
Disclaimer; this page originates from the original SVP Wiki. Some of the instructions might be out of date, and “attached to this page” files can be missing. This information is provided for information only and can highlight some design ideas that can be benefitial for the Symbian Foundation/QEMU community.

[image: image1.emf]elf4rom.zip

1. Introduction

elf4rom is a tool which takes as input a ROM image and its associated log file and produces an ELF file which encapsulates the ROM image. The ELF file describes the structure of the ROM in a binary standard format and so should be able to serve as input for any tool which purports to support ELF as an input format (see below). The ELF description is comprised of:

1. segments - these are identified by ELF program headers and represent 'loadable' entities.

2. sections - these identified by ELF section headers. These represent a static linker's view of the file's structure e.g. symbols are defined wrt to sections.

3. symbols - the tool synthesizes a unified symbol table for the whole ROM which contains a superset of the same information as the output of MAKSYM but in binary (ELF) form.

4. debug info - the tool collects and sorts the DWARF debug data from the ELF precursors of the E32Image executables contained in the ROM into the relevant DWARF output sections, 'relocating' the DWARF wrt to the ROM in the process.

If you request trace information from elf4rom (using -t or --trace) the output will expressed in terms of the above. A win32 executable of elf4rom is attached to this page for anyone who would like to play with it.

2. Command Line Interface

elf4rom prints the following help message:

elf4rom [option]

 Command Line Only:

 -h [--help] produce help message

 -c [--config-file] arg pathname of config file (overrides default of

 elf4rom.cfg and value of ELF4ROM_CFG_FILE

 environment variable)

 Command Line and Configuration File:

 -b [--board-name] arg name of board targeted e.g. versatilepb (unimplemented)

 -d [--debug] arg collect ELF and DWARF data from the listed

 files

 -D [--drive] arg drive on which to find ELF files

 -e [--exclude] arg exclude collection of ELF and DWARF data from

 the listed files

 -i [--input] arg pathname of ROM image

 -l [--logfile] arg pathname of ROMBUILD log file

 -n [--no-dwarf] suppress generatation of DWARF in output

 (prevents source level debugging but saves time

 and space)

 -o [--output] arg pathname of output file

 -p [--physical-address] arg physical address of ROM on device. Overrides

 board-name

 -s [--search] search for ELF files in build directory if .sym

 file not found in release directory

 -S [--strip] suppress generation of symbol table and DWARF

 in output (useful to produce a 'loadable' ELF

 image for e.g. a simulator)

 -t [--trace] switch on trace

ELF4ROM can accept its options from a 'configuration' file rather than via the command line. By default ELF4ROM looks for a file called elf4rom.cfg in its 'installed' directory. This is overridden by the value of the environment variable ELF4ROM_CFG_FILE which in is overriden by a config file supplied via the command line. Below are some example config files.

This config file sets up the basic options.

snap.cfg

input = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.img

output = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.elf

logfile = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.log

physical-address = 0x34000000

drive = x:

This config files limits the collection of ELF and DWARF data to two files.

snap1.cfg

input = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.img

output = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.elf

logfile = q:\svp\workspace\elf4rom\elf4rom\SYBORGARMV5D.log

physical-address = 0x34000000

drive = x:

debug = _SYBORG_EKERN.EXE

#debug = _SYBORG_EUSER.DLL

debug = snapapp.exe

Note that the config file uses the long form of the option names as keywords. Options supplied via a config file are overridden if supplied on the command line except for the debug and exclude options. Values for these options, if supplied, are merged from the command line and the config file.

3. Examples

1. elf4rom -c snap.cfg -d _SYBORG_EKERN.EXE snapapp.exe
This limits the collection of ELF and DWARF to two files from the command line.

2. elf4rom -c snap1.cfg
This has the same effect as above but achieves it via the config file.

3. elf4rom -c snap1.cfg --debug=_SYBORG_EUSER.DLL
This adds _SYBORG_EUSER.DLL to the list of files to collect data from via the command line.

Note that if the debug option is supplied then the exclude option is ignored. If neither is supplied ELF4ROM will attempt to add the requested ELF/DWARF information for as many of the E32Image files as it can find the associated ELF file. By default it will look for a .sym file in the same release directory as the E32Image file specifified in the ROM log file. If this is not found and -s (--search) is specified it will search the directories under %EPOCROOT%\epoc32\build. By default this is on the 'current' drive. This can be overridden by supplying the -D (--drive) option.

