|
1 /* |
|
2 SDL - Simple DirectMedia Layer |
|
3 Copyright (C) 1997-2006 Sam Lantinga |
|
4 |
|
5 This library is free software; you can redistribute it and/or |
|
6 modify it under the terms of the GNU Lesser General Public |
|
7 License as published by the Free Software Foundation; either |
|
8 version 2.1 of the License, or (at your option) any later version. |
|
9 |
|
10 This library is distributed in the hope that it will be useful, |
|
11 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 Lesser General Public License for more details. |
|
14 |
|
15 You should have received a copy of the GNU Lesser General Public |
|
16 License along with this library; if not, write to the Free Software |
|
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|
18 |
|
19 Sam Lantinga |
|
20 slouken@libsdl.org |
|
21 */ |
|
22 #include "SDL_config.h" |
|
23 |
|
24 /* |
|
25 * RLE encoding for software colorkey and alpha-channel acceleration |
|
26 * |
|
27 * Original version by Sam Lantinga |
|
28 * |
|
29 * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and |
|
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha |
|
31 * format, encoder and blitter. |
|
32 * |
|
33 * Many thanks to Xark and johns for hints, benchmarks and useful comments |
|
34 * leading to this code. |
|
35 * |
|
36 * Welcome to Macro Mayhem. |
|
37 */ |
|
38 |
|
39 /* |
|
40 * The encoding translates the image data to a stream of segments of the form |
|
41 * |
|
42 * <skip> <run> <data> |
|
43 * |
|
44 * where <skip> is the number of transparent pixels to skip, |
|
45 * <run> is the number of opaque pixels to blit, |
|
46 * and <data> are the pixels themselves. |
|
47 * |
|
48 * This basic structure is used both for colorkeyed surfaces, used for simple |
|
49 * binary transparency and for per-surface alpha blending, and for surfaces |
|
50 * with per-pixel alpha. The details differ, however: |
|
51 * |
|
52 * Encoding of colorkeyed surfaces: |
|
53 * |
|
54 * Encoded pixels always have the same format as the target surface. |
|
55 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth |
|
56 * where they are 16 bit. This makes the pixel data aligned at all times. |
|
57 * Segments never wrap around from one scan line to the next. |
|
58 * |
|
59 * The end of the sequence is marked by a zero <skip>,<run> pair at the * |
|
60 * beginning of a line. |
|
61 * |
|
62 * Encoding of surfaces with per-pixel alpha: |
|
63 * |
|
64 * The sequence begins with a struct RLEDestFormat describing the target |
|
65 * pixel format, to provide reliable un-encoding. |
|
66 * |
|
67 * Each scan line is encoded twice: First all completely opaque pixels, |
|
68 * encoded in the target format as described above, and then all |
|
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254), |
|
70 * in the following 32-bit format: |
|
71 * |
|
72 * For 32-bit targets, each pixel has the target RGB format but with |
|
73 * the alpha value occupying the highest 8 bits. The <skip> and <run> |
|
74 * counts are 16 bit. |
|
75 * |
|
