 } }, // EClkPeriph2, ///< DPLL5 |
|
355 |
|
356 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkPrcmInterface, |
|
357 { { KDummy, 0, 0, 0 }, { KCM_CLKSTCTRL_EMU, KBit0 | KBit1, 3, 2 } }, // EClkEmu, ///< Emulation clock |
|
358 { { KCM_IDLEST_NEON, KBit0, 0, 1 }, { KCM_CLKSTCTRL_NEON, KBit0 | KBit1, 3, 2 } }, // EClkNeon, |
|
359 |
|
360 { { KDummy, 0, 0, 0 }, { KCM_CLKSTCTRL_CORE, KBit0 | KBit1, KBit0 | KBit1, 0 } }, // EClkL3Domain, |
|
361 { { KDummy, 0, 0, 0 }, { KCM_CLKSTCTRL_CORE, KBit2 | KBit3, KBit2 | KBit3, 0 } }, // EClkL4Domain, |
|
362 |
|
363 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkMpuPll_Bypass, ///< DPLL1 bypass frequency |
|
364 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkIva2Pll_Bypass, ///< DPLL2 bypass frequency |
|
365 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkRM_F, ///< Reset manager functional clock |
|
366 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClk96M, ///< 96MHz clock |
|
367 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClk120M, ///< 120MHz clock |
|
368 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSysOut, |
|
369 |
|
370 // Functional clocks |
|
371 { { KCM_FCLKEN_DSS, KBit2, KBit2, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkTv_F, |
|
372 { { KCM_FCLKEN_DSS, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDss1_F, |
|
373 { { KCM_FCLKEN_DSS, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDss2_F, |
|
374 { { KCM_FCLKEN_CAM, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCsi2_F, |
|
375 { { KCM_FCLKEN_CAM, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCam_F, |
|
376 { { KCM_FCLKEN_IVA2, KBit0, KBit0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkIva2_F, |
|
377 { { KCM_FCLKEN1_CORE, KBit24, KBit24, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc1_F, |
|
378 { { KCM_FCLKEN1_CORE, KBit25, KBit25, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc2_F, |
|
379 { { KCM_FCLKEN1_CORE, KBit30, KBit30, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc3_F, |
|
380 { { KCM_FCLKEN1_CORE, KBit23, KBit23, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMsPro_F, |
|
381 { { KCM_FCLKEN1_CORE, KBit22, KBit22, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkHdq_F, |
|
382 { { KCM_FCLKEN1_CORE, KBit9, KBit9, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBSP1_F, |
|
383 { { KCM_FCLKEN_PER, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBSP2_F, |
|
384 { { KCM_FCLKEN_PER, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBSP3_F, |
|
385 { { KCM_FCLKEN_PER, KBit2, KBit2, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBSP4_F, |
|
386 { { KCM_FCLKEN1_CORE, KBit10, KBit10, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBSP5_F, |
|
387 { { KCM_FCLKEN1_CORE, KBit18, KBit18, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi1_F, |
|
388 { { KCM_FCLKEN1_CORE, KBit19, KBit19, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi2_F, |
|
389 { { KCM_FCLKEN1_CORE, KBit20, KBit20, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi3_F, |
|
390 { { KCM_FCLKEN1_CORE, KBit21, KBit21, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi4_F, |
|
391 { { KCM_FCLKEN1_CORE, KBit15, KBit15, 0}, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c1_F, |
|
392 { { KCM_FCLKEN1_CORE, KBit16, KBit16, 0}, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c2_F, |
|
393 { { KCM_FCLKEN1_CORE, KBit17, KBit17, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c3_F, |
|
394 { { KCM_FCLKEN1_CORE, KBit13, KBit13, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart1_F, |
|
395 { { KCM_FCLKEN1_CORE, KBit14, KBit14, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart2_F, |
|
396 { { KCM_FCLKEN_PER, KBit11, KBit11, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart3_F, |
|
397 { { KCM_FCLKEN_WKUP, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt1_F, |
|
398 { { KCM_FCLKEN_PER, KBit3, KBit3, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt2_F, |
|
399 { { KCM_FCLKEN_PER, KBit4, KBit4, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt3_F, |
|
400 { { KCM_FCLKEN_PER, KBit5, KBit5, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt4_F, |
|
401 { { KCM_FCLKEN_PER, KBit6, KBit6, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt5_F, |
|
402 { { KCM_FCLKEN_PER, KBit7, KBit7, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt6_F, |
|
403 { { KCM_FCLKEN_PER, KBit8, KBit8, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt7_F, |
|
404 { { KCM_FCLKEN_PER, KBit9, KBit9, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt8_F, |
|
405 { { KCM_FCLKEN_PER, KBit10, KBit10, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt9_F, |
|
406 { { KCM_FCLKEN1_CORE, KBit11, KBit11, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt10_F, |
|
407 { { KCM_FCLKEN1_CORE, KBit12, KBit12, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt11_F, |
|
408 { { KCM_FCLKEN3_CORE, KBit2, KBit2, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsbTll_F, |
|
409 { { KCM_FCLKEN3_CORE, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkTs_F, |
|
410 { { KCM_FCLKEN3_CORE, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCpeFuse_F, |
|
411 |
|
412 { { KCM_FCLKEN_SGX, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSgx_F, |
|
413 |
|
414 { { KCM_FCLKEN_WKUP, KBit9, KBit9, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsim_F, |
|
415 { { KCM_FCLKEN_WKUP, KBit7, KBit7, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSmartReflex2_F, |
|
416 { { KCM_FCLKEN_WKUP, KBit6, KBit6, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSmartReflex1_F, |
|
417 { { KCM_FCLKEN_WKUP, KBit5, KBit5, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt2_F, |
|
418 { { KCM_FCLKEN_PER, KBit12, KBit12, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt3_F, |
|
419 { { KCM_FCLKEN_WKUP, KBit3, KBit3, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio1_F, |
|
420 { { KCM_FCLKEN_PER, KBit13, KBit13, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio2_F, |
|
421 { { KCM_FCLKEN_PER, KBit14, KBit14, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio3_F, |
|
422 { { KCM_FCLKEN_PER, KBit15, KBit15, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio4_F, |
|
423 { { KCM_FCLKEN_PER, KBit16, KBit16, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio5_F, |
|
424 { { KCM_FCLKEN_PER, KBit17, KBit17, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio6_F, |
|
425 |
|
426 { { KCM_FCLKEN_USBHOST, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsb120_F, |
|
427 { { KCM_FCLKEN_USBHOST, KBit0, KBit0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsb48_F, |
|
428 |
|
429 |
|
430 // Interface clocks |
|
431 { { KCM_ICLKEN_DSS, KBit0, KBit0, 0 }, { KCM_AUTOIDLE_DSS, KBit0, KBit0, 0 } }, // EClkDss_I, |
|
432 { { KCM_ICLKEN_CAM, KBit0,KBit0, 0 }, { KCM_AUTOIDLE_CAM, KBit0, KBit0, 0 } }, // EClkCam_I, |
|
433 { { KCM_ICLKEN1_CORE, KBit29, KBit29, 0 }, { KCM_AUTOIDLE1_CORE, KBit29, KBit29, 0 } }, // EClkIcr_I, |
|
434 { { KCM_ICLKEN1_CORE, KBit24, KBit24, 0 }, { KCM_AUTOIDLE1_CORE, KBit24, KBit24, 0 } }, // EClkMmc1_I, |
|
435 { { KCM_ICLKEN1_CORE, KBit25, KBit25, 0 }, { KCM_AUTOIDLE1_CORE, KBit25, KBit25, 0 } }, // EClkMmc2_I, |
|
436 { { KCM_ICLKEN1_CORE, KBit30, KBit30, 0 }, { KCM_AUTOIDLE1_CORE, KBit30, KBit30, 0 } }, // EClkMmc3_I, |
|
437 { { KCM_ICLKEN1_CORE, KBit23, KBit23, 0 }, { KCM_AUTOIDLE1_CORE, KBit23, KBit23, 0 } }, // EClkMsPro_I, |
|
438 { { KCM_ICLKEN1_CORE, KBit22, KBit22, 0 }, { KCM_AUTOIDLE1_CORE, KBit22, KBit22, 0 } }, // EClkHdq_I, |
|
439 { { KCM_ICLKEN2_CORE, KBit3, KBit3, 0 }, { KCM_AUTOIDLE2_CORE, KBit3, KBit3, 0 } }, // EClkAes1_I, |
|
440 { { KCM_ICLKEN1_CORE, KBit28, KBit28, 0 }, { KCM_AUTOIDLE1_CORE, KBit28, KBit28, 0 } }, // EClkAes2_I, |
|
441 { { KCM_ICLKEN2_CORE, KBit1, KBit1, 0 }, { KCM_AUTOIDLE2_CORE, KBit1, KBit1, 0 } }, // EClkSha11_I, |
|
442 { { KCM_ICLKEN1_CORE, KBit28, KBit27, 0 }, { KCM_AUTOIDLE1_CORE, KBit27, KBit27, 0 } }, // EClkSha12_I, |
|
443 { { KCM_ICLKEN2_CORE, KBit0, KBit0, 0 }, { KCM_AUTOIDLE2_CORE, KBit0, KBit0, 0 } }, // EClkDes1_I, |
|
444 { { KCM_ICLKEN1_CORE, KBit26, KBit26, 0 }, { KCM_AUTOIDLE1_CORE, KBit26, KBit26, 0 } }, // EClkDes2_I, |
|
445 { { KCM_ICLKEN1_CORE, KBit9, KBit9, 0 }, { KCM_AUTOIDLE1_CORE, KBit9, KBit9, 0 } }, // EClkMcBSP1_I, |
|
446 { { KCM_ICLKEN_PER, KBit0, KBit0, 0}, { KCM_AUTOIDLE_PER, KBit0, KBit0, 0 } }, // EClkMcBSP2_I, |
|
447 { { KCM_ICLKEN_PER, KBit1, KBit1, 0 }, { KCM_AUTOIDLE_PER, KBit1, KBit1, 0 } }, // EClkMcBSP3_I, |
|
448 { { KCM_ICLKEN_PER, KBit2, KBit2, 0 }, { KCM_AUTOIDLE_PER, KBit2, KBit2, 0 } }, // EClkMcBSP4_I, |
|
449 { { KCM_ICLKEN1_CORE, KBit10, KBit10, 0 }, { KCM_AUTOIDLE1_CORE, KBit10, KBit10, 0 } }, // EClkMcBSP5_I, |
|
450 { { KCM_ICLKEN1_CORE, KBit15, KBit15, 0 }, { KCM_AUTOIDLE1_CORE, KBit15, KBit15, 0 } }, // EClkI2c1_I, |
|
451 { { KCM_ICLKEN1_CORE, KBit16, KBit16, 0 }, { KCM_AUTOIDLE1_CORE, KBit16, KBit16, 0 } }, // EClkI2c2_I, |
|
452 { { KCM_ICLKEN1_CORE, KBit17, KBit17, 0 }, { KCM_AUTOIDLE1_CORE, KBit17, KBit17, 0 } }, // EClkI2c3_I, |
|
453 { { KCM_ICLKEN1_CORE, KBit13, KBit13, 0 }, { KCM_AUTOIDLE1_CORE, KBit13, KBit13, 0 } }, // EClkUart1_I, |
|
454 { { KCM_ICLKEN1_CORE, KBit14, KBit14, 0 }, { KCM_AUTOIDLE1_CORE, KBit14, KBit14, 0 } }, // EClkUart2_I, |
|
455 { { KCM_ICLKEN_PER, KBit11, KBit11, 0 }, { KCM_AUTOIDLE_PER, KBit11, KBit11, 0 } }, // EClkUart3_I, |
|
456 { { KCM_ICLKEN1_CORE, KBit18, KBit18, 0 }, { KCM_AUTOIDLE1_CORE, KBit18, KBit18, 0 } }, // EClkMcSpi1_I, |
|
457 { { KCM_ICLKEN1_CORE, KBit19, KBit19, 0 }, { KCM_AUTOIDLE1_CORE, KBit19, KBit19, 0 } }, // EClkMcSpi2_I, |
|
458 { { KCM_ICLKEN1_CORE, KBit20, KBit20, 0 }, { KCM_AUTOIDLE1_CORE, KBit20, KBit20, 0 } }, // EClkMcSpi3_I, |
|
459 { { KCM_ICLKEN1_CORE, KBit21, KBit21, 0 }, { KCM_AUTOIDLE1_CORE, KBit21, KBit21, 0 } }, // EClkMcSpi4_I, |
|
460 { { KCM_ICLKEN_WKUP, KBit0, KBit0, 0 }, { KCM_AUTOIDLE_WKUP, KBit0, KBit0, 0 } }, // EClkGpt1_I, |
|
461 { { KCM_ICLKEN_PER, KBit3, KBit3, 0 }, { KCM_AUTOIDLE_PER, KBit3, KBit3, 0 } }, // EClkGpt2_I, |
|
462 { { KCM_ICLKEN_PER, KBit4, KBit4, 0 }, { KCM_AUTOIDLE_PER, KBit4, KBit4, 0 } }, // EClkGpt3_I, |
|
463 { { KCM_ICLKEN_PER, KBit5, KBit5, 0 }, { KCM_AUTOIDLE_PER, KBit5, KBit5, 0 } }, // EClkGpt4_I, |
|
464 { { KCM_ICLKEN_PER, KBit6, KBit6, 0 }, { KCM_AUTOIDLE_PER, KBit6, KBit6, 0 } }, // EClkGpt5_I, |
|
465 { { KCM_ICLKEN_PER, KBit7, KBit7, 0 }, { KCM_AUTOIDLE_PER, KBit7, KBit7, 0 } }, // EClkGpt6_I, |
|
466 { { KCM_ICLKEN_PER, KBit8, KBit8, 0 }, { KCM_AUTOIDLE_PER, KBit8, KBit8, 0 } }, // EClkGpt7_I, |
|
467 { { KCM_ICLKEN_PER, KBit9, KBit9, 0 }, { KCM_AUTOIDLE_PER, KBit9, KBit9, 0 } }, // EClkGpt8_I, |
|
468 { { KCM_ICLKEN_PER, KBit10, KBit10, 0 }, { KCM_AUTOIDLE_PER, KBit10, KBit10, 0 } }, // EClkGpt9_I, |
|
469 { { KCM_ICLKEN1_CORE, KBit11, KBit11, 0 }, { KCM_AUTOIDLE1_CORE, KBit11, KBit11, 0 } }, // EClkGpt10_I, |
|
470 { { KCM_ICLKEN1_CORE, KBit12, KBit12, 0 }, { KCM_AUTOIDLE1_CORE, KBit12, KBit12, 0 } }, // EClkGpt11_I, |
|
471 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt12_I, |
|
472 { { KCM_ICLKEN1_CORE, KBit7, KBit7, 0 }, { KCM_AUTOIDLE1_CORE, KBit7, KBit7, 0 } }, // EClkMailboxes_I, |
|
473 { { KCM_ICLKEN1_CORE, KBit6, KBit6, 0 }, { KCM_AUTOIDLE1_CORE, KBit6, KBit6, 0 } }, // EClkOmapSCM_I, |
|
474 { { KCM_ICLKEN1_CORE, KBit4, KBit4, 0 }, { KCM_AUTOIDLE1_CORE, KBit4, KBit4, 0 } }, // EClkHsUsbOtg_I, |
|
475 { { KCM_ICLKEN1_CORE, KBit1, KBit1, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSdrc_I, |
|
476 { { KCM_ICLKEN2_CORE, KBit4, KBit4, 0 }, { KCM_AUTOIDLE2_CORE, KBit4, KBit4, 0 } }, // EClkPka_I, |
|
477 { { KCM_ICLKEN2_CORE, KBit2, KBit2, 0 }, { KCM_AUTOIDLE2_CORE, KBit2, KBit2, 0 } }, // EClkRng_I, |
|
478 { { KCM_ICLKEN3_CORE, KBit2, KBit2, 0 }, { KCM_AUTOIDLE3_CORE, KBit2, KBit2, 0 } }, // EClkUsbTll_I, |
|
479 |
|
480 { { KCM_ICLKEN_SGX, KBit0, KBit0, 0 }, { KCM_CLKSTCTRL_SGX, KBit0 | KBit1, 0x3, 0x0 } }, // EClkSgx_I, |
|
481 |
|
482 { { KCM_ICLKEN_WKUP, KBit9, KBit9, 0 }, { KCM_AUTOIDLE_WKUP, KBit9, KBit9, 0 } }, // EClkUsim_I, |
|
483 { { KCM_ICLKEN_WKUP, KBit4, KBit4, 0 }, { KCM_AUTOIDLE_WKUP, KBit4, KBit4, 0 } }, // EClkWdt1_I, |
|
484 { { KCM_ICLKEN_WKUP, KBit5, KBit5, 0 }, { KCM_AUTOIDLE_WKUP, KBit5, KBit5, 0 } }, // EClkWdt2_I, |
|
485 { { KCM_ICLKEN_PER, KBit12, KBit12, 0 }, { KCM_AUTOIDLE_PER, KBit12, KBit12, 0 } }, // EClkWdt3_I, |
|
486 { { KCM_ICLKEN_WKUP, KBit3, KBit3, 0 }, { KCM_AUTOIDLE_WKUP, KBit3, KBit3, 0 } }, // EClkGpio1_I, |
|
487 { { KCM_ICLKEN_PER, KBit13, KBit13, 0 }, { KCM_AUTOIDLE_PER, KBit13, KBit13, 0 } }, // EClkGpio2_I, |
|
488 { { KCM_ICLKEN_PER, KBit14, KBit14, 0 }, { KCM_AUTOIDLE_PER, KBit14, KBit14, 0 } }, // EClkGpio3_I, |
|
489 { { KCM_ICLKEN_PER, KBit15, KBit15, 0 }, { KCM_AUTOIDLE_PER, KBit15, KBit15, 0 } }, // EClkGpio4_I, |
|
490 { { KCM_ICLKEN_PER, KBit16, KBit16, 0 }, { KCM_AUTOIDLE_PER, KBit16, KBit16, 0 } }, // EClkGpio5_I, |
|
491 { { KCM_ICLKEN_PER, KBit17, KBit17, 0 }, { KCM_AUTOIDLE_PER, KBit17, KBit17, 0 } }, // EClkGpio6_I, |
|
492 { { KCM_ICLKEN_WKUP, KBit2, KBit2, 0 }, { KCM_AUTOIDLE_WKUP, KBit2, KBit2, 0 } }, // EClk32Sync_I, |
|
493 |
|
494 { { KCM_ICLKEN_USBHOST, KBit0, KBit0, 0 }, { KCM_AUTOIDLE_USBHOST, KBit0, KBit0, 0 } }, // EClkUsb_I, ///< USB host interface clock |
|
495 |
|
496 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClk48M |
|
497 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClk12M |
|
498 |
|
499 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkSysClk |
|
500 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkAltClk |
|
501 { { KDummy, 0, 0, 0 }, { KDummy, 0, KDummyReadAsEnabled, 0 } }, // EClkSysClk32k |
|
502 }; |
|
503 __ASSERT_COMPILE( (sizeof(KClockControlTable) / sizeof( KClockControlTable[0] )) == Prcm::KSupportedClockCount ); |
|
504 |
|
505 static const TRegisterBitDef KClockWakeupTable[] = |
|
506 { |
|
507 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMpu, ///< DPLL1 |
|
508 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkIva2Pll, ///< DPLL2 |
|
509 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkCore, ///< DPLL3 |
|
510 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkPeriph, ///< DPLL4 |
|
511 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkPeriph2, ///< DPLL5 |
|
512 |
|
513 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkPrcmInterface, |
|
514 |
|
515 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkEmu, ///< Emulation clock |
|
516 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkNeon, |
|
517 |
|
518 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkL3Domain, |
|
519 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkL4Domain, |
|
520 |
|
521 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMpuPll_Bypass, ///< DPLL1 bypass frequency |
|
522 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkIva2Pll_Bypass, ///< DPLL2 bypass frequency |
|
523 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkRM_F, ///< Reset manager functional clock |
|
524 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClk96M, ///< 96MHz clock |
|
525 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClk120M, ///< 120MHz clock |
|
526 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSysOut, |
|
527 |
|
528 // Functional clocks |
|
529 // NOTE - functional clocks aren't mapped to a wakeup event, these just clock the internals |
|
530 // Use the interface clocks to register a wakeup |
|
531 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkTv_F, |
|
532 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkDss1_F, |
|
533 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkDss2_F, |
|
534 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkCsi2_F, |
|
535 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkCam_F, |
|
536 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkIva2_F, |
|
537 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMmc1_F, |
|
538 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMmc2_F, |
|
539 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMmc3_F, |
|
540 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMsPro_F, |
|
541 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkHdq_F, |
|
542 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcBSP1_F, |
|
543 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcBSP2_F, |
|
544 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcBSP3_F, |
|
545 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcBSP4_F, |
|
546 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcBSP5_F, |
|
547 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcSpi1_F |
|