4. Considerations

DWARF is a powerful debug formalism e.g. it aims to enable high quality producers to sustain the 'debug illusion' even in the face of aggressive optimization. Such expressive power comes at a cost: namely size - and this is despite a 'multitude' of techniques used to 'compress' the flattened representation of DWARF . The size of the DWARF components in an ELF file can dwarf (pun slightly intended) that of the executable parts of the file. There is well in excess of 4Gb of DWARF data associated with the contents of a Techview ROM. Aside from the technical issues associated with processing this amount of DWARF (see below) speed of production and size of the final output file might be a concern. These can be addressed either by limiting the number of files about which to include information, suppressing some of the output (i.e DWARF) or both.

Aside from excluding files from consideration by use of debug and exclude options the speed of processing and size (and utility) of the output file can be controlled by supplying -n(--no-dwarf). This suppresses the generation of DWARF output at the cost of support for (reliable) source level debugging. However certain tools can make use of an image which contains just symbol information (see below). If all that is required is a 'loadable' ELF image then -S(--strip) can be supplied.

5. Uses

Below we list some of the uses to which the output of ELF4ROM can be put.

6. ROM disassembly

Both fromelf and readelf accept the output of elf4rom. Below is listing derived from the output of the first example above using the command fromelf -cvsd SYBORGARMV5D.elf
 __this_must_go_at_the_beginning_of_the_kernel_image

 $a

 .emb_text

 0xf8004000: e59ff094 LDR pc,[pc,#148] ; [0xf800409c] = 0xf800fd58

 0xf8004004: e59ff094 LDR pc,[pc,#148] ; [0xf80040a0] = 0xf80046a0

 0xf8004008: e59ff094 LDR pc,[pc,#148] ; [0xf80040a4] = 0xf8004150

 0xf800400c: e59ff094 LDR pc,[pc,#148] ; [0xf80040a8] = 0xf8004690

 0xf8004010: e59ff094 LDR pc,[pc,#148] ; [0xf80040ac] = 0xf80044e4

 0xf8004014: e59ff094 LDR pc,[pc,#148] ; [0xf80040b0] = 0xf800fd6c

 0xf8004018: ea000010 B HandleIrq ; 0xf8004060

 0xf800401c: e59fc090 LDR r12,__ArmInterrupt ; [0xf80040b4] = 0x64000588

 0xf8004020: e24ee004 ..N. SUB r14,r14,#4

 0xf8004024: e52de004 ..-. PUSH {r14}

 0xf8004028: e5dc8008 LDRB r8,[r12,#8]

 0xf800402c: e59fe088 LDR r14,_ArmVectorFiq ; [0xf80040bc] = 0xf8004438

 0xf8004030: e3a0a781 MOV r10,#0x2040000

 0xf8004034: e3580000 ..X. CMP r8,#0

 0xf8004038: 1a000000 BNE btrace_fiq ; 0xf8004040

 0xf800403c: e59cf004 LDR pc,[r12,#4]

 btrace_fiq

 0xf8004040: e92d000f ..-. PUSH {r0-r3}

 0xf8004044: e28a0004 ADD r0,r10,#4

 0xf8004048: e1a0e00f MOV r14,pc

 0xf800404c: e59cf00c LDR pc,[r12,#0xc]

 0xf8004050: e59fc05c \... LDR r12,__ArmInterrupt ; [0xf80040b4] = 0x64000588

 0xf8004054: e8bd000f POP {r0-r3}

 0xf8004058: e59fe05c \... LDR r14,_ArmVectorFiq ; [0xf80040bc] = 0xf8004438

 0xf800405c: e59cf004 LDR pc,[r12,#4]

 HandleIrq

 0xf8004060: e24ee004 ..N. SUB r14,r14,#4

 0xf8004064: e92d500f .P-. PUSH {r0-r3,r12,r14}

 0xf8004068: e59fc044 D... LDR r12,__ArmInterrupt ; [0xf80040b4] = 0x64000588

 0xf800406c: e3a00701 MOV r0,#0x40000

 0xf8004070: e2800004 ADD r0,r0,#4

 0xf8004074: e5dc1008 LDRB r1,[r12,#8]