76 * For 16-bit targets, each pixel has the target RGB format, but with |
|
77 * the middle component (usually green) shifted 16 steps to the left, |
|
78 * and the hole filled with the 5 most significant bits of the alpha value. |
|
79 * i.e. if the target has the format rrrrrggggggbbbbb, |
|
80 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb. |
|
81 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit |
|
82 * for the translucent lines. Two padding bytes may be inserted |
|
83 * before each translucent line to keep them 32-bit aligned. |
|
84 * |
|
85 * The end of the sequence is marked by a zero <skip>,<run> pair at the |
|
86 * beginning of an opaque line. |
|
87 */ |
|
88 |
|
89 #include "SDL_video.h" |
|
90 #include "SDL_sysvideo.h" |
|
91 #include "SDL_blit.h" |
|
92 #include "SDL_RLEaccel_c.h" |
|
93 |
|
94 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES |
|
95 #define MMX_ASMBLIT |
|
96 #endif |
|
97 |
|
98 #ifdef MMX_ASMBLIT |
|
99 #include "mmx.h" |
|
100 #include "SDL_cpuinfo.h" |
|
101 #endif |
|
102 |
|
103 #ifndef MAX |
|
104 #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
|
105 #endif |
|
106 #ifndef MIN |
|
107 #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
|
108 #endif |
|
109 |
|
110 #define PIXEL_COPY(to, from, len, bpp) \ |
|
111 do { \ |
|
112 if(bpp == 4) { \ |
|
113 SDL_memcpy4(to, from, (size_t)(len)); \ |
|
114 } else { \ |
|
115 SDL_memcpy(to, from, (size_t)(len) * (bpp)); \ |
|
116 } \ |
|
117 } while(0) |
|
118 |
|
119 /* |
|
120 * Various colorkey blit methods, for opaque and per-surface alpha |
|
121 */ |
|
122 |
|
123 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \ |
|
124 PIXEL_COPY(to, from, length, bpp) |
|
125 |
|
126 #ifdef MMX_ASMBLIT |
|
127 |
|
128 #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \ |
|
129 do { \ |
|
130 Uint32 *srcp = (Uint32 *)(from); \ |
|
131 Uint32 *dstp = (Uint32 *)(to); \ |
|
132 int i = 0x00FF00FF; \ |
|
133 movd_m2r(*(&i), mm3); \ |
|
134 punpckldq_r2r(mm3, mm3); \ |
|
135 i = 0xFF000000; \ |
|
136 movd_m2r(*(&i), mm7); \ |
|
137 punpckldq_r2r(mm7, mm7); \ |
|
138 i = alpha | alpha << 16; \ |
|
139 movd_m2r(*(&i), mm4); \ |
|
140 punpckldq_r2r(mm4, mm4); \ |
|
141 pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \ |
|
142 pxor_r2r(mm7, mm5); /* make clear alpha mask */ \ |
|
143 i = length; \ |
|
144 if(i & 1) { \ |
|
145 movd_m2r((*srcp), mm1); /* src -> mm1 */ \ |
|
146 punpcklbw_r2r(mm1, mm1); \ |
|
147 pand_r2r(mm3, mm1); \ |
|
148 movd_m2r((*dstp), mm2); /* dst -> mm2 */ \ |
|
149 punpcklbw_r2r(mm2, mm2); \ |
|
150 pand_r2r(mm3, mm2); \ |
|
151 psubw_r2r(mm2, mm1); \ |
|
152 pmullw_r2r(mm4, mm1); \ |
|
153 psrlw_i2r(8, mm1); \ |
|
154 paddw_r2r(mm1, mm2); \ |
|
155 pand_r2r(mm3, mm2); \ |
|
156 packuswb_r2r(mm2, mm2); \ |
|
157 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \ |
|
158 movd_r2m(mm2, *dstp); \ |
|
159 ++srcp; \ |
|
160 ++dstp; \ |
|
161 i--; \ |
|
162 } \ |
|
163 for(; i > 0; --i) { \ |
|
164 movq_m2r((*srcp), mm0); \ |
|
165 movq_r2r(mm0, mm1); \ |
|
166 punpcklbw_r2r(mm0, mm0); \ |
|