548 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcSpi2_F |
|
549 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcSpi3_F |
|
550 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMcSpi4_F |
|
551 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkI2c1_F, |
|
552 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkI2c2_F, |
|
553 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkI2c3_F, |
|
554 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUart1_F, |
|
555 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUart2_F, |
|
556 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUart3_F, |
|
557 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt1_F, |
|
558 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt2_F, |
|
559 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt3_F, |
|
560 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt4_F, |
|
561 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt5_F, |
|
562 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt6_F, |
|
563 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt7_F, |
|
564 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt8_F, |
|
565 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt9_F, |
|
566 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt10_F, |
|
567 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpt11_F, |
|
568 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUsbTll_F, |
|
569 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkTs_F, |
|
570 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkCpeFuse_F, |
|
571 |
|
572 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSgx_F, |
|
573 |
|
574 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUsim_F, |
|
575 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSmartReflex2_F, |
|
576 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSmartReflex1_F, |
|
577 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkWdt2_F, |
|
578 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkWdt3_F, |
|
579 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio1_F, |
|
580 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio2_F, |
|
581 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio3_F, |
|
582 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio4_F, |
|
583 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio5_F, |
|
584 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkGpio6_F, |
|
585 |
|
586 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUsb120_F, ///< USB host 120MHz functional clock |
|
587 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkUsb48_F, ///< USB host 48MHz functional clock |
|
588 |
|
589 |
|
590 // Interface clocks |
|
591 { KPM_WKEN_DSS, KBit0, KBit0, 0 }, // EClkDss_I, |
|
592 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkCam_I, |
|
593 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkIcr_I, |
|
594 { KPM_WKEN1_CORE, KBit24, KBit24, 0 }, // EClkMmc1_I, |
|
595 { KPM_WKEN1_CORE, KBit25, KBit25, 0 }, // EClkMmc2_I, |
|
596 { KPM_WKEN1_CORE, KBit30, KBit30, 0 }, // EClkMmc3_I, |
|
597 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMsPro_I, |
|
598 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkHdq_I, |
|
599 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkAes1_I, |
|
600 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkAes2_I, |
|
601 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSha11_I, |
|
602 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSha12_I, |
|
603 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkDes1_I, |
|
604 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkDes2_I, |
|
605 { KPM_WKEN1_CORE, KBit9, KBit9, 0 }, // EClkMcBSP1_I, |
|
606 { KPM_WKEN_PER, KBit0, KBit0, 0 }, // EClkMcBSP2_I, |
|
607 { KPM_WKEN_PER, KBit1, KBit1, 0 }, // EClkMcBSP3_I, |
|
608 { KPM_WKEN_PER, KBit2, KBit2, 0 }, // EClkMcBSP4_I, |
|
609 { KPM_WKEN1_CORE, KBit10, KBit10, 0 }, // EClkMcBSP5_I, |
|
610 { KPM_WKEN1_CORE, KBit15, KBit15, 0 }, // EClkI2c1_I, |
|
611 { KPM_WKEN1_CORE, KBit16, KBit16, 0 }, // EClkI2c2_I, |
|
612 { KPM_WKEN1_CORE, KBit17, KBit17, 0 }, // EClkI2c3_I, |
|
613 { KPM_WKEN1_CORE, KBit13, KBit13, 0 }, // EClkUart1_I, |
|
614 { KPM_WKEN1_CORE, KBit14, KBit14, 0 }, // EClkUart2_I, |
|
615 { KPM_WKEN_PER, KBit11, KBit11, 0 }, // EClkUart3_I, |
|
616 { KPM_WKEN1_CORE, KBit18, KBit18, 0 }, // EClkMcSpi1_I |
|
617 { KPM_WKEN1_CORE, KBit19, KBit19, 0 }, // EClkMcSpi2_I |
|
618 { KPM_WKEN1_CORE, KBit20, KBit20, 0 }, // EClkMcSpi3_I |
|
619 { KPM_WKEN1_CORE, KBit21, KBit21, 0 }, // EClkMcSpi4_I |
|
620 { KPM_WKEN_WKUP, KBit0, KBit0, 0 }, // EClkGpt1_I, |
|
621 { KPM_WKEN_PER, KBit3, KBit3, 0 }, // EClkGpt2_I, |
|
622 { KPM_WKEN_PER, KBit4, KBit4, 0 }, // EClkGpt3_I, |
|
623 { KPM_WKEN_PER, KBit5, KBit5, 0 }, // EClkGpt4_I, |
|
624 { KPM_WKEN_PER, KBit6, KBit6, 0 }, // EClkGpt5_I, |
|
625 { KPM_WKEN_PER, KBit7, KBit7, 0 }, // EClkGpt6_I, |
|
626 { KPM_WKEN_PER, KBit8, KBit8, 0 }, // EClkGpt7_I, |
|
627 { KPM_WKEN_PER, KBit9, KBit9, 0 }, // EClkGpt8_I, |
|
628 { KPM_WKEN_PER, KBit10, KBit10, 0 }, // EClkGpt9_I, |
|
629 { KPM_WKEN1_CORE, KBit11, KBit11, 0 }, // EClkGpt10_I, |
|
630 { KPM_WKEN1_CORE, KBit12, KBit12, 0 }, // EClkGpt11_I, |
|
631 { KPM_WKEN_WKUP, KBit1, KBit1, 0 }, // EClkGpt12_I, |
|
632 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkMailboxes_I, |
|
633 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkOmapSCM_I, |
|
634 { KPM_WKEN1_CORE, KBit4, KBit4, 0 }, // EClkHsUsbOtg_I, |
|
635 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSdrc_I, |
|
636 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkPka_I, |
|
637 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkRng_I, |
|
638 { KPM_WKEN3_CORE, KBit2, KBit2, 0 }, // EClkUsbTll_I, |
|
639 |
|
640 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSgx_I, |
|
641 |
|
642 { KPM_WKEN_WKUP, KBit9, KBit9, 0 }, // EClkUsim_I, |
|
643 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkWdt1_I, |
|
644 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkWdt2_I, |
|
645 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkWdt3_I, |
|
646 { KPM_WKEN_WKUP, KBit3, KBit3, 0 }, // EClkGpio1_I, |
|
647 { KPM_WKEN_PER, KBit13, KBit13, 0 }, // EClkGpio2_I, |
|
648 { KPM_WKEN_PER, KBit14, KBit14, 0 }, // EClkGpio3_I, |
|
649 { KPM_WKEN_PER, KBit15, KBit15, 0 }, // EClkGpio4_I, |
|
650 { KPM_WKEN_PER, KBit16, KBit16, 0 }, // EClkGpio5_I, |
|
651 { KPM_WKEN_PER, KBit17, KBit17, 0 }, // EClkGpio6_I, |
|
652 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClk32Sync_I, |
|
653 |
|
654 { KPM_WKEN_USBHOST, KBit0, KBit0, 0 }, // EClkUsb_I, ///< USB host interface clock |
|
655 |
|
656 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClk48M |
|
657 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClk12M |
|
658 |
|
659 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkSysClk |
|
660 { KDummy, 0, KDummyReadAsDisabled, 0 }, // EClkAltClk |
|
661 { KDummy, 0, KDummyReadAsDisabled, 0 } // EClkSysClk32k |
|
662 |
|
663 }; |
|
664 __ASSERT_COMPILE( (sizeof(KClockWakeupTable) / sizeof( KClockWakeupTable[0] )) == Prcm::KSupportedClockCount ); |
|
665 |
|
666 |
|
667 __ASSERT_COMPILE( Prcm::EWakeGroupMpu == 0 ); |
|
668 __ASSERT_COMPILE( Prcm::EWakeGroupIva2 == 1 ); |
|
669 static const TRegisterBitDef KClockWakeupGroupTable[ Prcm::KSupportedClockCount ][ Prcm::KSupportedWakeupGroupCount ] = |
|
670 { |
|
671 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMpu, ///< DPLL1 |
|
672 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkIva2Pll, ///< DPLL2 |
|
673 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCore, ///< DPLL3 |
|
674 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkPeriph, ///< DPLL4 |
|
675 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkPeriph2, ///< DPLL5 |
|
676 |
|
677 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkPrcmInterface, |
|
678 |
|
679 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkEmu, ///< Emulation clock |
|
680 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkNeon, |
|
681 |
|
682 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkL3Domain, |
|
683 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkL4Domain, |
|
684 |
|
685 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMpuPll_Bypass, ///< DPLL1 bypass frequency |
|
686 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkIva2Pll_Bypass, ///< DPLL2 bypass frequency |
|
687 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkRM_F, ///< Reset manager functional clock |
|
688 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClk96M, ///< 96MHz clock |
|
689 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClk120M, ///< 120MHz clock |
|
690 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSysOut, |
|
691 |
|
692 // Functional clocks |
|
693 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkTv_F, |
|
694 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDss1_F, |
|
695 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDss2_F, |
|
696 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCsi2_F, |
|
697 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCam_F, |
|
698 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkIva2_F, |
|
699 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc1_F, |
|
700 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc2_F, |
|
701 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMmc3_F, |
|
702 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMsPro_F, |
|
703 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkHdq_F, |
|
704 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBsp1_F, |
|
705 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBsp2_F, |
|
706 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBsp3_F, |
|
707 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBsp4_F, |
|
708 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcBsp5_F, |
|
709 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi1_F, |
|
710 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi2_F, |
|
711 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi3_F, |
|
712 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMcSpi4_F, |
|
713 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c1_F, |
|
714 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c2_F, |
|
715 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkI2c3_F, |
|
716 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart1_F, |
|
717 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart2_F, |
|
718 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUart3_F, |
|
719 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt1_F, |
|
720 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt2_F, |
|
721 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt3_F, |
|
722 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt4_F, |
|
723 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt5_F, |
|
724 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt6_F, |
|
725 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt7_F, |
|
726 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt8_F, |
|
727 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt9_F, |
|
728 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt10_F, |
|
729 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpt11_F, |
|
730 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsbTll_F, |
|
731 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkTs_F, |
|
732 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCpeFuse_F, |
|
733 |
|
734 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSgx_F, |
|
735 |
|
736 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsim_F, |
|
737 { { KPM_MPUGRPSEL_WKUP, KBit7, KBit7, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSmartReflex2_F, |
|
738 { { KPM_MPUGRPSEL_WKUP, KBit6, KBit6, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSmartReflex1_F, |
|
739 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt2_F, |
|
740 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt3_F, |
|
741 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio1_F, |
|
742 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio2_F, |
|
743 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio3_F, |
|
744 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio4_F, |
|
745 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio5_F, |
|
746 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkGpio6_F, |
|
747 |
|
748 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsb120_F, ///< USB host 120MHz functional clock |
|
749 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkUsb48_F, ///< USB host 48MHz functional clock |
|
750 |
|
751 |
|
752 // Interface clocks |
|
753 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDss_I, |
|
754 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkCam_I, |
|
755 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkIcr_I, |
|
756 { { KPM_MPUGRPSEL1_CORE, KBit24, KBit24, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit24, KBit24, 0 } }, // EClkMmc1_I, |
|
757 { { KPM_MPUGRPSEL1_CORE, KBit25, KBit25, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit25, KBit25, 0 } }, // EClkMmc2_I, |
|
758 { { KPM_MPUGRPSEL1_CORE, KBit30, KBit30, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit30, KBit30, 0 } }, // EClkMmc3_I, |
|
759 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMsPro_I, |
|
760 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkHdq_I, |
|
761 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkAes1_I, |
|
762 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkAes2_I, |
|
763 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSha11_I, |
|
764 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSha12_I, |
|
765 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDes1_I, |
|
766 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkDes2_I, |
|
767 { { KPM_MPUGRPSEL1_CORE, KBit9, KBit9, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit9, KBit9, 0 } }, // EClkMcBsp1_I, |
|
768 { { KPM_MPUGRPSEL_PER, KBit0, KBit0, 0 }, { KPM_IVA2GRPSEL_PER, KBit0, KBit0, 0 } }, // EClkMcBsp2_I, |
|
769 { { KPM_MPUGRPSEL_PER, KBit1, KBit1, 0 }, { KPM_IVA2GRPSEL_PER, KBit1, KBit1, 0 } }, // EClkMcBsp3_I, |
|
770 { { KPM_MPUGRPSEL_PER, KBit2, KBit2, 0 }, { KPM_IVA2GRPSEL_PER, KBit2, KBit2, 0 } }, // EClkMcBsp4_I, |
|
771 { { KPM_MPUGRPSEL1_CORE, KBit10, KBit10, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit10, KBit10, 0 } }, // EClkMcBsp5_I, |
|
772 { { KPM_MPUGRPSEL1_CORE, KBit15, KBit15, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit15, KBit15, 0 } }, // EClkI2c1_I, |
|
773 { { KPM_MPUGRPSEL1_CORE, KBit16, KBit16, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit16, KBit16, 0 } }, // EClkI2c2_I, |
|
774 { { KPM_MPUGRPSEL1_CORE, KBit17, KBit17, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit17, KBit17, 0 } }, // EClkI2c3_I, |
|
775 { { KPM_MPUGRPSEL1_CORE, KBit13, KBit13, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit13, KBit13, 0 } }, // EClkUart1_I, |
|
776 { { KPM_MPUGRPSEL1_CORE, KBit14, KBit14, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit14, KBit14, 0 } }, // EClkUart2_I, |
|
777 { { KPM_MPUGRPSEL_PER, KBit11, KBit11, 0 }, { KPM_IVA2GRPSEL_PER, KBit11, KBit11, 0 } }, // EClkUart3_I, |
|
778 { { KPM_MPUGRPSEL1_CORE, KBit18, KBit18, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit18, KBit18, 0 } }, // EClkMcSpi1_I, |
|
779 { { KPM_MPUGRPSEL1_CORE, KBit19, KBit19, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit19, KBit19, 0 } }, // EClkMcSpi2_I, |
|
780 { { KPM_MPUGRPSEL1_CORE, KBit20, KBit20, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit20, KBit20, 0 } }, // EClkMcSpi3_I, |
|
781 { { KPM_MPUGRPSEL1_CORE, KBit21, KBit21, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit21, KBit21, 0 } }, // EClkMcSpi4_I, |
|
782 { { KPM_MPUGRPSEL_WKUP, KBit0, KBit0, 0 }, { KPM_IVA2GRPSEL_WKUP, KBit0, KBit0, 0 } }, // EClkGpt1_I, |
|
783 { { KPM_MPUGRPSEL_PER, KBit3, KBit3, 0 }, { KPM_IVA2GRPSEL_PER, KBit3, KBit3, 0 } }, // EClkGpt2_I, |
|
784 { { KPM_MPUGRPSEL_PER, KBit4, KBit4, 0 }, { KPM_IVA2GRPSEL_PER, KBit4, KBit4, 0 } }, // EClkGpt3_I, |
|
785 { { KPM_MPUGRPSEL_PER, KBit5, KBit5, 0 }, { KPM_IVA2GRPSEL_PER, KBit5, KBit5, 0 } }, // EClkGpt4_I, |
|
786 { { KPM_MPUGRPSEL_PER, KBit6, KBit6, 0 }, { KPM_IVA2GRPSEL_PER, KBit6, KBit6, 0 } }, // EClkGpt5_I, |
|
787 { { KPM_MPUGRPSEL_PER, KBit7, KBit7, 0 }, { KPM_IVA2GRPSEL_PER, KBit7, KBit7, 0 } }, // EClkGpt6_I, |
|
788 { { KPM_MPUGRPSEL_PER, KBit8, KBit9, 0 }, { KPM_IVA2GRPSEL_PER, KBit8, KBit8, 0 } }, // EClkGpt7_I, |
