
1. Introduction

This page is part of the Prototype Simulator
QEmu comes with a build-in GDB stub which makes it possible to control the simulation environment from the GDB debugger. This is equivalent of having a Trace32 ICE hooked up to a development board. However, GDB doesn't understand the E32 format and E32 doesn't contain any debug information. We need to create a elf file containing the ROM image and it's debug information so that we can give it to GDB. For this we use the ELF4ROM tool.

2. Prerequisites

· Install GDB, we are using the "arm-elf-gdb" flavour. There's a windows installer at the bottom of this page. This installer contains the entire arm-elf-* tool suite. Please note that you have to put the installation in a path without spaces, i.e. "C:\Program Files\yagarto" will not do. Make sure the yagarto\bin directory is added to your PATH environment variable.

· Install the ELF4ROM tool and put it somewhere in your PATH.

3. Create the ROM Elf file

1. Make sure that build the ROM image and the files you want to debug (see here).

2. Recreate the rom image by going to \src\cedar\generic\base\e32\rombuild and running the command
$ rom -v syborg -i armv5 -b udeb --noheader --symbol
3. Run the ELF4ROM tool with the like this;
$ elf4rom -i SYBORGARMV5.IMG -l SYBORGARMV5.log -o SYBORGARMV5.elf -p 0x0
4. You will have now have a elf file (with all debug information that could be found)

ELF4ROM takes the -d or -o flags to specify which files your want to debug. This is to limit the size of the .elf file and the speed on ELF4ROM operation. Please use the flags to enter the name of the files you want to debug.

4. Using GDB

5. Eclipse/CDT

You can use standard Eclipse/CDT installation to run a debug Simulator session, but you will need to install an extra CDT plug-in called gdbjtag. You can find Eclipse here which contains all you need.

The Eclipse integration with the QEmu is still very much in the prototype stage. Each time you change a file, you have to leave Eclipse and go to a command line and re-compile the file and build the ROM "by hand".

6. Setting up a project

1. Create a directory for the project and copy the output .elf from from ELF4ROM into it. You can also copy the simulator into this directory if you don't have it in your PATH.

2. Start eclipse, you need to start eclipse the same directory as your project!

3. Create a new C++ project

4. Set the project type to Makefile project

5. Fill in the required info and press finish.

6. Right-click on the project name (in the project explorer) and select properties

7. Under C/C++ Build / Settings go to the Binary parsers tab and select GNU Elf Parser

8. Change the addr2line and c++filt commands to arm-elf-addr2line and arm-elf-c++file. You might have to add the full path to these executables depending on you PATH setup.

9. Press OK and notice the change in the Project Explorer.

10. Expand the elf and find code you want to debug, let's say ewsrv.elf

11. Bring up the cpp file you are interested in and enter and set a breakpoint, let's say on E32Main (line 2124) in ws_main.cpp

7. Setting up a debug target

1. Select the Run / Open Debug Dialog... menu option

2. In the debug wizard, create a new GDB Hardware Debugging launch configuration

3. Change the name to something meaningful, select your current project and add the elf file in C/C++ Application

4. Go to the Debugger tab and change the GDB command to arm-elf-gdb. You might have to add the full path to these executables depending on you PATH setup.

5. In the Remove Target pane, un-tick "Use remote target"

6. Go to the Startup tab

7. In the Run Commands pane you need to add 2 lines, the first one should be
tar rem | qemu-system-arm -M syborg -kernel your_elf.elf -S -s -p stdio,quit-on-eof
8. The second line should just contain the character 'c'

9. Press the Debug button and your session should launch and stop at E32Main in the ws_main.cpp file

8. Text mode

Start the simualtor with the command
$ arm-elf-gdb -M syborg -kernel SYBORGARMV5.elf -S -s
Start the debugger

$ arm-elf-gdb SYBORGARMV5D.elf
(gdb) tar rem localhost:1234
(gdb) b your_break_address
(gdb) c
9. Breakpoints in Qemu

Breakpoints in Qemu doesn't work as normal software breakpoints (instruction replacement / exception handling) as one might suspect, but are in effect hardware/"onchip" breakpoints. QEmu keeps an internal list of active breakpoints and inserts a magic instruction at these addresses at translation time. Note that all addresses are virtual. 

10. GDB oddities

Sometimes when looking at local variables GDB crashes (and the debug session is killed). This is because of different interpretations of the DWARF2 format by armcc and gdb. The solution is to use the 'gcce' abld target or update your armcc compiler to version 3.1 (and use the -dwarf3 flag when compiling). The incompatible DWARF formats also means stepping will be "odd". 