167 movq_m2r((*dstp), mm2); \ |
|
168 punpckhbw_r2r(mm1, mm1); \ |
|
169 movq_r2r(mm2, mm6); \ |
|
170 pand_r2r(mm3, mm0); \ |
|
171 punpcklbw_r2r(mm2, mm2); \ |
|
172 pand_r2r(mm3, mm1); \ |
|
173 punpckhbw_r2r(mm6, mm6); \ |
|
174 pand_r2r(mm3, mm2); \ |
|
175 psubw_r2r(mm2, mm0); \ |
|
176 pmullw_r2r(mm4, mm0); \ |
|
177 pand_r2r(mm3, mm6); \ |
|
178 psubw_r2r(mm6, mm1); \ |
|
179 pmullw_r2r(mm4, mm1); \ |
|
180 psrlw_i2r(8, mm0); \ |
|
181 paddw_r2r(mm0, mm2); \ |
|
182 psrlw_i2r(8, mm1); \ |
|
183 paddw_r2r(mm1, mm6); \ |
|
184 pand_r2r(mm3, mm2); \ |
|
185 pand_r2r(mm3, mm6); \ |
|
186 packuswb_r2r(mm2, mm2); \ |
|
187 packuswb_r2r(mm6, mm6); \ |
|
188 psrlq_i2r(32, mm2); \ |
|
189 psllq_i2r(32, mm6); \ |
|
190 por_r2r(mm6, mm2); \ |
|
191 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \ |
|
192 movq_r2m(mm2, *dstp); \ |
|
193 srcp += 2; \ |
|
194 dstp += 2; \ |
|
195 i--; \ |
|
196 } \ |
|
197 emms(); \ |
|
198 } while(0) |
|
199 |
|
200 #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \ |
|
201 do { \ |
|
202 int i, n = 0; \ |
|
203 Uint16 *srcp = (Uint16 *)(from); \ |
|
204 Uint16 *dstp = (Uint16 *)(to); \ |
|
205 Uint32 ALPHA = 0xF800; \ |
|
206 movd_m2r(*(&ALPHA), mm1); \ |
|
207 punpcklwd_r2r(mm1, mm1); \ |
|
208 punpcklwd_r2r(mm1, mm1); \ |
|
209 ALPHA = 0x07E0; \ |
|
210 movd_m2r(*(&ALPHA), mm4); \ |
|
211 punpcklwd_r2r(mm4, mm4); \ |
|
212 punpcklwd_r2r(mm4, mm4); \ |
|
213 ALPHA = 0x001F; \ |
|
214 movd_m2r(*(&ALPHA), mm7); \ |
|
215 punpcklwd_r2r(mm7, mm7); \ |
|
216 punpcklwd_r2r(mm7, mm7); \ |
|
217 alpha &= ~(1+2+4); \ |
|
218 i = (Uint32)alpha | (Uint32)alpha << 16; \ |
|
219 movd_m2r(*(&i), mm0); \ |
|
220 punpckldq_r2r(mm0, mm0); \ |
|
221 ALPHA = alpha >> 3; \ |
|
222 i = ((int)(length) & 3); \ |
|
223 for(; i > 0; --i) { \ |
|
224 Uint32 s = *srcp++; \ |
|
225 Uint32 d = *dstp; \ |
|
226 s = (s | s << 16) & 0x07e0f81f; \ |
|
227 d = (d | d << 16) & 0x07e0f81f; \ |
|
228 d += (s - d) * ALPHA >> 5; \ |
|
229 d &= 0x07e0f81f; \ |
|
230 *dstp++ = d | d >> 16; \ |
|
231 n++; \ |
|
232 } \ |
|
233 i = (int)(length) - n; \ |
|
234 for(; i > 0; --i) { \ |
|
235 movq_m2r((*dstp), mm3); \ |
|
236 movq_m2r((*srcp), mm2); \ |
|
237 movq_r2r(mm2, mm5); \ |
|
238 pand_r2r(mm1 , mm5); \ |
|
239 psrlq_i2r(11, mm5); \ |
|
240 movq_r2r(mm3, mm6); \ |
|
241 pand_r2r(mm1 , mm6); \ |
|
242 psrlq_i2r(11, mm6); \ |
|
243 psubw_r2r(mm6, mm5); \ |
|
244 pmullw_r2r(mm0, mm5); \ |
|
245 psrlw_i2r(8, mm5); \ |
|
246 paddw_r2r(mm5, mm6); \ |
|
247 psllq_i2r(11, mm6); \ |
|
248 pand_r2r(mm1, mm6); \ |
|
249 movq_r2r(mm4, mm5); \ |
|
250 por_r2r(mm7, mm5); \ |
|
251 pand_r2r(mm5, mm3); \ |
|
252 por_r2r(mm6, mm3); \ |
|
253 movq_r2r(mm2, mm5); \ |
|
254 pand_r2r(mm4 , mm5); \ |
|
255 psrlq_i2r(5, mm5); \ |
|
256 movq_r2r(mm3, mm6); \ |
|
257 pand_r2r(mm4 , mm6); \ |
|
258 psrlq_i2r(5, mm6); \ |
|
259 psubw_r2r(mm6, mm5); \ |
|
260 pmullw_r2r(mm0, mm5); \ |
|
261 psrlw_i2r(8, mm5); \ |
|
262 paddw_r2r(mm5, mm6); \ |
|
263 psllq_i2r(5, mm6); \ |
|
264 pand_r2r(mm4, mm6); \ |
|
265 movq_r2r(mm1, mm5); \ |
|