|
789 { { KPM_MPUGRPSEL_PER, KBit9, KBit9, 0 }, { KPM_IVA2GRPSEL_PER, KBit9, KBit9, 0 } }, // EClkGpt8_I, |
|
790 { { KPM_MPUGRPSEL_PER, KBit10, KBit10, 0 }, { KPM_IVA2GRPSEL_PER, KBit10, KBit10, 0 } }, // EClkGpt9_I, |
|
791 { { KPM_MPUGRPSEL1_CORE, KBit11, KBit11, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit11, KBit11, 0 } }, // EClkGpt10_I, |
|
792 { { KPM_MPUGRPSEL1_CORE, KBit12, KBit12, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit12, KBit12, 0 } }, // EClkGpt11_I, |
|
793 { { KPM_MPUGRPSEL_WKUP, KBit1, KBit1, 0 }, { KPM_IVA2GRPSEL_WKUP, KBit1, KBit1, 0 } }, // EClkGpt12_I, |
|
794 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkMailboxes_I, |
|
795 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkOmapSCM_I, |
|
796 { { KPM_MPUGRPSEL1_CORE, KBit4, KBit4, 0 }, { KPM_IVA2GRPSEL1_CORE, KBit4, KBit4, 0 } }, // EClkHsUsbOtg_I, |
|
797 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSdrc_I, |
|
798 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkPka_I, |
|
799 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkRng_I, |
|
800 { { KPM_MPUGRPSEL3_CORE, KBit2, KBit2, 0 }, { KPM_IVA2GRPSEL3_CORE, KBit2, KBit2, 0 } }, // EClkUsbTll_I, |
|
801 |
|
802 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSgx_I, |
|
803 |
|
804 { { KPM_MPUGRPSEL_WKUP, KBit9, KBit9, 0 }, { KPM_IVA2GRPSEL_WKUP, KBit9, KBit9, 0 } }, // EClkUsim_I, |
|
805 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt1_I, |
|
806 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt2_I, |
|
807 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkWdt3_I, |
|
808 { { KPM_MPUGRPSEL_WKUP, KBit3, KBit3, 0 }, { KPM_IVA2GRPSEL_WKUP, KBit3, KBit3, 0 } }, // EClkGpio1_I, |
|
809 { { KPM_MPUGRPSEL_PER, KBit13, KBit13, 0 }, { KPM_IVA2GRPSEL_PER, KBit13, KBit13, 0 } }, // EClkGpio2_I, |
|
810 { { KPM_MPUGRPSEL_PER, KBit14, KBit14, 0 }, { KPM_IVA2GRPSEL_PER, KBit14, KBit14, 0 } }, // EClkGpio3_I, |
|
811 { { KPM_MPUGRPSEL_PER, KBit15, KBit15, 0 }, { KPM_IVA2GRPSEL_PER, KBit15, KBit15, 0 } }, // EClkGpio4_I, |
|
812 { { KPM_MPUGRPSEL_PER, KBit16, KBit16, 0 }, { KPM_IVA2GRPSEL_PER, KBit16, KBit16, 0 } }, // EClkGpio5_I, |
|
813 { { KPM_MPUGRPSEL_PER, KBit17, KBit17, 0 }, { KPM_IVA2GRPSEL_PER, KBit17, KBit17, 0 } }, // EClkGpio6_I, |
|
814 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClk32Sync_I, |
|
815 |
|
816 { { KPM_MPUGRPSEL_USBHOST, KBit0, KBit0, 0 }, { KPM_IVA2GRPSEL_USBHOST, KBit0, KBit0, 0 } }, // EClkUsb_I, ///< USB host interface clock |
|
817 |
|
818 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClk48M |
|
819 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClk12M |
|
820 |
|
821 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkSysClk |
|
822 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } }, // EClkAltClk |
|
823 { { KDummy, 0, KDummyReadAsDisabled, 0 }, { KDummy, 0, KDummyReadAsDisabled, 0 } } // EClkSysClk32k |
|
824 }; |
|
825 |
|
826 __ASSERT_COMPILE( Prcm::EWakeDomainMpu == 0 ); |
|
827 __ASSERT_COMPILE( Prcm::EWakeDomainCore == 1 ); |
|
828 __ASSERT_COMPILE( Prcm::EWakeDomainIva2 == 2 ); |
|
829 __ASSERT_COMPILE( Prcm::EWakeDomainPeripheral == 3 ); |
|
830 __ASSERT_COMPILE( Prcm::EWakeDomainDss == 4 ); |
|
831 __ASSERT_COMPILE( Prcm::EWakeDomainWakeup == 5 ); |
|
832 __ASSERT_COMPILE( Prcm::KSupportedWakeupDomainCount == 6 ); |
|
833 |
|
834 struct TWakeupDomainInfo |
|
835 { |
|
836 // To save space, there's an assumption here that all domain dependency configuration for |
|
837 // a single clock is in one register, and a single bit defines the dependency, |
|
838 // 1 = dependant, 0 = independant |
|
839 // The bits are defined here by bit number rather than by mask |
|
840 TUint32 iRegister; |
|
841 TInt8 iBitNumber[ Prcm::KSupportedWakeupDomainCount ]; ///< bit number to modify, -1 if not supported |
|
842 }; |
|
843 |
|
844 static const TWakeupDomainInfo KClockWakeupDomainTable[ Prcm::KSupportedClockCount ] = |
|
845 { |
|
846 // REGISTER MPU CORE IVA2 PER DSS WAKE |
|
847 { KPM_WKDEP_MPU, {-1, 0, 2, 7, 5, -1 } }, // EClkMpu, ///< DPLL1 |
|
848 { KPM_WKDEP_IVA2, {1, 0, -1, 7, 5, 4 } }, // EClkIva2Pll, ///< DPLL2 |
|
849 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkCore, ///< DPLL3 |
|
850 { KPM_WKDEP_PER, {1, 0, 2, -1, -1, 4 } }, // EClkPeriph, ///< DPLL4 |
|
851 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkPeriph2, ///< DPLL5 |
|
852 |
|
853 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkPrcmInterface, |
|
854 |
|
855 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkEmu, ///< Emulation clock |
|
856 { KPM_WKDEP_NEON, {1, -1, -1, -1, -1, -1 } }, // EClkNeon, |
|
857 |
|
858 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkL3Domain, |
|
859 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkL4Domain, |
|
860 |
|
861 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMpuPll_Bypass, ///< DPLL1 bypass frequency |
|
862 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkIva2Pll_Bypass, ///< DPLL2 bypass frequency |
|
863 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkRM_F, ///< Reset manager functional clock |
|
864 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClk96M, ///< 96MHz clock |
|
865 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClk120M, ///< 120MHz clock |
|
866 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSysOut, |
|
867 |
|
868 // Functional clocks |
|
869 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkTv_F, |
|
870 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkDss1_F, |
|
871 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkDss2_F, |
|
872 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkCsi2_F, |
|
873 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkCam_F, |
|
874 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkIva2_F, |
|
875 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc1_F, |
|
876 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc2_F, |
|
877 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc3_F, |
|
878 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMsPro_F, |
|
879 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkHdq_F, |
|
880 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp1_F, |
|
881 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp2_F, |
|
882 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp3_F, |
|
883 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp4_F, |
|
884 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp5_F, |
|
885 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi1_F, |
|
886 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi2_F, |
|
887 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi3_F, |
|
888 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi4_F, |
|
889 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c1_F, |
|
890 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c2_F, |
|
891 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c3_F, |
|
892 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart1_F, |
|
893 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart2_F, |
|
894 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart3_F, |
|
895 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt1_F, |
|
896 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt2_F, |
|
897 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt3_F, |
|
898 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt4_F, |
|
899 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt5_F, |
|
900 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt6_F, |
|
901 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt7_F, |
|
902 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt8_F, |
|
903 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt9_F, |
|
904 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt10_F, |
|
905 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt11_F, |
|
906 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsbTll_F, |
|
907 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkTs_F, |
|
908 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkCpeFuse_F, |
|
909 |
|
910 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSgx_F, |
|
911 |
|
912 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsim_F, |
|
913 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSmartReflex2_F, |
|
914 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSmartReflex1_F, |
|
915 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkWdt2_F, |
|
916 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkWdt3_F, |
|
917 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio1_F, |
|
918 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio2_F, |
|
919 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio3_F, |
|
920 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio4_F, |
|
921 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio5_F, |
|
922 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio6_F, |
|
923 |
|
924 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsb120_F, ///< USB host 120MHz functional clock |
|
925 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsb48_F, ///< USB host 48MHz functional clock |
|
926 |
|
927 |
|
928 // Interface clocks |
|
929 { KPM_WKDEP_DSS, {1, -1, 2, -1, -1, 4 } }, // EClkDss_I, |
|
930 { KPM_WKDEP_CAM, {1, -1, 2, -1, -1, 4 } }, // EClkCam_I, |
|
931 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkIcr_I, |
|
932 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc1_I, |
|
933 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc2_I, |
|
934 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMmc3_I, |
|
935 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMsPro_I, |
|
936 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkHdq_I, |
|
937 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkAes1_I, |
|
938 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkAes2_I, |
|
939 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSha11_I, |
|
940 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSha12_I, |
|
941 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkDes1_I, |
|
942 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkDes2_I, |
|
943 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp1_I, |
|
944 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp2_I, |
|
945 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp3_I, |
|
946 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp4_I, |
|
947 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcBsp5_I, |
|
948 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c1_I, |
|
949 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c2_I, |
|
950 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkI2c3_I, |
|
951 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart1_I, |
|
952 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart2_I, |
|
953 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUart3_I, |
|
954 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi1_I, |
|
955 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi2_I, |
|
956 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi3_I, |
|
957 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMcSpi4_I, |
|
958 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt1_I, |
|
959 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt2_I, |
|
960 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt3_I, |
|
961 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt4_I, |
|
962 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt5_I, |
|
963 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt6_I, |
|
964 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt7_I, |
|
965 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt8_I, |
|
966 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt9_I, |
|
967 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt10_I, |
|
968 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt11_I, |
|
969 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpt12_I, |
|
970 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkMailboxes_I, |
|
971 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkOmapSCM_I, |
|
972 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkHsUsbOtg_I, |
|
973 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSdrc_I, |
|
974 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkPka_I, |
|
975 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkRng_I, |
|
976 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsbTll_I, |
|
977 |
|
978 { KPM_WKDEP_SGX, {1, -1, 2, -1, -1, 4 } }, // EClkSgx_I, |
|
979 |
|
980 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkUsim_I, |
|
981 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkWdt1_I, |
|
982 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkWdt2_I, |
|
983 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkWdt3_I, |
|
984 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio1_I, |
|
985 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio2_I, |
|
986 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio3_I, |
|
987 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio4_I, |
|
988 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio5_I, |
|
989 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkGpio6_I, |
|
990 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClk32Sync_I, |
|
991 |
|
992 { KPM_WKDEP_USBHOST, {1, 0, 2, -1, -1, 4 } }, // EClkUsb_I, ///< USB host interface clock |
|
993 |
|
994 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClk48M |
|
995 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClk12M |
|
996 |
|
997 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSysClk |
|
998 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkAltClk |
|
999 { KDummy, {-1, -1, -1, -1, -1, -1 } }, // EClkSysClk32k |
|
1000 // REGISTER MPU CORE IVA2 PER DSS WAKE |
|
1001 }; |
|
1002 |
|
1003 struct TPowerDomainControl |
|
1004 { |
|
1005 TUint32 iRegister; |
|
1006 TUint8 iShift; ///< shift to move bits into position |
|
1007 TUint8 iAllowedMask; ///< mask of which modes are supported |
|
1008 TUint8 __spare[2]; |
|
1009 }; |
|
1010 |
|
1011 const TUint8 KPowerAllowedOff = 1 << Prcm::EPowerOff; |
|
1012 const TUint8 KPowerAllowedOn = 1 << Prcm::EPowerOn; |
|
1013 const TUint8 KPowerAllowedRetention = 1 << Prcm::EPowerRetention; |
|
1014 const TUint8 KPowerAllowedOnOffRetention = (KPowerAllowedOff bitor KPowerAllowedOn bitor KPowerAllowedRetention); |
|
1015 const TUint8 KPowerModeMask = 0x3; |
|
1016 |
|
1017 static const TPowerDomainControl KPowerDomainControl[] = |
|
1018 { |
|
1019 // iRegister iShift iAllowedMask |
|
1020 { KPM_PWSTCTRL_MPU, 0, KPowerAllowedOnOffRetention }, // EPowerDomainMpu, |
|
1021 { KPM_PWSTCTRL_IVA2, 0, KPowerAllowedOnOffRetention }, // EPowerDomainIva2, |
|
1022 { KPM_PWSTCTRL_NEON, 0, KPowerAllowedOnOffRetention }, // EPowerDomainNeon, |
|
1023 { KPM_PWSTCTRL_CORE, 0, KPowerAllowedOnOffRetention }, // EPowerDomainCore, |
|
1024 { KPM_PWSTCTRL_SGX, 0, KPowerAllowedOnOffRetention }, // EPowerDomainSgx, |
|
1025 { KPM_PWSTCTRL_DSS, 0, KPowerAllowedOnOffRetention }, // EPowerDomainDss, |
|
1026 { KPM_PWSTCTRL_CAM, 0, KPowerAllowedOnOffRetention }, // EPowerDomainCamera, |
|
1027 { KPM_PWSTCTRL_USBHOST, 0, KPowerAllowedOnOffRetention }, // EPowerDomainUsb, |
|
1028 { KPM_PWSTCTRL_PER, 0, KPowerAllowedOnOffRetention } // EPowerDomainPer, |
|
1029 }; |
|
1030 __ASSERT_COMPILE( (sizeof(KPowerDomainControl) / sizeof( KPowerDomainControl[0] )) == Prcm::KSupportedPowerDomainCount ); |
|
1031 |
|
1032 struct TGptClkSelInfo |
|
1033 { |
|
1034 TUint32 iRegister; |
|
1035 TUint32 iMask; |
|
1036 }; |
|
1037 |
|
1038 static const TGptClkSelInfo KGptClockSourceInfo[ Prcm::KSupportedGptCount ] = |
|
1039 { |
|
1040 { KCM_CLKSEL_WKUP, KBit0 }, // EGpt1, |
|
1041 { KCM_CLKSEL_PER, KBit0 }, // EGpt2, |
|
1042 { KCM_CLKSEL_PER, KBit1 }, // EGpt3, |
|
1043 { KCM_CLKSEL_PER, KBit2 }, // EGpt4, |
|
1044 { KCM_CLKSEL_PER, KBit3 }, // EGpt5, |
|
1045 { KCM_CLKSEL_PER, KBit4 }, // EGpt6, |
|
1046 { KCM_CLKSEL_PER, KBit5 }, // EGpt7, |
|
1047 { KCM_CLKSEL_PER, KBit6 }, // EGpt8, |
|
1048 { KCM_CLKSEL_PER, KBit7 }, // EGpt9, |
|
1049 { KCM_CLKSEL_CORE, KBit6 }, // EGpt10, |
|
1050 { KCM_CLKSEL_CORE, KBit7 }, // EGpt11, |
|
1051 { KDummy, 0 }, // EGpt12 - clocked from security block |
|
1052 }; |
|
1053 |
|
1054 // This table is used to find the source clock for a given clock. That is, by looking up a |
|
1055 // specific clock in this table, you can find out which DPLL/divider it was derived from. |
|