 0xf8004078: e59fe038 8... LDR r14,_ArmVectorIrq ; [0xf80040b8] = 0xf8004374

 0xf800407c: e3510000 ..Q. CMP r1,#0

 0xf8004080: 1a000000 BNE btrace_irq ; 0xf8004088

 0xf8004084: e59cf000 LDR pc,[r12,#0]

 btrace_irq

 0xf8004088: e1a0e00f MOV r14,pc

 0xf800408c: e59cf00c LDR pc,[r12,#0xc]

 0xf8004090: e59fc01c LDR r12,__ArmInterrupt ; [0xf80040b4] = 0x64000588

 0xf8004094: e59fe01c LDR r14,_ArmVectorIrq ; [0xf80040b8] = 0xf8004374

 0xf8004098: e59cf000 LDR pc,[r12,#0]

 $d

 0xf800409c: f800fd58 X... DCD 4160814424

 0xf80040a0: f80046a0 .F.. DCD 4160767648

 0xf80040a4: f8004150 PA.. DCD 4160766288

 0xf80040a8: f8004690 .F.. DCD 4160767632

 0xf80040ac: f80044e4 .D.. DCD 4160767204

 0xf80040b0: f800fd6c l... DCD 4160814444

 __ArmInterrupt

 0xf80040b4: 64000588 ...d DCD 1677723016

 _ArmVectorIrq

 0xf80040b8: f8004374 tC.. DCD 4160766836

 _ArmVectorFiq

 0xf80040bc: f8004438 8D.. DCD 4160767032

 InitStacks

 $a

 0xf80040c0: e10f2000 . .. MRS r2,CPSR

 0xf80040c4: e1a0000d MOV r0,r13

 0xf80040c8: e3c2201f . .. BIC r2,r2,#0x1f

Note that the symbols have been introduced into the listing and the code has been relocated to its ROM addresses. This may be of some use to people trying to do crash debugging by hand.

readelf can be used in much the same fashion. A couple of words of warning:

1. RVCT can produce DWARF sections that readelf rejects (due to its own limitations? GDB will accept the same DWARF).

2. Indiscriminate use of fromelf, especially with the -g flag, can lead to huge output even for a relatively small collection of files. But then most people won't want to stare at DWARF, will they?

7. Loading ROM images into simulators

Not much to say here except that the output of fromelf has been successfully loaded by both RTSM and QEMU. In the case of RTSM I suspect that this means you will get source-level stopmode debug for free (I haven't checked this).

8. Loading ROM images onto devices

[Not done yet] Lauterbach should be able to load the ROM image onto the device as specified by the ELF and then be able to debug thanks to the DWARF. [An experiment to be carried out.]

9. 'StopMode' debugging

See previous two items. But the more interesting thing from the current perspective is that the same elf4rom output can be used by both QEMU and GDB, without making any SymbianOS specific alterations. This means that we can achieve stopmode debug in QEMU 'for free'. Of course it isn't OS aware, but then neither is then debugging provided with the emulator.

10. Profiling and Code Coverage

ARM have developed profiling technology which accepts input from both an ETM (and the case of hardware) and RTSM (in the case of simulation). The trace information is expressed in terms of the addresses in play in the execution environment. Before this can of much use to the developer the trace information needs to be 'reconciled' with the source code. This can easily be achieved given the output of elf4rom, since this provides exactly the DWARF information that the profiling tools require. Since the profiling data is accurate at the instruction level (although not cycle accurate in the case of simulation) it can also serve as the basis for code coverage analysis as well. This means that elf4rom may well have a use if Symbian wishes to make use of ARM's profiling technology.

11. Issues and Limitations

There are 3 main technical issues.

12. elf4rom only provides support for XIP code.

In essence elf4rom combines ELF and DWARF information from various sources and then 'relocates' it wrt to statically determined addresses i.e. the addresses determined for the XIP portions of the ROM by rombuild as captured in the ROM log file. It provides no support for dynamically loaded code (i.e. code loaded by the OS loader in the execution environment). Thus the utility of elf4rom is significantly reduced when the majority of code is loaded from a NAND device.