266 por_r2r(mm7, mm5); \ |
|
267 pand_r2r(mm5, mm3); \ |
|
268 por_r2r(mm6, mm3); \ |
|
269 movq_r2r(mm2, mm5); \ |
|
270 pand_r2r(mm7 , mm5); \ |
|
271 movq_r2r(mm3, mm6); \ |
|
272 pand_r2r(mm7 , mm6); \ |
|
273 psubw_r2r(mm6, mm5); \ |
|
274 pmullw_r2r(mm0, mm5); \ |
|
275 psrlw_i2r(8, mm5); \ |
|
276 paddw_r2r(mm5, mm6); \ |
|
277 pand_r2r(mm7, mm6); \ |
|
278 movq_r2r(mm1, mm5); \ |
|
279 por_r2r(mm4, mm5); \ |
|
280 pand_r2r(mm5, mm3); \ |
|
281 por_r2r(mm6, mm3); \ |
|
282 movq_r2m(mm3, *dstp); \ |
|
283 srcp += 4; \ |
|
284 dstp += 4; \ |
|
285 i -= 3; \ |
|
286 } \ |
|
287 emms(); \ |
|
288 } while(0) |
|
289 |
|
290 #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \ |
|
291 do { \ |
|
292 int i, n = 0; \ |
|
293 Uint16 *srcp = (Uint16 *)(from); \ |
|
294 Uint16 *dstp = (Uint16 *)(to); \ |
|
295 Uint32 ALPHA = 0x7C00; \ |
|
296 movd_m2r(*(&ALPHA), mm1); \ |
|
297 punpcklwd_r2r(mm1, mm1); \ |
|
298 punpcklwd_r2r(mm1, mm1); \ |
|
299 ALPHA = 0x03E0; \ |
|
300 movd_m2r(*(&ALPHA), mm4); \ |
|
301 punpcklwd_r2r(mm4, mm4); \ |
|
302 punpcklwd_r2r(mm4, mm4); \ |
|
303 ALPHA = 0x001F; \ |
|
304 movd_m2r(*(&ALPHA), mm7); \ |
|
305 punpcklwd_r2r(mm7, mm7); \ |
|
306 punpcklwd_r2r(mm7, mm7); \ |
|
307 alpha &= ~(1+2+4); \ |
|
308 i = (Uint32)alpha | (Uint32)alpha << 16; \ |
|
309 movd_m2r(*(&i), mm0); \ |
|
310 punpckldq_r2r(mm0, mm0); \ |
|
311 i = ((int)(length) & 3); \ |
|
312 ALPHA = alpha >> 3; \ |
|
313 for(; i > 0; --i) { \ |
|
314 Uint32 s = *srcp++; \ |
|
315 Uint32 d = *dstp; \ |
|
316 s = (s | s << 16) & 0x03e07c1f; \ |
|
317 d = (d | d << 16) & 0x03e07c1f; \ |
|
318 d += (s - d) * ALPHA >> 5; \ |
|
319 d &= 0x03e07c1f; \ |
|
320 *dstp++ = d | d >> 16; \ |
|
321 n++; \ |
|
322 } \ |
|
323 i = (int)(length) - n; \ |
|
324 for(; i > 0; --i) { \ |
|
325 movq_m2r((*dstp), mm3); \ |
|
326 movq_m2r((*srcp), mm2); \ |
|
327 movq_r2r(mm2, mm5); \ |
|
328 pand_r2r(mm1 , mm5); \ |
|
329 psrlq_i2r(10, mm5); \ |
|
330 movq_r2r(mm3, mm6); \ |
|
331 pand_r2r(mm1 , mm6); \ |
|
332 psrlq_i2r(10, mm6); \ |
|
333 psubw_r2r(mm6, mm5); \ |
|
334 pmullw_r2r(mm0, mm5); \ |
|
335 psrlw_i2r(8, mm5); \ |
|
336 paddw_r2r(mm5, mm6); \ |
|
337 psllq_i2r(10, mm6); \ |
|
338 pand_r2r(mm1, mm6); \ |
|
339 movq_r2r(mm4, mm5); \ |
|
340 por_r2r(mm7, mm5); \ |
|
341 pand_r2r(mm5, mm3); \ |
|
342 por_r2r(mm6, mm3); \ |
|
343 movq_r2r(mm2, mm5); \ |
|
344 pand_r2r(mm4 , mm5); \ |
|
345 psrlq_i2r(5, mm5); \ |
|
346 movq_r2r(mm3, mm6); \ |
|
347 pand_r2r(mm4 , mm6); \ |
|
348 psrlq_i2r(5, mm6); \ |
|
349 psubw_r2r(mm6, mm5); \ |
|
350 pmullw_r2r(mm0, mm5); \ |
|
351 psrlw_i2r(8, mm5); \ |
|
352 paddw_r2r(mm5, mm6); \ |
|
353 psllq_i2r(5, mm6); \ |
|
354 pand_r2r(mm4, mm6); \ |
|
355 movq_r2r(mm1, mm5); \ |
|
356 por_r2r(mm7, mm5); \ |
|
357 pand_r2r(mm5, mm3); \ |
|
358 por_r2r(mm6, mm3); \ |
|
359 movq_r2r(mm2, mm5); \ |
|
360 pand_r2r(mm7 , mm5); \ |
|
361 movq_r2r(mm3, mm6); \ |
|
362 pand_r2r(mm7 , mm6); \ |
|
363 psubw_r2r(mm6, mm5); \ |
|
364 pmullw_r2r(mm0, mm5); \ |
|
365 psrlw_i2r(8, mm5); \ |
|
366 paddw_r2r(mm5, mm6); \ |
|