1056 // Following the chain backwards to SYSCLK allows building of the total multiply and |
|
1057 // divide applied to SYSCLK to get the given clock |
|
1058 enum TClockSourceType |
|
1059 { |
|
1060 EIgnore, // not implemented yet... |
|
1061 EDpll, // this clock is derived from a PLL |
|
1062 EDivider, // this clock is divied from a given clock |
|
1063 EDivMux, // divider fed by mux-selectable input clock |
|
1064 EMux, // fed by mux-selectable input clock |
|
1065 EDuplicate, // this clock is a duplicate of another clock |
|
1066 E96MMux, // 96MHz mux-selected clock source |
|
1067 E54MMux, // 54MHz mux-selected clock source |
|
1068 E48MMux, // 48MHz mux-selected clock source |
|
1069 EDiv4, // specified clock source divided by 4 |
|
1070 }; |
|
1071 |
|
1072 struct TClockSourceInfo |
|
1073 { |
|
1074 TClockSourceType iType : 8; // type of the source for this clock |
|
1075 union { |
|
1076 Prcm::TClock iClock : 8; // the clock that feeds this divider, or which this is a duplicate of |
|
1077 Prcm::TPll iPll : 8; // the PLL that generates this clock |
|
1078 Prcm::TGpt iGpt : 8; // conversion to TGpt type for the clock we are interested in |
|
1079 }; |
|
1080 }; |
|
1081 |
|
1082 static const TClockSourceInfo KClockSourceInfo[] = |
|
1083 { |
|
1084 { EDpll, (Prcm::TClock)Prcm::EDpll1 }, // EClkMpu, |
|
1085 { EDpll, (Prcm::TClock)Prcm::EDpll2 }, // EClkIva2Pll, |
|
1086 { EDpll, (Prcm::TClock)Prcm::EDpll3 }, // EClkCore, |
|
1087 { EDpll, (Prcm::TClock)Prcm::EDpll4 }, // EClkPeriph, |
|
1088 { EDpll, (Prcm::TClock)Prcm::EDpll5 }, // EClkPeriph2, |
|
1089 { EDuplicate, Prcm::EClkSysClk }, // EClkPrcmInterface, |
|
1090 { EIgnore, (Prcm::TClock)0 }, // EClkEmu, |
|
1091 { EDuplicate, Prcm::EClkMpu }, // EClkNeon, |
|
1092 { EDivider, Prcm::EClkCore }, // EClkL3Domain, |
|
1093 { EDivider, Prcm::EClkL3Domain }, // EClkL4Domain, |
|
1094 { EDivider, Prcm::EClkCore }, // EClkMpuPll_Bypass, |
|
1095 { EDivider, Prcm::EClkCore }, // EClkIva2Pll_Bypass, |
|
1096 { EDivider, Prcm::EClkL4Domain }, // EClkRM_F, |
|
1097 { E96MMux, Prcm::EClkPeriph }, // EClk96M, |
|
1098 { EDivider, Prcm::EClkPeriph2 }, // EClk120M, |
|
1099 { EDivMux, (Prcm::TClock)0 }, // EClkSysOut, |
|
1100 |
|
1101 // Functional clocks |
|
1102 { E54MMux, Prcm::EClkPeriph }, |
|
1103 { EDivider, Prcm::EClkPeriph }, // EClkDss1_F, |
|
1104 { EDuplicate, Prcm::EClkSysClk }, // EClkDss2_F, |
|
1105 { EDuplicate, Prcm::EClk96M }, // EClkCsi2_F, |
|
1106 { EDivider, Prcm::EClkPeriph }, // EClkCam_F, |
|
1107 { EDuplicate, Prcm::EClkIva2Pll }, // EClkIva2_F, |
|
1108 { EDuplicate, Prcm::EClk96M }, // EClkMmc1_F, |
|
1109 { EDuplicate, Prcm::EClk96M }, // EClkMmc2_F, |
|
1110 { EDuplicate, Prcm::EClk96M }, // EClkMmc3_F, |
|
1111 { EDuplicate, Prcm::EClk96M }, // EClkMsPro_F, |
|
1112 { EDuplicate, Prcm::EClk12M }, // EClkHdq_F, |
|
1113 { EDuplicate, Prcm::EClk96M }, // EClkMcBsp1_F, |
|
1114 { EDuplicate, Prcm::EClk96M }, // EClkMcBsp2_F, |
|
1115 { EDuplicate, Prcm::EClk96M }, // EClkMcBsp3_F, |
|
1116 { EDuplicate, Prcm::EClk96M }, // EClkMcBsp4_F, |
|
1117 { EDuplicate, Prcm::EClk96M }, // EClkMcBsp5_F, |
|
1118 { EDuplicate, Prcm::EClk48M }, // EClkMcSpi1_F, |
|
1119 { EDuplicate, Prcm::EClk48M }, // EClkMcSpi2_F, |
|
1120 { EDuplicate, Prcm::EClk48M }, // EClkMcSpi3_F, |
|
1121 { EDuplicate, Prcm::EClk48M }, // EClkMcSpi4_F, |
|
1122 { EDuplicate, Prcm::EClk96M }, // EClkI2c1_F, |
|
1123 { EDuplicate, Prcm::EClk96M }, // EClkI2c2_F, |
|
1124 { EDuplicate, Prcm::EClk96M }, // EClkI2c3_F, |
|
1125 { EDuplicate, Prcm::EClk48M }, // EClkUart1_F, |
|
1126 { EDuplicate, Prcm::EClk48M }, // EClkUart2_F, |
|
1127 { EDuplicate, Prcm::EClk48M }, // EClkUart3_F, |
|
1128 { EMux, (Prcm::TClock)Prcm::EGpt1 }, // EClkGpt1_F, |
|
1129 { EMux, (Prcm::TClock)Prcm::EGpt2 }, // EClkGpt2_F, |
|
1130 { EMux, (Prcm::TClock)Prcm::EGpt3 }, // EClkGpt3_F, |
|
1131 { EMux, (Prcm::TClock)Prcm::EGpt4 }, // EClkGpt4_F, |
|
1132 { EMux, (Prcm::TClock)Prcm::EGpt5 }, // EClkGpt5_F, |
|
1133 { EMux, (Prcm::TClock)Prcm::EGpt6 }, // EClkGpt6_F, |
|
1134 { EMux, (Prcm::TClock)Prcm::EGpt7 }, // EClkGpt7_F, |
|
1135 { EMux, (Prcm::TClock)Prcm::EGpt8 }, // EClkGpt8_F, |
|
1136 { EMux, (Prcm::TClock)Prcm::EGpt9 }, // EClkGpt9_F, |
|
1137 { EMux, (Prcm::TClock)Prcm::EGpt10 }, // EClkGpt10_F, |
|
1138 { EMux, (Prcm::TClock)Prcm::EGpt11 }, // EClkGpt11_F, |
|
1139 { EDuplicate, Prcm::EClk120M }, // EClkUsbTll_F, |
|
1140 { EDuplicate, Prcm::EClkSysClk32k }, // EClkTs_F, |
|
1141 { EDuplicate, Prcm::EClkSysClk }, // EClkCpeFuse_F, |
|
1142 { EDivMux, (Prcm::TClock)0 }, // EClkSgx_F, |
|
1143 { EDivMux, Prcm::EClkSysClk }, // EClkUsim_F, |
|
1144 { EDuplicate, Prcm::EClkSysClk }, // EClkSmartReflex2_F, |
|
1145 { EDuplicate, Prcm::EClkSysClk }, // EClkSmartReflex1_F, |
|
1146 { EDuplicate, Prcm::EClkSysClk32k }, // EClkWdt2_F, |
|
1147 { EDuplicate, Prcm::EClkSysClk32k }, // EClkWdt3_F, |
|
1148 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio1_F, |
|
1149 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio2_F, |
|
1150 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio3_F, |
|
1151 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio4_F, |
|
1152 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio5_F, |
|
1153 { EDuplicate, Prcm::EClkSysClk32k }, // EClkGpio6_F, |
|
1154 { EDuplicate, Prcm::EClk120M }, // EClkUsb120_F, |
|
1155 { EDuplicate, Prcm::EClk48M }, // EClkUsb48_F, |
|
1156 |
|
1157 // Interface clocks |
|
1158 { EDuplicate, Prcm::EClkL4Domain }, // EClkDss_I, |
|
1159 { EDuplicate, Prcm::EClkL4Domain }, // EClkCam_I, |
|
1160 { }, // EClkIcr_I, |
|
1161 { EDuplicate, Prcm::EClkL4Domain }, // EClkMmc1_I, |
|
1162 { EDuplicate, Prcm::EClkL4Domain }, // EClkMmc2_I, |
|
1163 { EDuplicate, Prcm::EClkL4Domain }, // EClkMmc3_I, |
|
1164 { EDuplicate, Prcm::EClkL4Domain }, // EClkMsPro_I, |
|
1165 { EDuplicate, Prcm::EClkL4Domain }, // EClkHdq_I, |
|
1166 { EDuplicate, Prcm::EClkL4Domain}, // EClkAes1_I, |
|
1167 { EDuplicate, Prcm::EClkL4Domain}, // EClkAes2_I, |
|
1168 { EDuplicate, Prcm::EClkL4Domain}, // EClkSha11_I, |
|
1169 { EDuplicate, Prcm::EClkL4Domain}, // EClkSha12_I, |
|
1170 { EDuplicate, Prcm::EClkL4Domain}, // EClkDes1_I, |
|
1171 { EDuplicate, Prcm::EClkL4Domain}, // EClkDes2_I, |
|
1172 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcBsp1_I, |
|
1173 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcBsp2_I, |
|
1174 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcBsp3_I, |
|
1175 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcBsp4_I, |
|
1176 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcBsp5_I, |
|
1177 { EDuplicate, Prcm::EClkL4Domain }, // EClkI2c1_I, |
|
1178 { EDuplicate, Prcm::EClkL4Domain }, // EClkI2c2_I, |
|
1179 { EDuplicate, Prcm::EClkL4Domain }, // EClkI2c3_I, |
|
1180 { EDuplicate, Prcm::EClkL4Domain }, // EClkUart1_I, |
|
1181 { EDuplicate, Prcm::EClkL4Domain }, // EClkUart2_I, |
|
1182 { EDuplicate, Prcm::EClkL4Domain }, // EClkUart3_I, |
|
1183 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcSpi1_I, |
|
1184 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcSpi2_I, |
|
1185 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcSpi3_I, |
|
1186 { EDuplicate, Prcm::EClkL4Domain }, // EClkMcSpi4_I, |
|
1187 { EDuplicate, Prcm::EClkSysClk }, // EClkGpt1_I, |
|
1188 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt2_I, |
|
1189 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt3_I, |
|
1190 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt4_I, |
|
1191 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt5_I, |
|
1192 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt6_I, |
|
1193 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt7_I, |
|
1194 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt8_I, |
|
1195 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt9_I, |
|
1196 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt10_I, |
|
1197 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt11_I, |
|
1198 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpt12_I, |
|
1199 { EDuplicate, Prcm::EClkL4Domain }, // EClkMailboxes_I, |
|
1200 { EDuplicate, Prcm::EClkL4Domain }, // EClkOmapSCM_I, |
|
1201 { EDuplicate, Prcm::EClkL4Domain }, // EClkHsUsbOtg_I, |
|
1202 { EDuplicate, Prcm::EClkL3Domain }, // EClkSdrc_I, |
|
1203 { EDuplicate, Prcm::EClkL3Domain }, // EClkPka_I, |
|
1204 { EDuplicate, Prcm::EClkL4Domain }, // EClkRng_I, |
|
1205 { EDuplicate, Prcm::EClkL4Domain }, // EClkUsbTll_I, |
|
1206 { EDuplicate, Prcm::EClkL3Domain }, // EClkSgx_I, |
|
1207 { EDuplicate, Prcm::EClkSysClk }, // EClkUsim_I, |
|
1208 { EDuplicate, Prcm::EClkSysClk }, // EClkWdt1_I, |
|
1209 { EDuplicate, Prcm::EClkSysClk }, // EClkWdt2_I, |
|
1210 { EDuplicate, Prcm::EClkL4Domain }, // EClkWdt3_I, |
|
1211 { EDuplicate, Prcm::EClkSysClk }, // EClkGpio1_I, |
|
1212 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpio2_I, |
|
1213 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpio3_I, |
|
1214 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpio4_I, |
|
1215 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpio5_I, |
|
1216 { EDuplicate, Prcm::EClkL4Domain }, // EClkGpio6_I, |
|
1217 { EDuplicate, Prcm::EClkSysClk }, // EClk32Sync_I, |
|
1218 { EDuplicate, Prcm::EClkL4Domain }, // EClkUsb_I, |
|
1219 |
|
1220 { E48MMux, Prcm::EClk96M }, // EClk48M, |
|
1221 { EDiv4, Prcm::EClk48M }, // EClk12M, |
|
1222 |
|
1223 { EDuplicate, Prcm::EClkSysClk }, // EClkSysClk |
|
1224 { EDuplicate, Prcm::EClkAltClk }, // EClkAltClk |
|
1225 { EDuplicate, Prcm::EClkSysClk32k }, // EClkSysClk32k |
|
1226 |
|
1227 }; |
|
1228 |
|
1229 __ASSERT_COMPILE( sizeof( KClockSourceInfo ) / sizeof( KClockSourceInfo[0] ) == Prcm::KSupportedClockCount ); |
|
1230 |
|
1231 |
|
1232 // Bit of hackery to enable creation of a const table of pointer to _LITs. |
|
1233 // Taking the address of a _LIT will cause the compiler to invoke its operator&() |
|
1234 // function, which forces the compiler to generate the table in code. But hiding |
|
1235 // it inside a dummy struct allows taking of the address of the struct instead, |
|
1236 // avoiding the operator&() problem. |
|
1237 |
|
1238 template< TInt S > |
|
1239 struct THiddenLit8 |
|
1240 { |
|
1241 TLitC8<S> iLit; |
|
1242 }; |
|
1243 |
|
1244 #define __PLIT8(name,s) const static THiddenLit8<sizeof(s)> name={{sizeof(s)-1,s}}; |
|
1245 |
|
1246 // List of identifer strings for each clock source - used for PRM |
|
1247 __PLIT8(KClkMpu, "a.MPU" ); |
|
1248 __PLIT8(KClkIva2Pll, "a.IVA" ); |
|
1249 __PLIT8(KClkCore, "a.CORE" ); |
|
1250 __PLIT8(KClkPeriph, "a.PER" ); |
|
1251 __PLIT8(KClkPeriph2, "a.PER2" ); |
|
1252 __PLIT8(KClkPrcmInterface, "a.PRCM" ); |
|
1253 __PLIT8(KClkEmu, "a.EMU" ); |
|
1254 __PLIT8(KClkNeon, "a.NEON" ); |
|
1255 __PLIT8(KClkL3Domain, "a.L3" ); |
|
1256 __PLIT8(KClkL4Domain, "a.L4" ); |
|
1257 __PLIT8(KClkMpuPll_Bypass, "a.MPUB" ); |
|
1258 __PLIT8(KClkIva2Pll_Bypass, "a.IVAB" ); |
|
1259 __PLIT8(KClkRM_F, "a.RMf" ); |
|
1260 __PLIT8(KClk96M, "a.96" ); |
|
1261 __PLIT8(KClk120M, "a.120" ); |
|
1262 __PLIT8(KClkSysOut, "a.OUT" ); |
|
1263 __PLIT8(KClkTv_F, "a.TVf" ); |
|
1264 __PLIT8(KClkDss1_F, "a.DSS1f" ); |
|
1265 __PLIT8(KClkDss2_F, "a.DSS2f" ); |
|
1266 __PLIT8(KClkCsi2_F, "a.CSI2f" ); |
|
1267 __PLIT8(KClkCam_F, "a.CAMf" ); |
|
1268 __PLIT8(KClkIva2_F, "a.IVA2f" ); |
|
1269 __PLIT8(KClkMmc1_F, "a.MMC1f" ); |
|
1270 __PLIT8(KClkMmc2_F, "a.MMC2f" ); |
|
1271 __PLIT8(KClkMmc3_F, "a.MMC3f" ); |
|
1272 __PLIT8(KClkMsPro_F, "a.MSPf" ); |
|
1273 __PLIT8(KClkHdq_F, "a.HDQf" ); |
|
1274 __PLIT8(KClkMcBsp1_F, "a.BSP1f" ); |
|
1275 __PLIT8(KClkMcBsp2_F, "a.BSP2f" ); |
|
1276 __PLIT8(KClkMcBsp3_F, "a.BSP3f" ); |
|
1277 __PLIT8(KClkMcBsp4_F, "a.BSP4f" ); |
|
1278 __PLIT8(KClkMcBsp5_F, "a.BSP5f" ); |
|
1279 __PLIT8(KClkMcSpi1_F, "a.SPI1f" ); |
|
1280 __PLIT8(KClkMcSpi2_F, "a.SPI2f" ); |
|
1281 __PLIT8(KClkMcSpi3_F, "a.SPI3f" ); |
|
1282 __PLIT8(KClkMcSpi4_F, "a.SPI4f" ); |
|
1283 __PLIT8(KClkI2c1_F, "a.I2C1f" ); |
|
1284 __PLIT8(KClkI2c2_F, "a.I2C2f" ); |
|
1285 __PLIT8(KClkI2c3_F, "a.I2C3f" ); |
|
1286 __PLIT8(KClkUart1_F, "a.UART1f" ); |
|
1287 __PLIT8(KClkUart2_F, "a.UART2f" ); |
|
1288 __PLIT8(KClkUart3_F, "a.UART3f" ); |
|
1289 __PLIT8(KClkGpt1_F, "a.GPT1f" ); |
|
1290 __PLIT8(KClkGpt2_F, "a.GPT2f" ); |
|
1291 __PLIT8(KClkGpt3_F, "a.GPT3f" ); |
|
1292 __PLIT8(KClkGpt4_F, "a.GPT4f" ); |
|
1293 __PLIT8(KClkGpt5_F, "a.GPT5f" ); |
|
1294 __PLIT8(KClkGpt6_F, "a.GPT6f" ); |
|
1295 __PLIT8(KClkGpt7_F, "a.GPT7f" ); |
|
1296 __PLIT8(KClkGpt8_F, "a.GPT8f" ); |
|
1297 __PLIT8(KClkGpt9_F, "a.GPT9f" ); |
|
1298 __PLIT8(KClkGpt10_F, "a.GPTAf" ); |
|
1299 __PLIT8(KClkGpt11_F, "a.GPTBf" ); |
|
1300 __PLIT8(KClkUsbTll_F, "a.UTLLf" ); |
|
1301 __PLIT8(KClkTs_F, "a.TSf" ); |
|
1302 __PLIT8(KClkCpeFuse_F, "a.FUSEf" ); |
|
1303 __PLIT8(KClkSgx_F, "a.SGXf" ); |
|
1304 __PLIT8(KClkUsim_F, "a.USIMf" ); |
|
1305 __PLIT8(KClkSmartReflex2_F, "a.SMRF2f" ); |
|
1306 __PLIT8(KClkSmartReflex1_F, "a.SMRF1f" ); |
|
1307 __PLIT8(KClkWdt2_F, "a.WDT2f" ); |
|
1308 __PLIT8(KClkWdt3_F, "a.WDT3f" ); |
|
1309 __PLIT8(KClkGpio1_F, "a.GPIO1f" ); |
|
1310 __PLIT8(KClkGpio2_F, "a.GPIO2f" ); |
|
1311 __PLIT8(KClkGpio3_F, "a.GPIO3f" ); |
|
1312 __PLIT8(KClkGpio4_F, "a.GPIO4f" ); |
|
1313 __PLIT8(KClkGpio5_F, "a.GPIO5f" ); |
|
1314 __PLIT8(KClkGpio6_F, "a.GPIO6f" ); |
|
1315 __PLIT8(KClkUsb120_F, "a.U120f" ); |
|
1316 __PLIT8(KClkUsb48_F, "a.U48f" ); |
|
1317 __PLIT8(KClkDss_I, "a.DSSi" ); |
|
1318 __PLIT8(KClkCam_I, "a.CAMi" ); |
|
1319 __PLIT8(KClkIcr_I, "a.ICRi" ); |
|
1320 __PLIT8(KClkMmc1_I, "a.MMC1i" ); |
|
1321 __PLIT8(KClkMmc2_I, "a.MMC2i" ); |
|
1322 __PLIT8(KClkMmc3_I, "a.MMC3i" ); |
|
1323 __PLIT8(KClkMsPro_I, "a.MSi" ); |
|
1324 __PLIT8(KClkHdq_I, "a.HDQi" ); |
|
1325 __PLIT8(KClkAes1_I, "a.AES1i" ); |
|
1326 __PLIT8(KClkAes2_I, "a.AES2i" ); |
|
1327 __PLIT8(KClkSha11_I, "a.SHA1i" ); |
|
1328 __PLIT8(KClkSha12_I, "a.SHA2i" ); |
|
1329 __PLIT8(KClkDes1_I, "a.DES1i" ); |
|
1330 __PLIT8(KClkDes2_I, "a.DES2i" ); |
|
1331 __PLIT8(KClkMcBsp1_I, "a.BSP1i" ); |
|
1332 __PLIT8(KClkMcBsp2_I, "a.BSP2i" ); |
|
1333 __PLIT8(KClkMcBsp3_I, "a.BSP3i" ); |
|
1334 __PLIT8(KClkMcBsp4_I, "a.BSP4i" ); |
|
1335 __PLIT8(KClkMcBsp5_I, "a.BSP5i" ); |
|
1336 __PLIT8(KClkI2c1_I, "a.I2C1i" ); |
|
1337 __PLIT8(KClkI2c2_I, "a.I2C2i" ); |
|
1338 __PLIT8(KClkI2c3_I, "a.I2C3i" ); |
|
1339 __PLIT8(KClkUart1_I, "a.UART1i" ); |
|
1340 __PLIT8(KClkUart2_I, "a.UART2i" ); |
|
1341 __PLIT8(KClkUart3_I, "a.UART3i" ); |
|
1342 __PLIT8(KClkMcSpi1_I, "a.SPI1i" ); |
|
1343 __PLIT8(KClkMcSpi2_I, "a.SPI2i" ); |
|
1344 __PLIT8(KClkMcSpi3_I, "a.SPI3i" ); |
|
1345 __PLIT8(KClkMcSpi4_I, "a.SPI4i" ); |
|
1346 __PLIT8(KClkGpt1_I, "a.GPT1i" ); |
|
1347 __PLIT8(KClkGpt2_I, "a.GPT2i" ); |
|
1348 __PLIT8(KClkGpt3_I, "a.GPT3i" ); |
|
1349 __PLIT8(KClkGpt4_I, "a.GPT4i" ); |
|
1350 __PLIT8(KClkGpt5_I, "a.GPT5i" ); |
|
1351 __PLIT8(KClkGpt6_I, "a.GPT6i" ); |
|
1352 __PLIT8(KClkGpt7_I, "a.GPT7i" ); |
|
1353 __PLIT8(KClkGpt8_I, "a.GPT8i" ); |
|
1354 __PLIT8(KClkGpt9_I, "a.GPT9i" ); |
|
1355 __PLIT8(KClkGpt10_I, "a.GPTAi" ); |
|
1356 __PLIT8(KClkGpt11_I, "a.GPTBi" ); |
|
1357 __PLIT8(KClkGpt12_I, "a.GPTCi" ); |
|
1358 __PLIT8(KClkMailboxes_I, "a.MBi" ); |
|
1359 __PLIT8(KClkOmapSCM_I, "a.SCMi" ); |
|
1360 __PLIT8(KClkHsUsbOtg_I, "a.OTGi" ); |
|
1361 __PLIT8(KClkSdrc_I, "a.SDRCi" ); |
|
1362 __PLIT8(KClkPka_I, "a.PKAi" ); |
|
1363 __PLIT8(KClkRng_I, "a.RNGi" ); |
|
1364 __PLIT8(KClkUsbTll_I, "a.TLLi" ); |
|
1365 __PLIT8(KClkSgx_I, "a.SGXi" ); |
|
1366 __PLIT8(KClkUsim_I, "a.USIMi" ); |
|
1367 __PLIT8(KClkWdt1_I, "a.WDT1i" ); |
|
1368 __PLIT8(KClkWdt2_I, "a.WDT2i" ); |
|
1369 __PLIT8(KClkWdt3_I, "a.WDT3i" ); |
|
1370 __PLIT8(KClkGpio1_I, "a.GPIO1i" ); |
|
1371 __PLIT8(KClkGpio2_I, "a.GPIO2i" ); |
|
1372 __PLIT8(KClkGpio3_I, "a.GPIO3i" ); |
|
1373 __PLIT8(KClkGpio4_I, "a.GPIO4i" ); |
|
1374 __PLIT8(KClkGpio5_I, "a.GPIO5i" ); |
|
1375 __PLIT8(KClkGpio6_I, "a.GPIO6i" ); |
|
1376 __PLIT8(KClk32Sync_I, "a.32SYNi" ); |
|
1377 __PLIT8(KClkUsb_I, "a.USBi" ); |
|
1378 __PLIT8(KClk48M, "a.48" ); |
|
1379 __PLIT8(KClk12M, "a.12" ); |
|
1380 __PLIT8(KClkSysClk, "a.SYSCLK" ); |
|
1381 __PLIT8(KClkAltClk, "a.ALTCLK" ); |
|
1382 __PLIT8(KClkSysClk32k, "a.SYS32K" ); |
|
1383 |
|
1384 |
|
1385 // Table converting clock sources to string identifiers for PRM |
|
1386 static const TDesC8* const KNames[] = |
|
1387 { |
|
1388 (const TDesC8*)( &KClkMpu ), // EClkMpu |
|
1389 (const TDesC8*)( &KClkIva2Pll ), // EClkIva2Pll |
|
1390 (const TDesC8*)( &KClkCore ), // EClkCore |
|
1391 (const TDesC8*)( &KClkPeriph ), // EClkPeriph |
|
1392 (const TDesC8*)( &KClkPeriph2 ), // EClkPeriph2 |