13. DWARF relocation

elf4rom spends most of its time loading and then relocating DWARF. The relocation takes so long because the static linker does not emit relocation for the DWARF in the final executable. This means that elf4rom has to 'interpret' the various DWARF sections to find the locations that need to be updated. The values can either be DWARF relative offsets or machine addresses. If the static linker were to emit relocation information for the DWARF no interpretation would be required. Instead the relocation information would specify exactly where and how to adjust the output, which would greatly reduce processing time. It would also reduce complexity in elf4rom in another way. Currently elf4rom has to be sensitive to the identity of the producer of the input DWARF so it can process it correctly. This is either because of clear deviations from the DWARF specification or 'odd' interpretations of the specification. Clearly being dependent on knowing about the identity of the DWARF producer is a maintenance headache and reduces the general utility of the tool. Persuading static linker to retain the relocation information for DWARF would address this problem also. Note that this might also be of benefit for other DWARF consumers, debuggers being the obvious example.

14. The combined size of the DWARF information for a representative ROM image

As noted the combined size of the DWARF information associated with a Techview ROM exceeds 4Gb. In fact its worse than that. The combined size of the .debug_info section alone (DWARF3 can have up to 10 different kinds of section) exceeds 4Gb. This should start ringing bells. In particular this means that an offset into the .debug_info might require more than 32 bits (DWARF offsets are byte offsets and must be so since DWARF is 'compressed' in multifarious ways to reduce space consumption - believe it or not). DWARF can accommodate sections in excess of 4Gb since it comes in both 32 bit and 64 bit varieties. However elf4rom is unlikely ever to encounter 64 bit DWARF as input. This means that to produce DWARF for whole Techview elf4rom must be able to translate from 32 bit to 64 bit DWARF (it would also need to switch from 32 bit to 64 bit ELF). Currently it cannot do this. There are two reasons to be wary of this problem. Firstly converting from 32 bit to 64 bit DWARF means that the input cannot be simply relocated; it must be 'relinked' after the expansion. This is because the introduction of each 64 bit offset (which in fact takes 12 bytes in the DWARF format) has knock on consequences for each subsequent location that is referenced from elsewhere. Such references may be from earlier in the same section or from other sections. It is not clear that all such references can be relocated in a single pass. Aside from introducing a performance hit, this has consequences on the implementation in other ways. Recall that under 32 bit Windows a process cannot address more than 3Gb (i.e. one of the reasons that the emulator has a limited shelf life). Naively expanding all of the .debug_info section data to its obvious in-memory 64 bit representation could require on the order of 12Gb of storage! It is possible that this can be avoided, but only at the introduction of considerable additional complexity into the implementation of elf4rom. It is not clear that there are really sufficient use cases to warrant this implementation effort at this time. For the purposes of debug it should be adequate to enable the developer to restrict focus on a limited set of executables. It might be less convenient to require this restriction, but with suitable IDE support this should not be too onerous. Full-system profiling (or code coverage) does not, or perhaps better, need not require the full complement of DWARF to be available. For example ARM's profiling technology is believed to be dependent on just the information contained in the .debug_line section(s). While it is not possible for elf4rom to generate only partial DWARF information at the moment, this will be easy to implement, requiring just support in the UI and the subsequent checking of flags in the DWARF set up stage or processing.

15. Source Code

There is a rudimentary Makefile there that can be used to build it. elf4rom is written in standard C++ and makes use of various standard STL containers. Currently it has only been built using the following version of GCC: gcc version 3.4.5 (mingw special) i.e the version that is also used to build QEMU. This can be found attached to the page. There should be no reason why it should not compile and run 'straight out of the box' on Linux, although this has not been tried.

16. Libraries used

The implementation makes use of the following 'Open Source' libraries:

1. libelf
Used for 'analysing' ELF files, although it would be simple to re-implement the functionality used.

2. libdwarf
Only the headers file(s) are used to get the 'standard' definitions.

3. boost/program_options
Used to support command line processing and would be a PITA to replace/re-implement from scratch.

4. boost/regex
Used to parse the ROM log file and would be a PITA to replace

5. boost/filesystem
Used primarily to locate the ELF files. The directory searching would be a PITA to replace/re-implement from scratch.

_1317649057/Elf4rom.zip

elf4rom.exe