367 pand_r2r(mm7, mm6); \ |
|
368 movq_r2r(mm1, mm5); \ |
|
369 por_r2r(mm4, mm5); \ |
|
370 pand_r2r(mm5, mm3); \ |
|
371 por_r2r(mm6, mm3); \ |
|
372 movq_r2m(mm3, *dstp); \ |
|
373 srcp += 4; \ |
|
374 dstp += 4; \ |
|
375 i -= 3; \ |
|
376 } \ |
|
377 emms(); \ |
|
378 } while(0) |
|
379 |
|
380 #endif |
|
381 |
|
382 /* |
|
383 * For 32bpp pixels on the form 0x00rrggbb: |
|
384 * If we treat the middle component separately, we can process the two |
|
385 * remaining in parallel. This is safe to do because of the gap to the left |
|
386 * of each component, so the bits from the multiplication don't collide. |
|
387 * This can be used for any RGB permutation of course. |
|
388 */ |
|
389 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \ |
|
390 do { \ |
|
391 int i; \ |
|
392 Uint32 *src = (Uint32 *)(from); \ |
|
393 Uint32 *dst = (Uint32 *)(to); \ |
|
394 for(i = 0; i < (int)(length); i++) { \ |
|
395 Uint32 s = *src++; \ |
|
396 Uint32 d = *dst; \ |
|
397 Uint32 s1 = s & 0xff00ff; \ |
|
398 Uint32 d1 = d & 0xff00ff; \ |
|
399 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
|
400 s &= 0xff00; \ |
|
401 d &= 0xff00; \ |
|
402 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
|
403 *dst++ = d1 | d; \ |
|
404 } \ |
|
405 } while(0) |
|
406 |
|
407 /* |
|
408 * For 16bpp pixels we can go a step further: put the middle component |
|
409 * in the high 16 bits of a 32 bit word, and process all three RGB |
|
410 * components at the same time. Since the smallest gap is here just |
|
411 * 5 bits, we have to scale alpha down to 5 bits as well. |
|
412 */ |
|
413 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \ |
|
414 do { \ |
|
415 int i; \ |
|
416 Uint16 *src = (Uint16 *)(from); \ |
|
417 Uint16 *dst = (Uint16 *)(to); \ |
|
418 Uint32 ALPHA = alpha >> 3; \ |
|
419 for(i = 0; i < (int)(length); i++) { \ |
|
420 Uint32 s = *src++; \ |
|
421 Uint32 d = *dst; \ |
|
422 s = (s | s << 16) & 0x07e0f81f; \ |
|
423 d = (d | d << 16) & 0x07e0f81f; \ |
|
424 d += (s - d) * ALPHA >> 5; \ |
|
425 d &= 0x07e0f81f; \ |
|
426 *dst++ = (Uint16)(d | d >> 16); \ |
|
427 } \ |
|
428 } while(0) |
|
429 |
|
430 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \ |
|
431 do { \ |
|
432 int i; \ |
|
433 Uint16 *src = (Uint16 *)(from); \ |
|
434 Uint16 *dst = (Uint16 *)(to); \ |
|
435 Uint32 ALPHA = alpha >> 3; \ |
|
436 for(i = 0; i < (int)(length); i++) { \ |
|
437 Uint32 s = *src++; \ |
|
438 Uint32 d = *dst; \ |
|
439 s = (s | s << 16) & 0x03e07c1f; \ |
|
440 d = (d | d << 16) & 0x03e07c1f; \ |
|
441 d += (s - d) * ALPHA >> 5; \ |
|
442 d &= 0x03e07c1f; \ |
|
443 *dst++ = (Uint16)(d | d >> 16); \ |
|
444 } \ |
|
445 } while(0) |
|
446 |
|
447 /* |
|
448 * The general slow catch-all function, for remaining depths and formats |
|
449 */ |
|
450 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \ |
|
451 do { \ |
|
452 int i; \ |
|
453 Uint8 *src = from; \ |
|
454 Uint8 *dst = to; \ |
|
455 for(i = 0; i < (int)(length); i++) { \ |
|
456 Uint32 s, d; \ |
|
457 unsigned rs, gs, bs, rd, gd, bd; \ |
|
458 switch(bpp) { \ |