|
1393 (const TDesC8*)( &KClkPrcmInterface ), // EClkPrcmInterface |
|
1394 (const TDesC8*)( &KClkEmu ), // EClkEmu |
|
1395 (const TDesC8*)( &KClkNeon ), // EClkNeon |
|
1396 (const TDesC8*)( &KClkL3Domain ), // EClkL3Domain |
|
1397 (const TDesC8*)( &KClkL4Domain ), // EClkL4Domain |
|
1398 (const TDesC8*)( &KClkMpuPll_Bypass ), // EClkMpuPll_Bypass |
|
1399 (const TDesC8*)( &KClkIva2Pll_Bypass ), // EClkIva2Pll_Bypass |
|
1400 (const TDesC8*)( &KClkRM_F ), // EClkRM_F |
|
1401 (const TDesC8*)( &KClk96M ), // EClk96M |
|
1402 (const TDesC8*)( &KClk120M ), // EClk120M |
|
1403 (const TDesC8*)( &KClkSysOut ), // EClkSysOut |
|
1404 (const TDesC8*)( &KClkTv_F ), // EClkTv_F |
|
1405 (const TDesC8*)( &KClkDss1_F ), // EClkDss1_F |
|
1406 (const TDesC8*)( &KClkDss2_F ), // EClkDss2_F |
|
1407 (const TDesC8*)( &KClkCsi2_F ), // EClkCsi2_F |
|
1408 (const TDesC8*)( &KClkCam_F ), // EClkCam_F |
|
1409 (const TDesC8*)( &KClkIva2_F ), // EClkIva2_F |
|
1410 (const TDesC8*)( &KClkMmc1_F ), // EClkMmc1_F |
|
1411 (const TDesC8*)( &KClkMmc2_F ), // EClkMmc2_F |
|
1412 (const TDesC8*)( &KClkMmc3_F ), // EClkMmc3_F |
|
1413 (const TDesC8*)( &KClkMsPro_F ), // EClkMsPro_F |
|
1414 (const TDesC8*)( &KClkHdq_F ), // EClkHdq_F |
|
1415 (const TDesC8*)( &KClkMcBsp1_F ), // EClkMcBsp1_F |
|
1416 (const TDesC8*)( &KClkMcBsp2_F ), // EClkMcBsp2_F |
|
1417 (const TDesC8*)( &KClkMcBsp3_F ), // EClkMcBsp3_F |
|
1418 (const TDesC8*)( &KClkMcBsp4_F ), // EClkMcBsp4_F |
|
1419 (const TDesC8*)( &KClkMcBsp5_F ), // EClkMcBsp5_F |
|
1420 (const TDesC8*)( &KClkMcSpi1_F ), // EClkMcSpi1_F |
|
1421 (const TDesC8*)( &KClkMcSpi2_F ), // EClkMcSpi2_F |
|
1422 (const TDesC8*)( &KClkMcSpi3_F ), // EClkMcSpi3_F |
|
1423 (const TDesC8*)( &KClkMcSpi4_F ), // EClkMcSpi4_F |
|
1424 (const TDesC8*)( &KClkI2c1_F ), // EClkI2c1_F |
|
1425 (const TDesC8*)( &KClkI2c2_F ), // EClkI2c2_F |
|
1426 (const TDesC8*)( &KClkI2c3_F ), // EClkI2c3_F |
|
1427 (const TDesC8*)( &KClkUart1_F ), // EClkUart1_F |
|
1428 (const TDesC8*)( &KClkUart2_F ), // EClkUart2_F |
|
1429 (const TDesC8*)( &KClkUart3_F ), // EClkUart3_F |
|
1430 (const TDesC8*)( &KClkGpt1_F ), // EClkGpt1_F |
|
1431 (const TDesC8*)( &KClkGpt2_F ), // EClkGpt2_F |
|
1432 (const TDesC8*)( &KClkGpt3_F ), // EClkGpt3_F |
|
1433 (const TDesC8*)( &KClkGpt4_F ), // EClkGpt4_F |
|
1434 (const TDesC8*)( &KClkGpt5_F ), // EClkGpt5_F |
|
1435 (const TDesC8*)( &KClkGpt6_F ), // EClkGpt6_F |
|
1436 (const TDesC8*)( &KClkGpt7_F ), // EClkGpt7_F |
|
1437 (const TDesC8*)( &KClkGpt8_F ), // EClkGpt8_F |
|
1438 (const TDesC8*)( &KClkGpt9_F ), // EClkGpt9_F |
|
1439 (const TDesC8*)( &KClkGpt10_F ), // EClkGpt10_F |
|
1440 (const TDesC8*)( &KClkGpt11_F ), // EClkGpt11_F |
|
1441 (const TDesC8*)( &KClkUsbTll_F ), // EClkUsbTll_F |
|
1442 (const TDesC8*)( &KClkTs_F ), // EClkTs_F |
|
1443 (const TDesC8*)( &KClkCpeFuse_F ), // EClkCpeFuse_F |
|
1444 (const TDesC8*)( &KClkSgx_F ), // EClkSgx_F |
|
1445 (const TDesC8*)( &KClkUsim_F ), // EClkUsim_F |
|
1446 (const TDesC8*)( &KClkSmartReflex2_F ), // EClkSmartReflex2_F |
|
1447 (const TDesC8*)( &KClkSmartReflex1_F ), // EClkSmartReflex1_F |
|
1448 (const TDesC8*)( &KClkWdt2_F ), // EClkWdt2_F |
|
1449 (const TDesC8*)( &KClkWdt3_F ), // EClkWdt3_F |
|
1450 (const TDesC8*)( &KClkGpio1_F ), // EClkGpio1_F |
|
1451 (const TDesC8*)( &KClkGpio2_F ), // EClkGpio2_F |
|
1452 (const TDesC8*)( &KClkGpio3_F ), // EClkGpio3_F |
|
1453 (const TDesC8*)( &KClkGpio4_F ), // EClkGpio4_F |
|
1454 (const TDesC8*)( &KClkGpio5_F ), // EClkGpio5_F |
|
1455 (const TDesC8*)( &KClkGpio6_F ), // EClkGpio6_F |
|
1456 (const TDesC8*)( &KClkUsb120_F ), // EClkUsb120_F |
|
1457 (const TDesC8*)( &KClkUsb48_F ), // EClkUsb48_F |
|
1458 (const TDesC8*)( &KClkDss_I ), // EClkDss_I |
|
1459 (const TDesC8*)( &KClkCam_I ), // EClkCam_I |
|
1460 (const TDesC8*)( &KClkIcr_I ), // EClkIcr_I |
|
1461 (const TDesC8*)( &KClkMmc1_I ), // EClkMmc1_I |
|
1462 (const TDesC8*)( &KClkMmc2_I ), // EClkMmc2_I |
|
1463 (const TDesC8*)( &KClkMmc3_I ), // EClkMmc3_I |
|
1464 (const TDesC8*)( &KClkMsPro_I ), // EClkMsPro_I |
|
1465 (const TDesC8*)( &KClkHdq_I ), // EClkHdq_I |
|
1466 (const TDesC8*)( &KClkAes1_I ), // EClkAes1_I |
|
1467 (const TDesC8*)( &KClkAes2_I ), // EClkAes2_I |
|
1468 (const TDesC8*)( &KClkSha11_I ), // EClkSha11_I |
|
1469 (const TDesC8*)( &KClkSha12_I ), // EClkSha12_I |
|
1470 (const TDesC8*)( &KClkDes1_I ), // EClkDes1_I |
|
1471 (const TDesC8*)( &KClkDes2_I ), // EClkDes2_I |
|
1472 (const TDesC8*)( &KClkMcBsp1_I ), // EClkMcBsp1_I |
|
1473 (const TDesC8*)( &KClkMcBsp2_I ), // EClkMcBsp2_I |
|
1474 (const TDesC8*)( &KClkMcBsp3_I ), // EClkMcBsp3_I |
|
1475 (const TDesC8*)( &KClkMcBsp4_I ), // EClkMcBsp4_I |
|
1476 (const TDesC8*)( &KClkMcBsp5_I ), // EClkMcBsp5_I |
|
1477 (const TDesC8*)( &KClkI2c1_I ), // EClkI2c1_I |
|
1478 (const TDesC8*)( &KClkI2c2_I ), // EClkI2c2_I |
|
1479 (const TDesC8*)( &KClkI2c3_I ), // EClkI2c3_I |
|
1480 (const TDesC8*)( &KClkUart1_I ), // EClkUart1_I |
|
1481 (const TDesC8*)( &KClkUart2_I ), // EClkUart2_I |
|
1482 (const TDesC8*)( &KClkUart3_I ), // EClkUart3_I |
|
1483 (const TDesC8*)( &KClkMcSpi1_I ), // EClkMcSpi1_I |
|
1484 (const TDesC8*)( &KClkMcSpi2_I ), // EClkMcSpi2_I |
|
1485 (const TDesC8*)( &KClkMcSpi3_I ), // EClkMcSpi3_I |
|
1486 (const TDesC8*)( &KClkMcSpi4_I ), // EClkMcSpi4_I |
|
1487 (const TDesC8*)( &KClkGpt1_I ), // EClkGpt1_I |
|
1488 (const TDesC8*)( &KClkGpt2_I ), // EClkGpt2_I |
|
1489 (const TDesC8*)( &KClkGpt3_I ), // EClkGpt3_I |
|
1490 (const TDesC8*)( &KClkGpt4_I ), // EClkGpt4_I |
|
1491 (const TDesC8*)( &KClkGpt5_I ), // EClkGpt5_I |
|
1492 (const TDesC8*)( &KClkGpt6_I ), // EClkGpt6_I |
|
1493 (const TDesC8*)( &KClkGpt7_I ), // EClkGpt7_I |
|
1494 (const TDesC8*)( &KClkGpt8_I ), // EClkGpt8_I |
|
1495 (const TDesC8*)( &KClkGpt9_I ), // EClkGpt9_I |
|
1496 (const TDesC8*)( &KClkGpt10_I ), // EClkGpt10_I |
|
1497 (const TDesC8*)( &KClkGpt11_I ), // EClkGpt11_I |
|
1498 (const TDesC8*)( &KClkGpt12_I ), // EClkGpt12_I |
|
1499 (const TDesC8*)( &KClkMailboxes_I ), // EClkMailboxes_I |
|
1500 (const TDesC8*)( &KClkOmapSCM_I ), // EClkOmapSCM_I |
|
1501 (const TDesC8*)( &KClkHsUsbOtg_I ), // EClkHsUsbOtg_I |
|
1502 (const TDesC8*)( &KClkSdrc_I ), // EClkSdrc_I |
|
1503 (const TDesC8*)( &KClkPka_I ), // EClkPka_I |
|
1504 (const TDesC8*)( &KClkRng_I ), // EClkRng_I |
|
1505 (const TDesC8*)( &KClkUsbTll_I ), // EClkUsbTll_I |
|
1506 (const TDesC8*)( &KClkSgx_I ), // EClkSgx_I |
|
1507 (const TDesC8*)( &KClkUsim_I ), // EClkUsim_I |
|
1508 (const TDesC8*)( &KClkWdt1_I ), // EClkWdt1_I |
|
1509 (const TDesC8*)( &KClkWdt2_I ), // EClkWdt2_I |
|
1510 (const TDesC8*)( &KClkWdt3_I ), // EClkWdt3_I |
|
1511 (const TDesC8*)( &KClkGpio1_I ), // EClkGpio1_I |
|
1512 (const TDesC8*)( &KClkGpio2_I ), // EClkGpio2_I |
|
1513 (const TDesC8*)( &KClkGpio3_I ), // EClkGpio3_I |
|
1514 (const TDesC8*)( &KClkGpio4_I ), // EClkGpio4_I |
|
1515 (const TDesC8*)( &KClkGpio5_I ), // EClkGpio5_I |
|
1516 (const TDesC8*)( &KClkGpio6_I ), // EClkGpio6_I |
|
1517 (const TDesC8*)( &KClk32Sync_I ), // EClk32Sync_I |
|
1518 (const TDesC8*)( &KClkUsb_I ), // EClkUsb_I |
|
1519 (const TDesC8*)( &KClk48M ), // EClk48M |
|
1520 (const TDesC8*)( &KClk12M ), // EClk12M |
|
1521 (const TDesC8*)( &KClkSysClk ), // EClkSysClk |
|
1522 (const TDesC8*)( &KClkAltClk ), // EClkAltClk |
|
1523 (const TDesC8*)( &KClkSysClk32k ), // EClkSysClk32k |
|
1524 }; |
|
1525 |
|
1526 } |
|
1527 __ASSERT_COMPILE( (sizeof( KNames ) / sizeof( KNames[0] )) == Prcm::KSupportedClockCount ); |
|
1528 |
|
1529 namespace Prcm |
|
1530 { |
|
1531 TSpinLock iLock(/*TSpinLock::EOrderGenericIrqLow0*/); // prevents concurrent access to the prcm hardware registers |
|
1532 |
|
1533 void Panic( TPanic aPanic ) |
|
1534 { |
|
1535 Kern::Fault( "PRCM", aPanic ); |
|
1536 } |
|
1537 |
|
1538 void InternalPanic( TInt aLine ) |
|
1539 { |
|
1540 Kern::Fault( "PRCMINT", aLine ); |
|
1541 } |
|
1542 |
|
1543 FORCE_INLINE void _BitClearSet( TUint32 aRegister, TUint32 aClearMask, TUint32 aSetMask ) |
|
1544 { |
|
1545 volatile TUint32* pR = (volatile TUint32*)aRegister; |
|
1546 *pR = (*pR & ~aClearMask) | aSetMask; |
|
1547 } |
|
1548 |
|
1549 FORCE_INLINE void _LockedBitClearSet( TUint32 aRegister, TUint32 aClearMask, TUint32 aSetMask ) |
|
1550 { |
|
1551 volatile TUint32* pR = (volatile TUint32*)aRegister; |
|
1552 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
1553 *pR = (*pR & ~aClearMask) | aSetMask; |
|
1554 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
1555 } |
|
1556 |
|
1557 |
|
1558 EXPORT_C void SetPllConfig( TPll aPll, const TPllConfiguration& aConfig ) |
|
1559 { |
|
1560 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetPllConfig(%x)", aPll ) ); |
|
1561 |
|
1562 __ASSERT_DEBUG( (TUint)aPll < KSupportedPllCount, Panic( ESetPllConfigBadPll ) ); |
|
1563 |
|
1564 const TPllControlInfo& inf = KPllControlInfo[ aPll ]; |
|
1565 |
|
1566 __ASSERT_DEBUG( aConfig.iDivider <= KPllMaximumDivider, Panic( ESetPllConfigBadDivider ) ); |
|
1567 __ASSERT_DEBUG( aConfig.iMultiplier <= KPllMaximumMultiplier, Panic( ESetPllConfigBadMultiplier ) ); |
|
1568 __ASSERT_DEBUG( ((TUint)aConfig.iFreqRange <= EPllRange_1750_2100) |
|
1569 && ((TUint)aConfig.iFreqRange >= EPllRange_075_100), Panic( ESetPllConfigBadFreqRange ) ); |
|
1570 __ASSERT_DEBUG( ((TUint)aConfig.iRamp <= EPllRamp40us), Panic( ESetPllConfigBadRamp ) ); |
|
1571 __ASSERT_DEBUG( (TUint)aConfig.iDrift <= EPllDriftGuardEnabled, Panic( ESetPllConfigBadDrift ) ); |
|
1572 |
|
1573 TUint mult = (aConfig.iMultiplier bitand KPllMultiplierMask) << inf.iMultShift; |
|
1574 TUint div = ((aConfig.iDivider - 1) bitand KPllDividerMask) << inf.iDivShift; |
|
1575 TUint range = (aConfig.iFreqRange bitand KPllFreqRangeMask) << inf.iFreqSelShift; |
|
1576 TUint ramp = (aConfig.iRamp bitand KPllRampMask) << inf.iRampShift; |
|
1577 TUint drift = (aConfig.iDrift == EPllDriftGuardEnabled) ? (1 << inf.iDriftShift) : 0; |
|
1578 |
|
1579 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
1580 // We must apply frequency range setting before new multuplier and divider |
|
1581 TUint clearMaskConfig = (KPllFreqRangeMask << inf.iFreqSelShift) |
|
1582 bitor (KPllRampMask << inf.iRampShift) |
|
1583 bitor (1 << inf.iDriftShift); |
|
1584 _BitClearSet( inf.iConfigRegister, clearMaskConfig, range | ramp | drift ); |
|
1585 |
|
1586 TUint clearMaskMulDiv = (KPllMultiplierMask << inf.iMultShift) bitor (KPllDividerMask << inf.iDivShift); |
|
1587 _BitClearSet( inf.iMulDivRegister, clearMaskMulDiv, mult | div ); |
|
1588 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
1589 } |
|
1590 |
|
1591 EXPORT_C void PllConfig( TPll aPll, TPllConfiguration& aConfigResult ) |
|
1592 { |
|
1593 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllConfig(%x)", aPll ) ); |
|
1594 |
|
1595 __ASSERT_DEBUG( (TUint)aPll < KSupportedPllCount, Panic( EGetPllConfigBadPll ) ); |
|
1596 |
|
1597 const TPllControlInfo& inf = KPllControlInfo[ aPll ]; |
|
1598 |
|
1599 TUint32 config = AsspRegister::Read32( inf.iConfigRegister ); |
|
1600 TUint32 muldiv = AsspRegister::Read32( inf.iMulDivRegister ); |
|
1601 |
|
1602 aConfigResult.iMultiplier = (muldiv >> inf.iMultShift) bitand KPllMultiplierMask; |
|
1603 aConfigResult.iDivider = 1 + ((muldiv >> inf.iDivShift) bitand KPllDividerMask); |
|
1604 aConfigResult.iFreqRange = static_cast<TPllFrequencyRange>((config >> inf.iFreqSelShift) bitand KPllFreqRangeMask); |
|
1605 aConfigResult.iRamp = static_cast<TPllRamp>((config >> inf.iRampShift ) bitand KPllRampMask); |
|
1606 aConfigResult.iDrift = (config >> inf.iDriftShift ) bitand 1 ? EPllDriftGuardEnabled : EPllDriftGuardDisabled; |
|
1607 |
|
1608 __KTRACE_OPT( KPRCM, Kern::Printf( "DPLL%d: m=%d, d=%d, fr=%d, r=%d, dr=%d", |
|
1609 aPll + 1, |
|
1610 aConfigResult.iMultiplier, |
|
1611 aConfigResult.iDivider, |
|
1612 aConfigResult.iFreqRange, |
|
1613 aConfigResult.iRamp, |
|
1614 aConfigResult.iDrift ) ); |
|
1615 } |
|
1616 |
|
1617 EXPORT_C void SetPllLp( TPll aPll, TLpMode aLpMode ) |
|
1618 { |
|
1619 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetPllLp(%x)", aPll ) ); |
|
1620 |
|
1621 __ASSERT_DEBUG( (TUint)aPll < KSupportedPllCount, Panic( ESetPllLpBadPll ) ); |
|
1622 __ASSERT_DEBUG( (aLpMode == ENormalMode) |
|
1623 || (aLpMode == ELpMode), Panic( ESetPllLpBadMode ) ); |
|
1624 |
|
1625 const TPllControlInfo& inf = KPllControlInfo[ aPll ]; |
|
1626 |
|
1627 TUint32 clear = 1 << inf.iLpShift; |
|
1628 TUint32 set = 0; |
|
1629 |
|
1630 if( ELpMode == aLpMode ) |
|
1631 { |
|
1632 set = clear; |
|
1633 clear = 0; |
|
1634 } |
|
1635 |
|
1636 _LockedBitClearSet( inf.iConfigRegister, clear, set ); |
|
1637 } |
|
1638 |
|
1639 EXPORT_C TLpMode PllLp( TPll aPll ) |
|
1640 { |
|
1641 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllLp(%x)", aPll ) ); |
|
1642 |
|
1643 __ASSERT_DEBUG( (TUint)aPll < KSupportedPllCount, Panic( EGetPllLpBadPll ) ); |
|
1644 |
|
1645 const TPllControlInfo& inf = KPllControlInfo[ aPll ]; |
|
1646 |
|
1647 TUint32 config = AsspRegister::Read32( inf.iConfigRegister ); |
|
1648 if( 0 == ((config >> inf.iLpShift) bitand 1) ) |
|
1649 { |
|
1650 return ENormalMode; |
|
1651 } |
|
1652 else |
|
1653 { |
|
1654 return ELpMode; |
|
1655 } |
|
1656 } |
|
1657 |
|
1658 |
|
1659 EXPORT_C void SetPllMode( TPll aPll, TPllMode aPllMode ) |
|
1660 { |
|
1661 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetPllMode(%x;%x)", aPll, aPllMode ) ); |
|
1662 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( ESetPllModeBadClock ) ); |
|
1663 |
|
1664 TUint32 newMode; |
|
1665 TUint32 newAuto = KPllAutoOff; |
|
1666 |
|
1667 switch( aPllMode ) |
|
1668 { |
|
1669 default: |
|
1670 __DEBUG_ONLY( Panic( ESetPllModeBadMode ) ); |
|
1671 return; |
|
1672 |
|
1673 case EPllStop: |
|
1674 newMode = KPllModeStop; |
|
1675 break; |
|
1676 |
|
1677 case EPllBypass: |
|
1678 newMode = KPllModeBypass; |
|
1679 break; |
|
1680 |
|
1681 case EPllAuto: |
|
1682 newAuto = KPllAutoOn; |
|
1683 // fall through... |
|
1684 |
|
1685 case EPllRun: |
|
1686 newMode = KPllModeLock; |
|
1687 break; |
|
1688 |
|
1689 case EPllFastRelock: |
|
1690 newMode = KPllModeFastRelock; |
|
1691 break; |
|
1692 } |
|
1693 |
|
1694 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
1695 |
|
1696 _BitClearSet( KPllMode[ aPll ].iModeRegister, |
|
1697 KPllModeMask << KPllMode[ aPll ].iModeShift, |
|
1698 newMode << KPllMode[ aPll ].iModeShift ); |
|
1699 |
|
1700 _BitClearSet( KPllMode[ aPll ].iAutoRegister, |
|
1701 KPllAutoMask << KPllMode[ aPll ].iAutoShift, |
|
1702 newAuto << KPllMode[ aPll ].iAutoShift ); |
|
1703 |
|
1704 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
1705 } |
|
1706 |
|
1707 |
|
1708 EXPORT_C TPllMode PllMode( TPll aPll ) |
|
1709 { |
|
1710 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllMode(%x)", aPll ) ); |
|
1711 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( ESetPllModeBadClock ) ); |
|
1712 |
|
1713 TUint32 mode = (AsspRegister::Read32( KPllMode[ aPll ].iModeRegister ) >> KPllMode[ aPll ].iModeShift) bitand KPllModeMask; |
|
1714 TUint32 autoSet = (AsspRegister::Read32( KPllMode[ aPll ].iAutoRegister ) >> KPllMode[ aPll ].iAutoShift) bitand KPllAutoMask; |
|
1715 |
|
1716 static const TPllMode modeTable[8][2] = |
|
1717 { // auto disabled auto enabled |
|
1718 { EPllStop, EPllStop }, // not possible |
|
1719 { EPllStop, EPllStop }, |
|
1720 { EPllStop, EPllStop }, // not possible |
|
1721 { EPllStop, EPllStop }, // not possible |
|
1722 { EPllStop, EPllStop }, // not possible |
|
1723 { EPllBypass, EPllBypass }, |
|
1724 { EPllFastRelock, EPllAuto }, |
|
1725 { EPllRun, EPllAuto }, |
|
1726 }; |
|
1727 return modeTable[ mode ][ (KPllAutoOff == autoSet) ? 0 : 1 ]; |
|
1728 } |
|
1729 |
|
1730 EXPORT_C void CalcPllFrequencyRange( TPll aPll, TPllConfiguration& aConfig ) |
|
1731 { |
|
1732 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::CalcPllFrequencyRange(%x)", aPll ) ); |
|
1733 |
|
1734 struct TFreqSelRange |
|
1735 { |
|
1736 TUint iMin; |
|
1737 TUint iMax; |
|
1738 TPllFrequencyRange iSetting; |
|
1739 }; |
|
1740 |
|
1741 const TFreqSelRange KRanges[] = |
|
1742 { |
|
1743 { 750000, 1000000, EPllRange_075_100 }, |
|
1744 { 1000001, 1250000, EPllRange_100_125 }, |
|
1745 { 1250001, 1500000, EPllRange_125_150 }, |
|
1746 { 1500001, 1750000, EPllRange_150_175 }, |
|
1747 { 1750001, 2100000, EPllRange_175_210 }, |
|
1748 { 7500000, 10000000, EPllRange_750_1000 }, |
|
1749 { 10000001, 12500000, EPllRange_1000_1250 }, |
|
1750 { 12500001, 15000000, EPllRange_1250_1500 }, |
|
1751 { 15000001, 17500000, EPllRange_1500_1750 }, |
|
1752 { 17500001, 21000000, EPllRange_1750_2100 }, |
|
1753 { 0, 0, EPllRange_1750_2100 } |
|
1754 }; |
|
1755 |
|
1756 // We have to work out the internal frequency from the source clock frequency and the |
|
1757 // divider factor N |
|
1758 |
|
1759 const TUint32 divider = aConfig.iDivider; |
|
1760 |
|
1761 TInt found = -1; |
|
1762 |
|
1763 if( divider > 0 ) |
|
1764 { |
|
1765 TUint fInternal = ClockFrequency( EClkSysClk ) / divider; |
|
1766 |
|
1767 // Find an appropriate range |
|
1768 for( TInt i = 0; KRanges[i].iMax > 0; ++i ) |
|
1769 { |
|
1770 if( fInternal < KRanges[i].iMin ) |
|
1771 { |
|
1772 // We've passed all possible ranges, work out whether current or previous is nearest |
|
1773 __DEBUG_ONLY( Panic( EPllInternalFrequencyOutOfRange ) ); |
|
1774 |
|
1775 if( i > 0 ) |
|
1776 { |
|
1777 // How near are we to minimum of current range? |
|
1778 TUint currentDiff = KRanges[i].iMin - fInternal; |
|
1779 |
|
1780 // How near are we to maximum of previous range? |
|
1781 TUint prevDiff = fInternal - KRanges[i - 1].iMax; |
|
1782 |
|
1783 found = (prevDiff < currentDiff) ? i - 1 : i; |
|
1784 } |
|
1785 else |
|
1786 { |
|
1787 // it's below minimum, so use minimum range |
|
1788 found = 0; |
|
1789 } |
|
1790 break; |
|
1791 } |
|
1792 else if( (KRanges[i].iMin <= fInternal) && (KRanges[i].iMax >= fInternal) ) |
|
1793 { |
|
1794 found = i; |
|
1795 break; |
|
1796 } |
|
1797 } |
|
1798 |
|
1799 } |
|
1800 // If we've fallen off end of list, use maximum setting |
|
1801 __ASSERT_DEBUG( found >= 0, Panic( EPllInternalFrequencyOutOfRange ) ); |
|
1802 aConfig.iFreqRange = (found >= 0) ? KRanges[ found ].iSetting : EPllRange_1750_2100; |
|
1803 } |
|
1804 |
|
1805 |
|
1806 EXPORT_C void AutoSetPllLpMode( TPll aPll ) |
|
1807 { |
|
1808 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllMode(%x)", aPll ) ); |
|
1809 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( ESetPllModeBadClock ) ); |
|
1810 |
|
1811 const TUint32 reg = KPllControlInfo[ aPll ].iConfigRegister; |
|
1812 const TUint shift = KPllControlInfo[ aPll ].iLpShift; |
|
1813 |
|
1814 TUint freq = ClockFrequency( KPllToClock[ aPll ] ); |
|
1815 TUint32 clear = 1 << shift; |
|
1816 TUint32 set = 0; |
|
1817 if( freq <= KPllLpModeMaximumFrequency ) |
|
1818 { |
|
1819 // LP mode can be enabled |
|
1820 set = clear; |
|
1821 clear = 0; |
|
1822 } |
|
1823 _LockedBitClearSet( reg, clear, set ); |
|
1824 } |
|
1825 |
|
1826 EXPORT_C TBool PllIsLocked( TPll aPll ) |
|
1827 { |
|
1828 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllIsLocked(%x)", aPll ) ); |
|
1829 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( EPllIsLockedBadPll ) ); |
|
1830 |
|
1831 TUint32 reg = KPllControlInfo[ aPll ].iStatusRegister; |
|
1832 TUint32 lockMask = 1 << KPllControlInfo[ aPll ].iLockBit; |
|
1833 |
|
1834 return ( 0 != (AsspRegister::Read32( reg ) bitand lockMask) ); |
|
1835 } |
|
1836 |
|
1837 EXPORT_C void WaitForPllLock( TPll aPll ) |
|
1838 { |
|
1839 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::WaitForPllLock(%x)", aPll ) ); |
|
1840 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( EWaitForPllLockBadPll ) ); |
|
1841 |
|
1842 TUint32 reg = KPllControlInfo[ aPll ].iStatusRegister; |
|
1843 TUint32 lockMask = 1 << KPllControlInfo[ aPll ].iLockBit; |
|
1844 |
|
1845 while( 0 == (AsspRegister::Read32( reg ) bitand lockMask) ); |
|
1846 } |
|
1847 |
|
1848 EXPORT_C void SetPllBypassDivider( TPll aPll, TBypassDivider aDivider ) |
|
1849 { |
|
1850 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetPllBypassDivider(%x;%x)", aPll, aDivider ) ); |
|
1851 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( ESetPllBypassDividerBadPll ) ); |
|
1852 __ASSERT_DEBUG( (TUint)aDivider <= EBypassDiv4, Panic( ESetPllBypassDividerBadDivider ) ); |
|
1853 |
|
1854 static const TUint8 KLookupTable[] = |
|
1855 { |
|
1856 1, // EBypassDiv1 |
|
1857 2, // EBypassDiv2 |
|
1858 4. // EBypassDiv4 |
|
1859 }; |
|
1860 |
|
1861 TUint32 div = KLookupTable[ aDivider ]; |
|
1862 |
|
1863 switch( aPll ) |
|
1864 { |
|
1865 case EDpll1: |
|
1866 _LockedBitClearSet( KCM_CLKSEL1_PLL_MPU, KBit19 | KBit20 | KBit21, div << 19 ); |
|
1867 break; |
|
1868 |
|
1869 case EDpll2: |
|
1870 _LockedBitClearSet( KCM_CLKSEL1_PLL_IVA2, KBit19 | KBit20 | KBit21, div << 19 ); |
|
1871 break; |
|
1872 |
|
1873 default: |
|
1874 break; |
|
1875 } |
|
1876 } |
|
1877 |
|
1878 EXPORT_C TBypassDivider PllBypassDivider( TPll aPll ) |
|
1879 { |
|
1880 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PllBypassDivider(%x)", aPll ) ); |
|
1881 __ASSERT_DEBUG( (TUint)aPll <= EDpll5, Panic( EPllBypassDividerBadPll ) ); |
|
1882 |
|
1883 TUint div = 1; |
|
1884 |
|
1885 switch( aPll ) |
|
1886 { |
|
1887 case EDpll1: |
|
1888 div = (AsspRegister::Read32( KCM_CLKSEL1_PLL_MPU ) >> 19) bitand 0x7; |
|
1889 break; |
|
1890 |
|
1891 case EDpll2: |
|
1892 div = (AsspRegister::Read32( KCM_CLKSEL1_PLL_IVA2 ) >> 19) bitand 0x7; |
|
1893 break; |
|
1894 |
|
1895 default: |
|
1896 break; |
|
1897 } |
|
1898 |
|
1899 TBypassDivider result = EBypassDiv1; |
|
1900 |
|
1901 if( 2 == div ) |
|
1902 { |
|
1903 result = EBypassDiv2; |
|
1904 } |
|
1905 else if( 4 == div ) |
|
1906 { |
|
1907 result = EBypassDiv4; |
|
1908 } |
|
1909 |
|
1910 return result; |
|
1911 } |
|
1912 |
|
1913 EXPORT_C void SetDivider( TClock aClock, TUint aDivide ) |
|
1914 { |
|
1915 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetDivider(%x;%x)", aClock, aDivide ) ); |
|
1916 |
|
1917 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( ESetDividerBadClock ) ); |
|
1918 |
|
1919 const TDividerInfo& inf = KDividerInfo[ aClock ]; |
|
1920 |
|
1921 TUint32 div = aDivide; // most common case, special cases handled below |
|
1922 |
|
1923 switch( inf.iDivType ) |
|
1924 { |
|
1925 case EDivUsimClk: |
|
1926 // Special case, not suppored by this function - use SetUsimClockDivider() |
|
1927 return; |
|
1928 |
|
1929 default: |
|
1930 case EDivNotSupported: |
|
1931 Panic( ESetDividerUnsupportedClock ); |
|
1932 return; |
|
1933 |
|
1934 case EDiv_1_2: |
|
1935 if( (1 != aDivide ) && (2 != aDivide ) ) |
|
1936 { |
|
1937 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
1938 return; |
|
1939 } |
|
1940 break; |
|
1941 |
|
1942 case EDivCore_1_2_4: |
|
1943 if( (1 != aDivide ) && (2 != aDivide ) && (3 != aDivide) ) |
|
1944 { |
|
1945 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
1946 return; |
|
1947 } |
|
1948 break; |
|
1949 |
|
1950 case EDivCore_3_4_6_96M: |
|
1951 { |
|
1952 switch( aDivide ) |
|
1953 { |
|
1954 default: |
|
1955 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
1956 return; |
|
1957 |
|
1958 case 3: |
|
1959 div = 0; |
|
1960 break; |
|
1961 |
|
1962 case 4: |
|
1963 div = 1; |
|
1964 break; |
|
1965 |
|
1966 case 6: |
|
1967 div = 2; |
|
1968 break; |
|
1969 |
|
1970 case 0: |
|
1971 // Special-case, use 96MHz clock |
|
1972 div = 3; |
|
1973 break; |
|
1974 } |
|
1975 break; |
|
1976 } |
|
1977 |
|
1978 case EDivPll_1_To_16: |
|
1979 if( (aDivide < 1) || (aDivide > 16) ) |
|
1980 { |
|
1981 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
1982 return; |
|
1983 } |
|
1984 break; |
|
1985 |
|
1986 case EDivPll_1_To_31: |
|
1987 if( (aDivide < 1) || (aDivide > 16) ) |
|
1988 { |
|
1989 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
1990 return; |
|
1991 } |
|
1992 break; |
|
1993 |
|
1994 |
|
1995 |
|
1996 case EDivClkOut_1_2_4_8_16: |
|
1997 { |
|
1998 switch( aDivide ) |
|
1999 { |
|
2000 default: |
|
2001 __DEBUG_ONLY( Panic( ESetDividerBadDivider ) ); |
|
2002 return; |
|
2003 |
|
2004 case 1: |
|
2005 div = 0; |
|
2006 break; |
|
2007 |
|
2008 case 2: |
|
2009 div = 1; |
|
2010 break; |
|
2011 |
|
2012 case 4: |
|
2013 div = 2; |
|
2014 break; |
|
2015 |
|
2016 case 8: |
|
2017 div = 3; |
|
2018 break; |
|
2019 |
|
2020 case 16: |
|
2021 div = 4; |
|
2022 break; |
|
2023 } |
|
2024 break; |
|
2025 } |
|
2026 } |
|
2027 |
|
2028 // if we get here, we have a valid divider value |
|
2029 |
|
2030 _LockedBitClearSet( inf.iRegister, inf.iMask, div << inf.iShift ); |
|
2031 } |
|
2032 |
|
2033 EXPORT_C TUint Divider( TClock aClock ) |
|
2034 { |
|
2035 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::Divider(%x)", aClock ) ); |
|
2036 |
|
2037 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( EGetDividerBadClock ) ); |
|
2038 |
|
2039 const TDividerInfo& inf = KDividerInfo[ aClock ]; |
|
2040 |
|
2041 TUint32 div = ( AsspRegister::Read32( inf.iRegister ) bitand inf.iMask ) >> inf.iShift; |
|
2042 TUint result = div; // most common case |
|
2043 |
|
2044 switch( inf.iDivType ) |
|
2045 { |
|
2046 case EDivUsimClk: |
|
2047 return UsimDivider(); |
|
2048 |
|
2049 default: |
|
2050 case EDivNotSupported: |
|
2051 Panic( ESetDividerUnsupportedClock ); |
|
2052 return 0xFFFFFFFF; |
|
2053 |
|
2054 // These are all the standard case, where value in register is divide factor |
|
2055 case EDiv_1_2: |
|
2056 case EDivCore_1_2_4: |
|
2057 case EDivPll_1_To_16: |
|
2058 case EDivPll_1_To_31: |
|
2059 break; |
|
2060 |
|
2061 case EDivCore_3_4_6_96M: |
|
2062 { |
|
2063 switch( div ) |
|
2064 { |
|
2065 default: |
|
2066 // hardware value has unknown meaning |
|
2067 result = 0xFFFFFFFF; |
|
2068 |
|
2069 case 0: |
|
2070 result = 3; |
|
2071 break; |
|
2072 |
|
2073 case 1: |
|
2074 result = 4; |
|
2075 break; |
|
2076 |
|
2077 case 2: |
|
2078 result = 6; |
|
2079 break; |
|
2080 |
|
2081 case 3: |
|
2082 result = 0; |
|
2083 break; |
|
2084 } |
|
2085 break; |
|
2086 } |
|
2087 |
|
2088 case EDivClkOut_1_2_4_8_16: |
|
2089 { |
|
2090 switch( div ) |
|
2091 { |
|
2092 default: |
|
2093 // hardware value has unknown meaning |
|
2094 result = 0xFFFFFFFF; |
|
2095 |
|
2096 case 0: |
|
2097 result = 1; |
|
2098 break; |
|
2099 |
|
2100 case 1: |
|
2101 result = 2; |
|
2102 break; |
|
2103 |
|
2104 case 2: |
|
2105 result = 4; |
|
2106 break; |
|
2107 |
|
2108 case 3: |
|
2109 result = 8; |
|
2110 break; |
|
2111 |
|
2112 case 4: |
|
2113 result = 16; |
|
2114 break; |
|
2115 } |
|
2116 break; |
|
2117 } |
|
2118 } |
|
2119 |
|
2120 return result; |
|
2121 } |
|
2122 |
|
2123 EXPORT_C void SetPowerDomainMode( TPowerDomain aDomain, TPowerDomainMode aMode ) |
|
2124 { |
|
2125 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetPowerDomainMode(%x;%x)", aDomain, aMode ) ); |
|
2126 __ASSERT_DEBUG( (TUint)aDomain < KSupportedPowerDomainCount, Panic( ESetDomainModeBadDomain ) ); |
|
2127 __ASSERT_DEBUG( (TUint)aMode <= EPowerOn, Panic( ESetDomainModeBadMode ) ); |
|
2128 |
|
2129 __ASSERT_DEBUG( 0 != (KPowerDomainControl[ aDomain ].iAllowedMask bitand (1 << aMode)), Panic( ESetDomainModeUnsupportedMode ) ); |
|
2130 |
|
2131 TUint shift = KPowerDomainControl[ aDomain ].iShift; |
|
2132 |
|
2133 _LockedBitClearSet( KPowerDomainControl[ aDomain ].iRegister, |
|
2134 KPowerModeMask << shift, |
|
2135 aMode << shift ); |
|
2136 } |
|
2137 |
|
2138 EXPORT_C TPowerDomainMode PowerDomainMode( TPowerDomain aDomain ) |
|
2139 { |
|
2140 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::PowerDomainMode(%x)", aDomain ) ); |
|
2141 __ASSERT_DEBUG( (TUint)aDomain < KSupportedPowerDomainCount, Panic( EGetDomainModeBadDomain ) ); |
|
2142 |
|
2143 TUint32 m = (AsspRegister::Read32( KPowerDomainControl[ aDomain ].iRegister ) >> KPowerDomainControl[ aDomain ].iShift) bitand KPowerModeMask; |
|
2144 return static_cast< TPowerDomainMode >( m ); |
|
2145 } |
|
2146 |
|
2147 EXPORT_C void SetClockState( TClock aClock, TClockState aState ) |
|
2148 { |
|
2149 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetClockState(%x;%x)", aClock, aState ) ); |
|
2150 |
|
2151 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( ESetStateBadClock ) ); |
|
2152 |
|
2153 const TClockEnableAutoInfo& def = KClockControlTable[ aClock ]; |
|
2154 |
|
2155 TUint32 reg = def.iGate.iRegister; |
|
2156 TUint32 mask = def.iGate.iMask; |
|
2157 TUint32 autoReg = def.iAuto.iRegister; |
|
2158 TUint32 autoMask = def.iAuto.iMask; |
|
2159 |
|
2160 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
2161 |
|
2162 if( EClkOn == aState ) |
|
2163 { |
|
2164 _BitClearSet( reg, mask, def.iGate.iEnablePattern ); |
|
2165 _BitClearSet( autoReg, autoMask, def.iAuto.iDisablePattern ); |
|
2166 } |
|
2167 else if( EClkOff == aState ) |
|
2168 { |
|
2169 _BitClearSet( reg, mask, def.iGate.iDisablePattern ); |
|
2170 _BitClearSet( autoReg, autoMask, def.iAuto.iDisablePattern ); |
|
2171 } |
|
2172 else if( EClkAuto == aState ) |
|
2173 { |
|
2174 _BitClearSet( autoReg, autoMask, def.iAuto.iEnablePattern ); |
|
2175 _BitClearSet( reg, mask, def.iGate.iEnablePattern ); |
|
2176 } |
|
2177 |
|
2178 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
2179 } |
|
2180 |
|
2181 EXPORT_C TClockState ClockState( TClock aClock ) |
|
2182 { |
|
2183 __KTRACE_OPT( KPRCM, Kern::Printf( "+Prcm::ClockState(%x)", aClock ) ); |
|
2184 |
|
2185 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( EGetStateBadClock ) ); |
|
2186 |
|
2187 const TClockEnableAutoInfo& def = KClockControlTable[ aClock ]; |
|
2188 |
|
2189 TUint32 reg = def.iGate.iRegister; |
|
2190 TUint32 mask = def.iGate.iMask; |
|
2191 TUint32 autoReg = def.iAuto.iRegister; |
|
2192 TUint32 autoMask = def.iAuto.iMask; |
|
2193 |
|
2194 TUint32 enable = AsspRegister::Read32( reg ) bitand mask; |
|
2195 TUint32 autoClock = AsspRegister::Read32( autoReg ) bitand autoMask; |
|
2196 |
|
2197 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::ClockState(%x):e:%x a:%x", aClock, enable, autoClock ) ); |
|
2198 |
|
2199 TClockState state = EClkAuto; |
|
2200 |
|
2201 // OFF = OFF |
|
2202 // ON + AUTO = AUTO |
|
2203 // ON + !AUTO = ON |
|
2204 if( def.iGate.iEnablePattern != enable ) |
|
2205 { |
|
2206 state = EClkOff; |
|
2207 } |
|
2208 else if( def.iAuto.iEnablePattern != autoClock ) |
|
2209 { |
|
2210 state = EClkOn; |
|
2211 } |
|
2212 |
|
2213 __KTRACE_OPT( KPRCM, Kern::Printf( "-Prcm::ClockState(%x):%d", aClock, state ) ); |
|
2214 |
|
2215 return state; |
|
2216 } |
|
2217 |
|
2218 EXPORT_C void SetWakeupMode( TClock aClock, TWakeupMode aMode ) |
|
2219 { |
|
2220 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetWakeupMode(%x;%x)", aClock, aMode ) ); |
|
2221 |
|
2222 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( ESetWakeupBadClock ) ); |
|
2223 |
|
2224 const TRegisterBitDef& def = KClockWakeupTable[ aClock ]; |
|
2225 |
|
2226 TUint32 reg = def.iRegister; |
|
2227 TUint32 mask = def.iMask; |
|
2228 |
|
2229 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
2230 |
|
2231 if( EWakeupEnabled == aMode ) |
|
2232 { |
|
2233 _BitClearSet( reg, mask, def.iEnablePattern ); |
|
2234 } |
|
2235 else |
|
2236 { |
|
2237 _BitClearSet( reg, mask, def.iDisablePattern ); |
|
2238 } |
|
2239 |
|
2240 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
2241 } |
|
2242 |
|
2243 EXPORT_C TWakeupMode WakeupMode( TClock aClock ) |
|
2244 { |
|
2245 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::WakeupMode(%x)", aClock ) ); |
|
2246 |
|
2247 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( EGetWakeupBadClock ) ); |
|
2248 |
|
2249 const TRegisterBitDef& def = KClockWakeupTable[ aClock ]; |
|
2250 |
|
2251 TUint32 reg = def.iRegister; |
|
2252 TUint32 mask = def.iMask; |
|
2253 |
|
2254 if( def.iEnablePattern == (AsspRegister::Read32( reg ) bitand mask) ) |
|
2255 { |
|
2256 return EWakeupEnabled; |
|
2257 } |
|
2258 else |
|
2259 { |
|
2260 return EWakeupDisabled; |
|
2261 } |
|
2262 } |
|
2263 |
|
2264 EXPORT_C void AddToWakeupGroup( TClock aClock, TWakeupGroup aGroup ) |
|
2265 { |
|
2266 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::AddToWakeupGroup(%x;%x)", aClock, aGroup ) ); |
|
2267 |
|
2268 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( EAddWakeupGroupBadClock ) ); |
|
2269 __ASSERT_DEBUG( (TUint)aGroup < KSupportedWakeupGroupCount, Panic( EAddWakeupGroupBadGroup ) ); |
|
2270 |
|
2271 const TRegisterBitDef& def = KClockWakeupGroupTable[ aClock ][ aGroup ]; |
|
2272 |
|
2273 TUint32 reg = def.iRegister; |
|
2274 TUint32 mask = def.iMask; |
|
2275 |
|
2276 _LockedBitClearSet( reg, mask, def.iEnablePattern ); |
|
2277 } |
|
2278 |
|
2279 EXPORT_C void RemoveFromWakeupGroup( TClock aClock, TWakeupGroup aGroup ) |
|
2280 { |
|
2281 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::RemoveFromWakeupGroup(%x;%x)", aClock, aGroup ) ); |
|
2282 |
|
2283 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( ERemoveWakeupGroupBadClock ) ); |
|
2284 __ASSERT_DEBUG( (TUint)aGroup < KSupportedWakeupGroupCount, Panic( ERemoveWakeupGroupBadGroup ) ); |
|
2285 |
|