|
459 case 2: \ |
|
460 s = *(Uint16 *)src; \ |
|
461 d = *(Uint16 *)dst; \ |
|
462 break; \ |
|
463 case 3: \ |
|
464 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
|
465 s = (src[0] << 16) | (src[1] << 8) | src[2]; \ |
|
466 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \ |
|
467 } else { \ |
|
468 s = (src[2] << 16) | (src[1] << 8) | src[0]; \ |
|
469 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \ |
|
470 } \ |
|
471 break; \ |
|
472 case 4: \ |
|
473 s = *(Uint32 *)src; \ |
|
474 d = *(Uint32 *)dst; \ |
|
475 break; \ |
|
476 } \ |
|
477 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \ |
|
478 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \ |
|
479 rd += (rs - rd) * alpha >> 8; \ |
|
480 gd += (gs - gd) * alpha >> 8; \ |
|
481 bd += (bs - bd) * alpha >> 8; \ |
|
482 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \ |
|
483 switch(bpp) { \ |
|
484 case 2: \ |
|
485 *(Uint16 *)dst = (Uint16)d; \ |
|
486 break; \ |
|
487 case 3: \ |
|
488 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
|
489 dst[0] = (Uint8)(d >> 16); \ |
|
490 dst[1] = (Uint8)(d >> 8); \ |
|
491 dst[2] = (Uint8)(d); \ |
|
492 } else { \ |
|
493 dst[0] = (Uint8)d; \ |
|
494 dst[1] = (Uint8)(d >> 8); \ |
|
495 dst[2] = (Uint8)(d >> 16); \ |
|
496 } \ |
|
497 break; \ |
|
498 case 4: \ |
|
499 *(Uint32 *)dst = d; \ |
|
500 break; \ |
|
501 } \ |
|
502 src += bpp; \ |
|
503 dst += bpp; \ |
|
504 } \ |
|
505 } while(0) |
|
506 |
|
507 #ifdef MMX_ASMBLIT |
|
508 |
|
509 #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \ |
|
510 do { \ |
|
511 Uint32 *srcp = (Uint32 *)(from); \ |
|
512 Uint32 *dstp = (Uint32 *)(to); \ |
|
513 int i = 0x00fefefe; \ |
|
514 movd_m2r(*(&i), mm4); \ |
|
515 punpckldq_r2r(mm4, mm4); \ |
|
516 i = 0x00010101; \ |
|
517 movd_m2r(*(&i), mm3); \ |
|
518 punpckldq_r2r(mm3, mm3); \ |
|
519 i = (int)(length); \ |
|
520 if( i & 1 ) { \ |
|
521 Uint32 s = *srcp++; \ |
|
522 Uint32 d = *dstp; \ |
|
523 *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \ |
|
524 + (s & d & 0x00010101); \ |
|
525 i--; \ |
|
526 } \ |
|
527 for(; i > 0; --i) { \ |
|
528 movq_m2r((*dstp), mm2); /* dst -> mm2 */ \ |
|
529 movq_r2r(mm2, mm6); /* dst -> mm6 */ \ |
|
530 movq_m2r((*srcp), mm1); /* src -> mm1 */ \ |
|
531 movq_r2r(mm1, mm5); /* src -> mm5 */ \ |
|
532 pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \ |
|
533 pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \ |
|
534 paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \ |
|
535 psrld_i2r(1, mm5); \ |
|
536 pand_r2r(mm1, mm2); /* s & d -> mm2 */ \ |
|
537 pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \ |
|
538 paddd_r2r(mm5, mm2); \ |
|
539 movq_r2m(mm2, (*dstp)); \ |
|
540 dstp += 2; \ |
|
541 srcp += 2; \ |
|
542 i--; \ |
|
543 } \ |
|
544 emms(); \ |
|
545 } while(0) |
|
546 |
|
547 #endif |
|
548 |
|
549 /* |
|
550 * Special case: 50% alpha (alpha=128) |
|
551 * This is treated specially because it can be optimized very well, and |
|
552 * since it is good for many cases of semi-translucency. |
|