2286 const TRegisterBitDef& def = KClockWakeupGroupTable[ aClock ][ aGroup ]; |
|
2287 |
|
2288 TUint32 reg = def.iRegister; |
|
2289 TUint32 mask = def.iMask; |
|
2290 |
|
2291 _LockedBitClearSet( reg, mask, def.iDisablePattern ); |
|
2292 } |
|
2293 |
|
2294 EXPORT_C TBool IsInWakeupGroup( TClock aClock, TWakeupGroup aGroup ) |
|
2295 { |
|
2296 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::IsInWakeupGroup(%x)", aClock ) ); |
|
2297 |
|
2298 __ASSERT_DEBUG( (TUint)aClock < KSupportedClockCount, Panic( EGetWakeupGroupBadClock ) ); |
|
2299 __ASSERT_DEBUG( (TUint)aGroup < KSupportedWakeupGroupCount, Panic( EGetWakeupGroupBadGroup ) ); |
|
2300 |
|
2301 const TRegisterBitDef& def = KClockWakeupGroupTable[ aClock ][ aGroup ]; |
|
2302 |
|
2303 TUint32 reg = def.iRegister; |
|
2304 TUint32 mask = def.iMask; |
|
2305 |
|
2306 return( def.iEnablePattern == (AsspRegister::Read32( reg ) bitand mask) ); |
|
2307 } |
|
2308 |
|
2309 |
|
2310 EXPORT_C void AddToWakeupDomain( TClock aClock, TWakeupDomain aDomain ) |
|
2311 { |
|
2312 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::AddToWakeupDomain(%x;%x)", aClock, aDomain ) ); |
|
2313 |
|
2314 __ASSERT_DEBUG( (TUint)aClock <= (TUint)KSupportedClockCount, Panic( EAddDomainBadClock ) ); |
|
2315 __ASSERT_DEBUG( (TUint)aDomain <= (TUint)KSupportedWakeupDomainCount, Panic( EAddDomainBadDomain ) ); |
|
2316 |
|
2317 const TWakeupDomainInfo& inf = KClockWakeupDomainTable[ aClock ]; |
|
2318 TUint32 mask = 1 << (TUint)inf.iBitNumber[ aDomain ]; // unsupported bit numbers will result in a mask of 0x00000000 |
|
2319 |
|
2320 _LockedBitClearSet( inf.iRegister, KClearNone, mask ); |
|
2321 } |
|
2322 |
|
2323 EXPORT_C void RemoveFromWakeupDomain( TClock aClock, TWakeupDomain aDomain ) |
|
2324 { |
|
2325 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::RemoveFromWakeupDomain(%x;%x)", aClock, aDomain ) ); |
|
2326 |
|
2327 __ASSERT_DEBUG( (TUint)aClock <= (TUint)KSupportedClockCount, Panic( ERemoveDomainBadClock ) ); |
|
2328 __ASSERT_DEBUG( (TUint)aDomain <= (TUint)KSupportedWakeupDomainCount, Panic( ERemoveDomainBadDomain ) ); |
|
2329 |
|
2330 const TWakeupDomainInfo& inf = KClockWakeupDomainTable[ aClock ]; |
|
2331 TUint32 mask = 1 << (TUint)inf.iBitNumber[ aDomain ]; // unsupported bit numbers will result in a mask of 0x00000000 |
|
2332 |
|
2333 _LockedBitClearSet( inf.iRegister, mask, KSetNone ); |
|
2334 } |
|
2335 |
|
2336 EXPORT_C TBool IsInWakeupDomain( TClock aClock, TWakeupDomain aDomain ) |
|
2337 { |
|
2338 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::IsInWakeupDomain(%x;%x)", aClock, aDomain ) ); |
|
2339 |
|
2340 __ASSERT_DEBUG( (TUint)aClock <= (TUint)KSupportedClockCount, Panic( ECheckDomainBadClock ) ); |
|
2341 __ASSERT_DEBUG( (TUint)aDomain <= (TUint)KSupportedWakeupDomainCount, Panic( ECheckDomainBadDomain ) ); |
|
2342 |
|
2343 const TWakeupDomainInfo& inf = KClockWakeupDomainTable[ aClock ]; |
|
2344 TUint32 mask = 1 << (TUint)inf.iBitNumber[ aDomain ]; // unsupported bit numbers will result in a mask of 0x00000000 |
|
2345 |
|
2346 return ( 0 != (AsspRegister::Read32( inf.iRegister ) bitand mask) ); |
|
2347 } |
|
2348 |
|
2349 EXPORT_C void SetGptClockSource( TGpt aGpt, TGptClockSource aSource ) |
|
2350 { |
|
2351 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetGptClockSource(%x;%x)", aGpt, aSource ) ); |
|
2352 |
|
2353 __ASSERT_DEBUG( (TUint)aGpt <= (TUint)EGpt12, Panic( ESetGptClockBadGpt ) ); |
|
2354 |
|
2355 |
|
2356 TUint32 reg = KGptClockSourceInfo[ aGpt ].iRegister; |
|
2357 TUint32 mask = KGptClockSourceInfo[ aGpt ].iMask; |
|
2358 TUint32 setPattern = (EGptClockSysClk == aSource ) ? mask : 0; |
|
2359 |
|
2360 _LockedBitClearSet( reg, mask, setPattern ); |
|
2361 } |
|
2362 |
|
2363 EXPORT_C TGptClockSource GptClockSource( TGpt aGpt ) |
|
2364 { |
|
2365 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::GptClockSource(%x)", aGpt ) ); |
|
2366 |
|
2367 __ASSERT_DEBUG( (TUint)aGpt <= (TUint)EGpt12, Panic( ESetGptClockBadGpt ) ); |
|
2368 |
|
2369 TUint32 reg = KGptClockSourceInfo[ aGpt ].iRegister; |
|
2370 TUint32 mask = KGptClockSourceInfo[ aGpt ].iMask; |
|
2371 |
|
2372 if( 0 == (AsspRegister::Read32( reg ) bitand mask) ) |
|
2373 { |
|
2374 return EGptClock32k; |
|
2375 } |
|
2376 else |
|
2377 { |
|
2378 return EGptClockSysClk; |
|
2379 } |
|
2380 } |
|
2381 |
|
2382 EXPORT_C TUint UsimDivider() |
|
2383 { |
|
2384 const TDividerInfo& info = KDividerInfo[ EClkUsim_F ]; |
|
2385 TUint divmux = (AsspRegister::Read32( info.iRegister ) bitand info.iMask ) >> info.iShift; |
|
2386 return UsimDivMuxInfo[ divmux ].iDivider; |
|
2387 } |
|
2388 |
|
2389 EXPORT_C TClock UsimClockSource() |
|
2390 { |
|
2391 const TDividerInfo& info = KDividerInfo[ EClkUsim_F ]; |
|
2392 TUint divmux = (AsspRegister::Read32( info.iRegister ) bitand info.iMask ) >> info.iShift; |
|
2393 return UsimDivMuxInfo[ divmux ].iClock; |
|
2394 } |
|
2395 |
|
2396 EXPORT_C void SetClockMux( TClock aClock, TClock aSource ) |
|
2397 { |
|
2398 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::SetClockMux(%x;%x)", aClock, aSource ) ); |
|
2399 |
|
2400 switch( aClock ) |
|
2401 { |
|
2402 case EClk96M: |
|
2403 { |
|
2404 TUint set = KBit6; |
|
2405 TUint clear = 0; |
|
2406 |
|
2407 switch( aSource ) |
|
2408 { |
|
2409 case EClkPeriph: |
|
2410 clear = KBit6; |
|
2411 set = 0; |
|
2412 // fall through... |
|
2413 |
|
2414 case EClkSysClk: |
|
2415 _LockedBitClearSet( KCM_CLKSEL1_PLL, clear, set ); |
|
2416 break; |
|
2417 |
|
2418 default: |
|
2419 Panic( ESetClockMuxBadSource ); |
|
2420 } |
|
2421 break; |
|
2422 } |
|
2423 |
|
2424 case EClkSysOut: |
|
2425 { |
|
2426 TUint set; |
|
2427 switch( aSource ) |
|
2428 { |
|
2429 case EClkCore: |
|
2430 set = 0; |
|
2431 break; |
|
2432 |
|
2433 case EClkSysClk: |
|
2434 set = 1; |
|
2435 break; |
|
2436 |
|
2437 case EClkPeriph: |
|
2438 set = 2; |
|
2439 break; |
|
2440 |
|
2441 case EClkTv_F: |
|
2442 set = 3; |
|
2443 break; |
|
2444 |
|
2445 default: |
|
2446 Panic( ESetClockMuxBadSource ); |
|
2447 return; |
|
2448 } |
|
2449 |
|
2450 _LockedBitClearSet( KCM_CLKOUT_CTRL, KBit1 | KBit0, set ); |
|
2451 break; |
|
2452 } |
|
2453 |
|
2454 case EClkTv_F: |
|
2455 { |
|
2456 TUint set = KBit5; |
|
2457 TUint clear = 0; |
|
2458 |
|
2459 switch( aSource ) |
|
2460 { |
|
2461 case EClkPeriph: |
|
2462 clear = KBit5; |
|
2463 set = 0; |
|
2464 // fall through... |
|
2465 |
|
2466 case EClkAltClk: |
|
2467 _LockedBitClearSet( KCM_CLKSEL1_PLL, clear, set ); |
|
2468 break; |
|
2469 |
|
2470 default: |
|
2471 Panic( ESetClockMuxBadSource ); |
|
2472 return; |
|
2473 } |
|
2474 break; |
|
2475 } |
|
2476 |
|
2477 case EClkGpt1_F: |
|
2478 case EClkGpt2_F: |
|
2479 case EClkGpt3_F: |
|
2480 case EClkGpt4_F: |
|
2481 case EClkGpt5_F: |
|
2482 case EClkGpt6_F: |
|
2483 case EClkGpt7_F: |
|
2484 case EClkGpt8_F: |
|
2485 case EClkGpt9_F: |
|
2486 { |
|
2487 TGptClockSource src = EGptClock32k; |
|
2488 |
|
2489 switch( aSource ) |
|
2490 { |
|
2491 case EClkSysClk: |
|
2492 src = EGptClockSysClk; |
|
2493 case EClkSysClk32k: |
|
2494 break; |
|
2495 default: |
|
2496 Panic( ESetClockMuxBadSource ); |
|
2497 return; |
|
2498 } |
|
2499 |
|
2500 SetGptClockSource( KClockSourceInfo[ aClock ].iGpt, src ); |
|
2501 break; |
|
2502 } |
|
2503 |
|
2504 case EClkSgx_F: |
|
2505 switch( aSource ) |
|
2506 { |
|
2507 case EClk96M: |
|
2508 SetDivider( EClkSgx_F, 0 ); |
|
2509 break; |
|
2510 |
|
2511 case EClkCore: |
|
2512 // Unfortunately the combined divider/mux means that switching from |
|
2513 // CORE t 96M loses the old divider values |
|
2514 if( 0 != Divider( EClkSgx_F ) ) |
|
2515 { |
|
2516 // Not currently CORE, switch to default maximum divider |
|
2517 SetDivider( EClkSgx_F, 6 ); |
|
2518 } |
|
2519 break; |
|
2520 |
|
2521 default: |
|
2522 Panic( ESetClockMuxBadSource ); |
|
2523 return; |
|
2524 } |
|
2525 break; |
|
2526 |
|
2527 |
|
2528 case EClk48M: |
|
2529 { |
|
2530 TUint set = KBit3; |
|
2531 TUint clear = 0; |
|
2532 |
|
2533 switch( aSource ) |
|
2534 { |
|
2535 case EClkPeriph: |
|
2536 clear = KBit3; |
|
2537 set = 0; |
|
2538 // fall through... |
|
2539 |
|
2540 case EClkAltClk: |
|
2541 _LockedBitClearSet( KCM_CLKSEL1_PLL, clear, set ); |
|
2542 break; |
|
2543 |
|
2544 default: |
|
2545 Panic( ESetClockMuxBadSource ); |
|
2546 return; |
|
2547 } |
|
2548 break; |
|
2549 } |
|
2550 |
|
2551 default: |
|
2552 Panic( ESetClockMuxBadClock ); |
|
2553 return; |
|
2554 } |
|
2555 } |
|
2556 |
|
2557 EXPORT_C TClock ClockMux( TClock aClock ) |
|
2558 { |
|
2559 __KTRACE_OPT( KPRCM, Kern::Printf( "Prcm::ClockMux(%x)", aClock ) ); |
|
2560 |
|
2561 TClock result; |
|
2562 |
|
2563 switch( aClock ) |
|
2564 { |
|
2565 case EClk96M: |
|
2566 if( 0 == (AsspRegister::Read32( KCM_CLKSEL1_PLL ) bitand KBit6 ) ) |
|
2567 { |
|
2568 result = EClkPeriph; |
|
2569 } |
|
2570 else |
|
2571 { |
|
2572 result = EClkSysClk; |
|
2573 } |
|
2574 break; |
|
2575 |
|
2576 case EClkSysOut: |
|
2577 switch( AsspRegister::Read32( KCM_CLKOUT_CTRL ) bitand (KBit1 | KBit0) ) |
|
2578 { |
|
2579 default: |
|
2580 case 0: |
|
2581 result = EClkCore; |
|
2582 break; |
|
2583 |
|
2584 case 1: |
|
2585 result = EClkSysClk; |
|
2586 break; |
|
2587 |
|
2588 case 2: |
|
2589 result = EClkPeriph; |
|
2590 break; |
|
2591 |
|
2592 case 3: |
|
2593 result = EClkTv_F; // same as 54MHz clock |
|
2594 break; |
|
2595 } |
|
2596 break; |
|
2597 |
|
2598 case EClkTv_F: |
|
2599 if( 0 == (AsspRegister::Read32( KCM_CLKSEL1_PLL ) bitand KBit5 ) ) |
|
2600 { |
|
2601 result = EClkPeriph; |
|
2602 } |
|
2603 else |
|
2604 { |
|
2605 result = EClkAltClk; |
|
2606 } |
|
2607 break; |
|
2608 |
|
2609 case EClkGpt1_F: |
|
2610 case EClkGpt2_F: |
|
2611 case EClkGpt3_F: |
|
2612 case EClkGpt4_F: |
|
2613 case EClkGpt5_F: |
|
2614 case EClkGpt6_F: |
|
2615 case EClkGpt7_F: |
|
2616 case EClkGpt8_F: |
|
2617 case EClkGpt9_F: |
|
2618 case EClkGpt10_F: |
|
2619 case EClkGpt11_F: |
|
2620 // Redirect these to GptClockSource() |
|
2621 if( EGptClockSysClk == GptClockSource( KClockSourceInfo[ aClock ].iGpt ) ) |
|
2622 { |
|
2623 result = EClkSysClk; |
|
2624 } |
|
2625 else |
|
2626 { |
|
2627 result = EClkSysClk32k; |
|
2628 } |
|
2629 break; |
|
2630 |
|
2631 case EClkSgx_F: |
|
2632 if( Divider( EClkSgx_F ) == 0 ) |
|
2633 { |
|
2634 result = EClk96M; |
|
2635 } |
|
2636 else |
|
2637 { |
|
2638 result = EClkCore; |
|
2639 } |
|
2640 break; |
|
2641 |
|
2642 case EClkUsim_F: |
|
2643 result = UsimClockSource(); |
|
2644 break; |
|
2645 |
|
2646 case EClk48M: |
|
2647 if( 0 == (AsspRegister::Read32( KCM_CLKSEL1_PLL ) bitand KBit3 ) ) |
|
2648 { |
|
2649 result = EClk96M; |
|
2650 } |
|
2651 else |
|
2652 { |
|
2653 result = EClkAltClk; |
|
2654 } |
|
2655 break; |
|
2656 |
|
2657 default: |
|
2658 Panic( EGetClockMuxBadClock ); |
|
2659 return EClkAltClk; // dumy to stop compiler warning |
|
2660 } |
|
2661 |
|
2662 return result; |
|
2663 } |
|
2664 |
|
2665 EXPORT_C TUint ClockFrequency( TClock aClock ) |
|
2666 { |
|
2667 // Works out the frequency by traversing backwards through the clock chain |
|
2668 // assumulating a multply and divide factor until SYSCLK or SYSCLK32 is reached |
|
2669 // Reaching a DPLL implicitly means SYSCLK has been reached |
|
2670 |
|
2671 TUint mul = 1; |
|
2672 TUint div = 1; |
|
2673 TClock currentClock = aClock; |
|
2674 __ASSERT_ALWAYS( currentClock < Prcm::KSupportedClockCount, Panic( EClockFrequencyBadClock ) ); |
|
2675 |
|
2676 // Ensure assumption that root clock range is >=EClkSysClk |
|
2677 __ASSERT_COMPILE( EClkSysClk < EClkAltClk ); |
|
2678 __ASSERT_COMPILE( EClkAltClk < EClkSysClk32k ); |
|
2679 __ASSERT_COMPILE( (TUint)EClkSysClk32k == (TUint)KSupportedClockCount - 1 ); |
|
2680 |
|
2681 while( currentClock < EClkSysClk ) |
|
2682 { |
|
2683 // Get previous clock in chain |
|
2684 TClock prevClock = KClockSourceInfo[ currentClock ].iClock; |
|
2685 |
|
2686 switch( KClockSourceInfo[ currentClock ].iType ) |
|
2687 { |
|
2688 case EIgnore: |
|
2689 return 0; // unsupported clock |
|
2690 |
|
2691 case EDpll: |
|
2692 { |
|
2693 TPll pll = KClockSourceInfo[ currentClock ].iPll; |
|
2694 |
|
2695 if( PllMode( pll ) == EPllBypass ) |
|
2696 { |
|
2697 if( EDpll1 == pll ) |
|
2698 { |
|
2699 prevClock = Prcm::EClkMpuPll_Bypass; |
|
2700 } |
|
2701 else if( EDpll2 == pll ) |
|
2702 { |
|
2703 prevClock = Prcm::EClkIva2Pll_Bypass; |
|
2704 } |
|
2705 else |
|
2706 { |
|
2707 // for all other DPLL1 the bypass clock is the input clock SYSCLK |
|
2708 prevClock = EClkSysClk; |
|
2709 } |
|
2710 } |
|
2711 else |
|
2712 { |
|
2713 TPllConfiguration pllCfg; |
|
2714 PllConfig( pll, pllCfg ); |
|
2715 mul *= pllCfg.iMultiplier; |
|
2716 div *= pllCfg.iDivider; |
|
2717 if( EDpll4 == pll ) |
|
2718 { |
|
2719 // Output is multiplied by 2 for DPLL4 |
|
2720 mul *= 2; |
|
2721 } |
|
2722 prevClock = EClkSysClk; |
|
2723 } |
|
2724 break; |
|
2725 } |
|
2726 |
|
2727 case EMux: |
|
2728 prevClock = ClockMux( currentClock ); |
|
2729 break; |
|
2730 |
|
2731 case EDivMux: |
|
2732 // need to find what clock the divider is fed from |
|
2733 prevClock = ClockMux( currentClock ); |
|
2734 // fall through to get divider.. |
|
2735 |
|
2736 case EDivider: |
|
2737 { |
|
2738 TUint selectedDiv = Divider( currentClock ); |
|
2739 // Special case for SGX - ignore a return of 0 |
|
2740 if( 0 != selectedDiv ) |
|
2741 { |
|
2742 div *= selectedDiv; |
|
2743 } |
|
2744 break; |
|
2745 } |
|
2746 |
|
2747 case EDuplicate: |
|
2748 // Nothing to do, we just follow to the next clock |
|
2749 break; |
|
2750 |
|
2751 case E48MMux: |
|
2752 prevClock = ClockMux( currentClock ); |
|
2753 if( prevClock != EClkAltClk ) |
|
2754 { |
|
2755 div *= 2; |
|
2756 } |
|
2757 break; |
|
2758 |
|
2759 case E54MMux: |
|
2760 prevClock = ClockMux( currentClock ); |
|
2761 if( prevClock != EClkAltClk ) |
|
2762 { |
|
2763 div *= Divider( currentClock ); |
|
2764 } |
|
2765 break; |
|
2766 |
|
2767 case E96MMux: |
|
2768 prevClock = ClockMux( currentClock ); |
|
2769 if( prevClock != EClkSysClk ) |
|
2770 { |
|
2771 div *= Divider( currentClock ); |
|
2772 } |
|
2773 break; |
|
2774 |
|
2775 case EDiv4: |
|
2776 div *= 4; |
|
2777 break; |
|
2778 } |
|
2779 |
|
2780 currentClock = prevClock; |
|
2781 } // end do |
|
2782 |
|
2783 // When we reach here we have worked back to the origin clock |
|
2784 |
|
2785 TUint64 fSrc; |
|
2786 const Omap3530Assp* variant = (Omap3530Assp*)Arch::TheAsic(); |
|
2787 |
|
2788 if( EClkSysClk == currentClock ) |
|
2789 { |
|
2790 // input OSC_SYSCLK is always divided by 2 before being fed to SYS_CLK |
|
2791 fSrc = variant->SysClkFrequency() / 2; |
|
2792 } |
|
2793 else if( EClkSysClk32k == currentClock ) |
|
2794 { |
|
2795 fSrc = variant->SysClk32kFrequency(); |
|
2796 } |
|
2797 else |
|
2798 { |
|
2799 fSrc = variant->AltClkFrequency(); |
|
2800 } |
|
2801 |
|
2802 if( div == 0 ) |
|
2803 { |
|
2804 // to account for any registers set at illegal values |
|
2805 return 0; |
|
2806 } |
|
2807 else |
|
2808 { |
|
2809 return (TUint)((fSrc * mul) / div); |
|
2810 } |
|
2811 } |
|
2812 |
|
2813 EXPORT_C void SetSysClkFrequency( TSysClkFrequency aFrequency ) |
|
2814 { |
|
2815 static const TUint8 KConfigValues[] = |
|
2816 { |
|
2817 0, // ESysClk12MHz |
|
2818 1, // ESysClk13MHz |
|
2819 5, // ESysClk16_8MHz |
|
2820 2, // ESysClk19_2MHz |
|
2821 3, // ESysClk26MHz |
|
2822 4 // ESysClk38_4MHz |
|
2823 }; |
|
2824 |
|
2825 _LockedBitClearSet( KPRM_CLKSEL, KBit0 | KBit1 | KBit2, KConfigValues[ aFrequency ] ); |
|
2826 } |
|
2827 |
|
2828 /** Get the currently configured SysClk frequency */ |
|
2829 EXPORT_C TSysClkFrequency SysClkFrequency() |
|
2830 { |
|
2831 |
|
2832 switch( AsspRegister::Read32( KPRM_CLKSEL ) bitand (KBit0 | KBit1 | KBit2) ) |
|
2833 { |
|
2834 case 0: |
|
2835 return ESysClk12MHz; |
|
2836 case 1: |
|
2837 return ESysClk13MHz; |
|
2838 case 2: |
|
2839 return ESysClk19_2MHz; |
|
2840 case 3: |
|
2841 return ESysClk26MHz; |
|
2842 case 4: |
|
2843 return ESysClk38_4MHz; |
|
2844 case 5: |
|
2845 return ESysClk16_8MHz; |
|
2846 default: |
|
2847 __DEBUG_ONLY( InternalPanic( __LINE__ ) ); |
|
2848 return ESysClk13MHz; |
|
2849 } |
|
2850 } |
|
2851 |
|
2852 |
|
2853 EXPORT_C const TDesC& PrmName( TClock aClock ) |
|
2854 { |
|
2855 __ASSERT_DEBUG( (TUint)aClock <= KSupportedClockCount, Panic( EGetNameBadClock ) ); |
|
2856 __ASSERT_DEBUG( KNames[ aClock ] != NULL, Kern::Fault( "PrmName", aClock ) ); |
|
2857 |
|
2858 return *KNames[ aClock ]; |
|
2859 } |
|
2860 |
|
2861 EXPORT_C void Init3() |
|
2862 { |
|
2863 // Enable LP mode if possible on MPU and CORE PLLs. |
|
2864 // Don't enable on PERIPHERAL, IVA2 or USB because LP mode introduces jitter |
|
2865 AutoSetPllLpMode( EDpll1 ); |
|
2866 AutoSetPllLpMode( EDpll3 ); |
|
2867 |
|
2868 TInt irq = __SPIN_LOCK_IRQSAVE(iLock); |
|
2869 TUint32 r; |
|
2870 |
|
2871 // IVA2 |
|
2872 // Not yet mapped! const TUint32 KPDCCMD = Omap3530HwBase::TVirtual<0x01810000>::Value; |
|
2873 // r = AsspRegister::Read32(KPDCCMD); |
|
2874 // AsspRegister::Modify32(KPDCCMD, 0, 1 << 16); |
|
2875 // Set(KCM_FCLKEN_IVA2, 1 << 0, 0); |
|
2876 // CAM |
|
2877 const TUint32 KISP_CTRL = Omap3530HwBase::TVirtual<0x480BC040>::Value; |
|
2878 r = AsspRegister::Read32(KISP_CTRL); |
|
2879 _BitClearSet(KISP_CTRL, 0xf << 10, 0); |
|
2880 _BitClearSet(KCM_FCLKEN_CAM, 1 << 0, 0); |
|
2881 _BitClearSet(KCM_ICLKEN_CAM, 1 << 0, 0); |
|
2882 |
|
2883 // MMC |
|
2884 r = AsspRegister::Read32(KMMCHS1_SYSCONFIG); |
|
2885 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2886 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2887 SetClockState( EClkMmc1_F, EClkOff ); |
|
2888 SetClockState( EClkMmc1_I, EClkOff ); |
|
2889 r = AsspRegister::Read32(KMMCHS2_SYSCONFIG); |
|
2890 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2891 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2892 SetClockState( EClkMmc2_F, EClkOff ); |
|
2893 SetClockState( EClkMmc2_I, EClkOff ); |
|
2894 /* There is no MMC3 on the beagle board |
|
2895 r = AsspRegister::Read32(KMMCHS3_SYSCONFIG); |
|
2896 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2897 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2898 */ |
|
2899 SetClockState( EClkMmc3_F, EClkOff ); |
|
2900 SetClockState( EClkMmc3_I, EClkOff ); |
|
2901 |
|
2902 // McBSP |
|
2903 r = AsspRegister::Read32(KMCBSPLP1_SYSCONFIG); |
|
2904 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2905 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2906 SetClockState( EClkMcBsp1_F, EClkOff ); |
|
2907 SetClockState( EClkMcBsp1_I, EClkOff ); |
|
2908 const TUint32 KMCBSPLP2_SPCR1 = Omap3530HwBase::TVirtual<0x49022014>::Value; |
|
2909 _BitClearSet(KMCBSPLP2_SPCR1, 1 << 0, 0); // RRST := 0 |
|
2910 const TUint32 KMCBSPLP2_SPCR2 = Omap3530HwBase::TVirtual<0x49022010>::Value; |
|
2911 _BitClearSet(KMCBSPLP2_SPCR2, 1 << 7 | 1 << 0, 0); // FRST, XRST := 0 |
|
2912 _BitClearSet(KMCBSPLP2_SYSCONFIG, 0x3 << 8 | 0x3 << 3, 0); // CLOCKACTIVITY := can be switched off, SIDLEMODE := force idle |
|
2913 r = AsspRegister::Read32(KMCBSPLP2_SYSCONFIG); |
|
2914 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2915 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2916 SetClockState( EClkMcBsp2_F, EClkOff ); |
|
2917 SetClockState( EClkMcBsp2_I, EClkOff ); |
|
2918 r = AsspRegister::Read32(KMCBSPLP3_SYSCONFIG); |
|
2919 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2920 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2921 SetClockState( EClkMcBsp3_F, EClkOff ); |
|
2922 SetClockState( EClkMcBsp3_I, EClkOff ); |
|
2923 r = AsspRegister::Read32(KMCBSPLP4_SYSCONFIG); |
|
2924 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2925 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2926 SetClockState( EClkMcBsp4_F, EClkOff ); |
|
2927 SetClockState( EClkMcBsp4_I, EClkOff ); |
|
2928 r = AsspRegister::Read32(KMCBSPLP5_SYSCONFIG); |
|
2929 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2930 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2931 SetClockState( EClkMcBsp5_F, EClkOff ); |
|
2932 SetClockState( EClkMcBsp5_I, EClkOff ); |
|
2933 |
|
2934 // McSPI |
|
2935 r = AsspRegister::Read32(KMCSPI1_SYSCONFIG); |
|
2936 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2937 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2938 SetClockState( EClkMcSpi1_F, EClkOff ); |
|
2939 SetClockState( EClkMcSpi1_I, EClkOff ); |
|
2940 r = AsspRegister::Read32(KMCSPI2_SYSCONFIG); |
|
2941 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2942 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2943 SetClockState( EClkMcSpi2_F, EClkOff ); |
|
2944 SetClockState( EClkMcSpi2_I, EClkOff ); |
|
2945 r = AsspRegister::Read32(KMCSPI3_SYSCONFIG); |
|
2946 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2947 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2948 SetClockState( EClkMcSpi3_F, EClkOff ); |
|
2949 SetClockState( EClkMcSpi3_I, EClkOff ); |
|
2950 r = AsspRegister::Read32(KMCSPI4_SYSCONFIG); |
|
2951 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2952 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2953 SetClockState( EClkMcSpi4_F, EClkOff ); |
|
2954 SetClockState( EClkMcSpi4_I, EClkOff ); |
|
2955 |
|
2956 // UART |
|
2957 TInt debugport = Kern::SuperPage().iDebugPort; |
|
2958 if( debugport != 0 ) |
|
2959 { |
|
2960 r = AsspRegister::Read32(KUART1_SYSC); |
|
2961 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2962 SetClockState( EClkUart1_F, EClkOff ); |
|
2963 SetClockState( EClkUart1_I, EClkOff ); |
|
2964 } |
|
2965 if( debugport != 1 ) |
|
2966 { |
|
2967 r = AsspRegister::Read32(KUART2_SYSC); |
|
2968 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2969 SetClockState( EClkUart2_F, EClkOff ); |
|
2970 SetClockState( EClkUart2_I, EClkOff ); |
|
2971 } |
|
2972 if( debugport != 2 ) |
|
2973 { |
|
2974 r = AsspRegister::Read32(KUART3_SYSC); |
|
2975 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2976 SetClockState( EClkUart3_F, EClkOff ); |
|
2977 SetClockState( EClkUart3_I, EClkOff ); |
|
2978 } |
|
2979 |
|
2980 // I2C KI2C1_SYSC |
|
2981 r = AsspRegister::Read32(KI2C1_SYSC); |
|
2982 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2983 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2984 SetClockState( EClkI2c1_F, EClkOff ); |
|
2985 SetClockState( EClkI2c1_I, EClkOff ); |
|
2986 r = AsspRegister::Read32(KI2C2_SYSC); |
|
2987 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2988 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2989 SetClockState( EClkI2c2_F, EClkOff ); |
|
2990 SetClockState( EClkI2c2_I, EClkOff ); |
|
2991 r = AsspRegister::Read32(KI2C3_SYSC); |
|
2992 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
2993 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
2994 SetClockState( EClkI2c3_F, EClkOff ); |
|
2995 SetClockState( EClkI2c3_I, EClkOff ); |
|
2996 |
|
2997 // GPT |
|
2998 r = AsspRegister::Read32(KTI1OCP_CFG); |
|
2999 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3000 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3001 SetClockState( EClkGpt1_F, EClkOff ); |
|
3002 SetClockState( EClkGpt1_I, EClkOff ); |
|
3003 r = AsspRegister::Read32(KTI2OCP_CFG); |
|
3004 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3005 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3006 SetClockState( EClkGpt2_F, EClkOff ); |
|
3007 SetClockState( EClkGpt2_I, EClkOff ); |
|
3008 r = AsspRegister::Read32(KTI3OCP_CFG); |
|
3009 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3010 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3011 SetClockState( EClkGpt3_F, EClkOff ); |
|
3012 SetClockState( EClkGpt3_I, EClkOff ); |
|
3013 r = AsspRegister::Read32(KTI4OCP_CFG); |
|
3014 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3015 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3016 SetClockState( EClkGpt4_F, EClkOff ); |
|
3017 SetClockState( EClkGpt4_I, EClkOff ); |
|
3018 r = AsspRegister::Read32(KTI5OCP_CFG); |
|
3019 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3020 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3021 SetClockState( EClkGpt5_F, EClkOff ); |
|
3022 SetClockState( EClkGpt5_I, EClkOff ); |
|
3023 r = AsspRegister::Read32(KTI6OCP_CFG); |
|
3024 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3025 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3026 SetClockState( EClkGpt6_F, EClkOff ); |
|
3027 SetClockState( EClkGpt6_I, EClkOff ); |
|
3028 r = AsspRegister::Read32(KTI7OCP_CFG); |
|
3029 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3030 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3031 SetClockState( EClkGpt7_F, EClkOff ); |
|
3032 SetClockState( EClkGpt7_I, EClkOff ); |
|
3033 r = AsspRegister::Read32(KTI8OCP_CFG); |
|
3034 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3035 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3036 SetClockState( EClkGpt8_F, EClkOff ); |
|
3037 SetClockState( EClkGpt8_I, EClkOff ); |
|
3038 r = AsspRegister::Read32(KTI9OCP_CFG); |
|
3039 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3040 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3041 SetClockState( EClkGpt9_F, EClkOff ); |
|
3042 SetClockState( EClkGpt9_I, EClkOff ); |
|
3043 r = AsspRegister::Read32(KTI10OCP_CFG); |
|
3044 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3045 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3046 SetClockState( EClkGpt10_F, EClkOff ); |
|
3047 SetClockState( EClkGpt10_I, EClkOff ); |
|
3048 r = AsspRegister::Read32(KTI11OCP_CFG); |
|
3049 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3050 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3051 SetClockState( EClkGpt11_F, EClkOff ); |
|
3052 SetClockState( EClkGpt11_I, EClkOff ); |
|
3053 |
|
3054 // WDT |
|
3055 r = AsspRegister::Read32(KWD2_SYSCONFIG); |
|
3056 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3057 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3058 SetClockState( EClkWdt2_F, EClkOff ); |
|
3059 SetClockState( EClkWdt2_I, EClkOff ); |
|
3060 r = AsspRegister::Read32(KWD3_SYSCONFIG); |
|
3061 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3062 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3063 SetClockState( EClkWdt3_F, EClkOff ); |
|
3064 SetClockState( EClkWdt3_I, EClkOff ); |
|
3065 |
|
3066 // GPIO |
|
3067 /* |
|
3068 r = AsspRegister::Read32(KGPIO1_SYSCONFIG); |
|
3069 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3070 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3071 _BitClearSet(KCM_FCLKEN_WKUP, 1 << 3, 0); |
|
3072 _BitClearSet(KCM_ICLKEN_WKUP, 1 << 3, 0); |
|
3073 |
|
3074 //r = AsspRegister::Read32(KGPIO2_SYSCONFIG); |
|
3075 //__NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3076 //__NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3077 //_BitClearSet(KCM_FCLKEN_PER, 1 << 13, 0); |
|
3078 //_BitClearSet(KCM_ICLKEN_PER, 1 << 13, 0); |
|
3079 r = AsspRegister::Read32(KGPIO3_SYSCONFIG); |
|
3080 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3081 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3082 _BitClearSet(KCM_FCLKEN_PER, 1 << 14, 0); |
|
3083 _BitClearSet(KCM_ICLKEN_PER, 1 << 14, 0); |
|
3084 r = AsspRegister::Read32(KGPIO4_SYSCONFIG); |
|
3085 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3086 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3087 _BitClearSet(KCM_FCLKEN_PER, 1 << 15, 0); |
|
3088 _BitClearSet(KCM_ICLKEN_PER, 1 << 15, 0); |
|
3089 r = AsspRegister::Read32(KGPIO5_SYSCONFIG); |
|
3090 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3091 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3092 _BitClearSet(KCM_FCLKEN_PER, 1 << 16, 0); |
|
3093 _BitClearSet(KCM_ICLKEN_PER, 1 << 16, 0); |
|
3094 r = AsspRegister::Read32(KGPIO6_SYSCONFIG); |
|
3095 __NK_ASSERT_ALWAYS((r & 1 << 3) == 0); |
|
3096 __NK_ASSERT_ALWAYS((r & 1 << 8) == 0); |
|
3097 _BitClearSet(KCM_FCLKEN_PER, 1 << 17, 0); |
|
3098 _BitClearSet(KCM_ICLKEN_PER, 1 << 17, 0); |
|
3099 */ |
|
3100 __SPIN_UNLOCK_IRQRESTORE(iLock, irq); |
|
3101 } |
|
3102 |
|
3103 } // end namespace Prcm |
|
3104 |
|
3105 |
|
3106 NONSHARABLE_CLASS( TPrcmInterruptDispatch ): public MInterruptDispatcher |
|
3107 { |
|
3108 public: |
|
3109 TInt Init(); |
|
3110 virtual TInt Bind(TInt aId, TIsr anIsr, TAny* aPtr) ; |
|
3111 virtual TInt Unbind(TInt aId); |
|
3112 virtual TInt Enable(TInt aId); |
|
3113 virtual TInt Disable(TInt aId); |
|
3114 virtual TInt Clear(TInt aId); |
|
3115 virtual TInt SetPriority(TInt aId, TInt aPriority); |
|
3116 |
|
3117 private: |
|
3118 static void Spurious( TAny* aId ); |
|
3119 static void Dispatch( TAny* aParam ); |
|
3120 }; |
|
3121 |
|
3122 SInterruptHandler Handlers[ Prcm::KInterruptCount ]; |
|
3123 TInt TheRootInterruptEnable = 0; |
|
3124 TSpinLock iIntLock(/*TSpinLock::EOrderGenericIrqLow0*/); |
|
3125 TPrcmInterruptDispatch TheIntDispatcher; |
|
3126 |
|
3127 void TPrcmInterruptDispatch::Spurious( TAny* aId ) |
|
3128 { |
|
3129 Kern::Fault( "PRCM:Spurious", (TInt)aId ); |
|
3130 } |
|
3131 |
|
3132 void TPrcmInterruptDispatch::Dispatch( TAny* /*aParam*/ ) |
|
3133 { |
|
3134 TUint32 status = AsspRegister::Read32( KPRM_IRQSTATUS_MPU ) |
|
3135 bitand AsspRegister::Read32( KPRM_IRQENABLE_MPU ); |
|
3136 |
|
3137 for( TInt i = 0; (status) && (i < Prcm::KInterruptCount); ++i ) |
|
3138 { |
|
3139 if( status bitand 1 ) |
|
3140 { |
|
3141 (*Handlers[i].iIsr)( Handlers[i].iPtr ); |
|
3142 } |
|
3143 status >>= 1; |
|
3144 } |
|
3145 } |
|
3146 |
|
3147 TInt TPrcmInterruptDispatch::Init() |
|
3148 { |
|
3149 // Disable all interrupts |
|
3150 AsspRegister::Write32( KPRM_IRQENABLE_MPU, 0 ); |
|
3151 AsspRegister::Write32( KPRM_IRQSTATUS_MPU, KSetAll ); |
|
3152 |
|
3153 // Bind all to spurious handler |
|
3154 for( TInt i = 0; i < Prcm::KInterruptCount; ++i ) |
|
3155 { |
|
3156 Handlers[i].iIsr = TPrcmInterruptDispatch::Spurious; |
|
3157 Handlers[i].iPtr = (TAny*)(i + (EIrqRangeBasePrcm << KIrqRangeIndexShift)); |
|
3158 } |
|
3159 |
|
3160 TInt r = Interrupt::Bind( EOmap3530_IRQ11_PRCM_MPU_IRQ, TPrcmInterruptDispatch::Dispatch, this ); |
|
3161 if( KErrNone == r ) |
|
3162 { |
|
3163 Register( EIrqRangeBasePrcm ); |
|
3164 } |
|
3165 return r; |
|
3166 } |
|
3167 |
|
3168 TInt TPrcmInterruptDispatch::Bind(TInt aId, TIsr aIsr, TAny* aPtr) |
|
3169 { |
|
3170 TUint id = aId bitand KIrqNumberMask; |
|
3171 TInt r; |
|
3172 |
|
3173 if( id < Prcm::KInterruptCount ) |
|
3174 { |
|
3175 if( Handlers[ id ].iIsr != TPrcmInterruptDispatch::Spurious ) |
|
3176 { |
|
3177 r = KErrInUse; |
|
3178 } |
|
3179 else |
|
3180 { |
|
3181 Handlers[ id ].iIsr = aIsr; |
|
3182 Handlers[ id ].iPtr = aPtr; |
|
3183 r = KErrNone; |
|
3184 } |
|
3185 } |
|
3186 else |
|
3187 { |
|
3188 r = KErrArgument; |
|
3189 } |
|
3190 return r; |
|
3191 } |
|
3192 |
|
3193 TInt TPrcmInterruptDispatch::Unbind(TInt aId) |
|
3194 { |
|
3195 TUint id = aId bitand KIrqNumberMask; |
|
3196 TInt r; |
|
3197 |
|
3198 if( id < Prcm::KInterruptCount ) |
|
3199 { |
|
3200 if( Handlers[ id ].iIsr == TPrcmInterruptDispatch::Spurious ) |
|
3201 { |
|
3202 r = KErrGeneral; |
|
3203 } |
|
3204 else |
|
3205 { |
|
3206 Handlers[ id ].iIsr = TPrcmInterruptDispatch::Spurious; |
|
3207 r = KErrNone; |
|
3208 } |
|
3209 } |
|
3210 else |
|
3211 { |
|
3212 r = KErrArgument; |
|
3213 } |
|
3214 return r; |
|
3215 } |
|
3216 |
|
3217 TInt TPrcmInterruptDispatch::Enable(TInt aId) |
|
3218 { |
|
3219 TUint id = aId bitand KIrqNumberMask; |
|
3220 |
|
3221 if( id < Prcm::KInterruptCount ) |
|
3222 { |
|
3223 TInt irq = __SPIN_LOCK_IRQSAVE(iIntLock); |
|
3224 if( ++TheRootInterruptEnable == 1 ) |
|
3225 { |
|
3226 Interrupt::Enable( EOmap3530_IRQ11_PRCM_MPU_IRQ ); |
|
3227 } |
|
3228 Prcm::_BitClearSet( KPRM_IRQENABLE_MPU, KClearNone, 1 << id ); |
|
3229 __SPIN_UNLOCK_IRQRESTORE(iIntLock, irq); |
|
3230 return KErrNone; |
|
3231 } |
|
3232 else |
|
3233 { |
|
3234 return KErrArgument; |
|
3235 } |
|
3236 } |
|
3237 |
|
3238 TInt TPrcmInterruptDispatch::Disable(TInt aId) |
|
3239 { |
|
3240 TUint id = aId bitand KIrqNumberMask; |
|
3241 |
|
3242 if( id < Prcm::KInterruptCount ) |
|
3243 { |
|
3244 TInt irq = __SPIN_LOCK_IRQSAVE(iIntLock); |
|
3245 if( --TheRootInterruptEnable == 0 ) |
|
3246 { |
|
3247 Interrupt::Disable( EOmap3530_IRQ11_PRCM_MPU_IRQ ); |
|
3248 } |
|
3249 Prcm::_BitClearSet( KPRM_IRQENABLE_MPU, 1 << id, KSetNone ); |
|
3250 __SPIN_UNLOCK_IRQRESTORE(iIntLock, irq); |
|
3251 return KErrNone; |
|
3252 } |
|
3253 else |
|
3254 { |
|
3255 return KErrArgument; |
|
3256 } |
|
3257 } |
|
3258 |
|
3259 TInt TPrcmInterruptDispatch::Clear(TInt aId) |
|
3260 { |
|
3261 TUint id = aId bitand KIrqNumberMask; |
|
3262 TInt r; |
|
3263 |
|
3264 if( id < Prcm::KInterruptCount ) |
|
3265 { |
|
3266 AsspRegister::Write32( KPRM_IRQSTATUS_MPU, 1 << id ); |
|
3267 r = KErrNone; |
|
3268 } |
|
3269 else |
|
3270 { |
|
3271 r = KErrArgument; |
|
3272 } |
|
3273 return r; |
|
3274 } |
|
3275 |
|
3276 TInt TPrcmInterruptDispatch::SetPriority(TInt anId, TInt aPriority) |
|
3277 { |
|
3278 return KErrNotSupported; |
|
3279 } |
|
3280 |
|
3281 |
|
3282 |
|
3283 DECLARE_STANDARD_EXTENSION() |
|
3284 { |
|
3285 return TheIntDispatcher.Init(); |
|
3286 } |
|
3287 |
|
3288 |
|
3289 |
|
3290 |
|
3291 |