553 * The theory is to do all three components at the same time: |
|
554 * First zero the lowest bit of each component, which gives us room to |
|
555 * add them. Then shift right and add the sum of the lowest bits. |
|
556 */ |
|
557 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \ |
|
558 do { \ |
|
559 int i; \ |
|
560 Uint32 *src = (Uint32 *)(from); \ |
|
561 Uint32 *dst = (Uint32 *)(to); \ |
|
562 for(i = 0; i < (int)(length); i++) { \ |
|
563 Uint32 s = *src++; \ |
|
564 Uint32 d = *dst; \ |
|
565 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \ |
|
566 + (s & d & 0x00010101); \ |
|
567 } \ |
|
568 } while(0) |
|
569 |
|
570 /* |
|
571 * For 16bpp, we can actually blend two pixels in parallel, if we take |
|
572 * care to shift before we add, not after. |
|
573 */ |
|
574 |
|
575 /* helper: blend a single 16 bit pixel at 50% */ |
|
576 #define BLEND16_50(dst, src, mask) \ |
|
577 do { \ |
|
578 Uint32 s = *src++; \ |
|
579 Uint32 d = *dst; \ |
|
580 *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \ |
|
581 (s & d & (~mask & 0xffff))); \ |
|
582 } while(0) |
|
583 |
|
584 /* basic 16bpp blender. mask is the pixels to keep when adding. */ |
|
585 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \ |
|
586 do { \ |
|
587 unsigned n = (length); \ |
|
588 Uint16 *src = (Uint16 *)(from); \ |
|
589 Uint16 *dst = (Uint16 *)(to); \ |
|
590 if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \ |
|
591 /* source and destination not in phase, blit one by one */ \ |
|
592 while(n--) \ |
|
593 BLEND16_50(dst, src, mask); \ |
|
594 } else { \ |
|
595 if((uintptr_t)src & 3) { \ |
|
596 /* first odd pixel */ \ |
|
597 BLEND16_50(dst, src, mask); \ |
|
598 n--; \ |
|
599 } \ |
|
600 for(; n > 1; n -= 2) { \ |
|
601 Uint32 s = *(Uint32 *)src; \ |
|
602 Uint32 d = *(Uint32 *)dst; \ |
|
603 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \ |
|
604 + ((d & (mask | mask << 16)) >> 1) \ |
|
605 + (s & d & (~(mask | mask << 16))); \ |
|
606 src += 2; \ |
|
607 dst += 2; \ |
|
608 } \ |
|
609 if(n) \ |
|
610 BLEND16_50(dst, src, mask); /* last odd pixel */ \ |
|
611 } \ |
|
612 } while(0) |
|
613 |
|
614 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \ |
|
615 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de) |
|
616 |
|
617 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \ |
|
618 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde) |
|
619 |
|
620 #ifdef MMX_ASMBLIT |
|
621 |
|
622 #define CHOOSE_BLIT(blitter, alpha, fmt) \ |
|
623 do { \ |
|
624 if(alpha == 255) { \ |
|
625 switch(fmt->BytesPerPixel) { \ |
|
626 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \ |
|
627 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \ |
|
628 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \ |
|
629 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \ |
|
630 } \ |
|
631 } else { \ |
|
632 switch(fmt->BytesPerPixel) { \ |
|
633 case 1: \ |
|
634 /* No 8bpp alpha blitting */ \ |
|
635 break; \ |
|
636 \ |
|
637 case 2: \ |
|
638 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ |
|
639 case 0xffff: \ |
|
640 if(fmt->Gmask == 0x07e0 \ |
|
641 || fmt->Rmask == 0x07e0 \ |
|
642 || fmt->Bmask == 0x07e0) { \ |
|
643 if(alpha == 128) \ |
|
644 blitter(2, Uint8, ALPHA_BLIT16_565_50); \ |
|
645 else { \ |
|
646 if(SDL_HasMMX()) \ |
|
647 blitter(2, Uint8, ALPHA_BLIT16_565MMX); \ |
|
648 else \ |
|
649 blitter(2, Uint8, ALPHA_BLIT16_565); \ |
|
650 } \ |
|
651 } else \ |
|
652 goto general16; \ |
|
653 break; \ |
|
654 \ |
|
655 case 0x7fff: \ |
|
656 if(fmt->Gmask == 0x03e0 \ |
|
657 || fmt->Rmask == 0x03e0 \ |
|
658 || fmt->Bmask == 0x03e0) { \ |
|
659 if(alpha == 128) \ |
|
660 blitter(2, Uint8, ALPHA_BLIT16_555_50); \ |
|
661 else { \ |
|
662 if(SDL_HasMMX()) \ |
|
663 blitter(2, Uint8, ALPHA_BLIT16_555MMX); \ |
|
664 else \ |
|
665 blitter(2, Uint8, ALPHA_BLIT16_555); \ |
|
666 } \ |
|
667 break; \ |
|
668 } \ |
|
669 /* fallthrough */ \ |
|
670 \ |
|
671 default: \ |
|
672 general16: \ |
|
673 blitter(2, Uint8, ALPHA_BLIT_ANY); \ |
|
674 } \ |
|
675 break; \ |
|
676 \ |
|
677 case 3: \ |
|
678 blitter(3, Uint8, ALPHA_BLIT_ANY); \ |
|
679 break; \ |
|
680 \ |
|
681 case 4: \ |
|
682 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \ |
|
683 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \ |
|
684 || fmt->Bmask == 0xff00)) { \ |
|
685 if(alpha == 128) \ |
|
686 { \ |
|
687 if(SDL_HasMMX()) \ |
|
688 blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\ |
|
689 else \ |
|
690 blitter(4, Uint16, ALPHA_BLIT32_888_50);\ |
|
691 } \ |
|
692 else \ |
|
693 { \ |
|
694 if(SDL_HasMMX()) \ |
|
695 blitter(4, Uint16, ALPHA_BLIT32_888MMX);\ |
|
696 else \ |
|
697 blitter(4, Uint16, ALPHA_BLIT32_888); \ |
|
698 } \ |
|
699 } else \ |
|
700 blitter(4, Uint16, ALPHA_BLIT_ANY); \ |
|
701 break; \ |
|
702 } \ |
|
703 } \ |
|
704 } while(0) |
|
705 |
|
706 #else |
|
707 |
|
708 #define CHOOSE_BLIT(blitter, alpha, fmt) \ |
|
709 do { \ |
|
710 if(alpha == 255) { \ |
|
711 switch(fmt->BytesPerPixel) { \ |
|
712 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \ |
|
713 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \ |
|
714 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \ |
|
715 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \ |
|
716 } \ |
|
717 } else { \ |
|
718 switch(fmt->BytesPerPixel) { \ |
|
719 case 1: \ |
|
720 /* No 8bpp alpha blitting */ \ |
|
721 break; \ |
|
722 \ |
|
723 case 2: \ |
|
724 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ |
|
725 case 0xffff: \ |
|
726 if(fmt->Gmask == 0x07e0 \ |
|
727 || fmt->Rmask == 0x07e0 \ |
|
728 || fmt->Bmask == 0x07e0) { \ |
|
729 if(alpha == 128) \ |
|
730 blitter(2, Uint8, ALPHA_BLIT16_565_50); \ |
|
731 else { \ |
|
732 blitter(2, Uint8, ALPHA_BLIT16_565); \ |
|
733 } \ |
|
734 } else \ |
|
735 goto general16; \ |
|
736 break; \ |
|
737 \ |
|
738 case 0x7fff: \ |
|
739 if(fmt->Gmask == 0x03e0 \ |
|
740 || fmt->Rmask == 0x03e0 \ |
|
741 || fmt->Bmask == 0x03e0) { \ |
|
742 if(alpha == 128) \ |
|
743 blitter(2, Uint8, ALPHA_BLIT16_555_50); \ |
|
744 else { \ |
|
745 blitter(2, Uint8, ALPHA_BLIT16_555); \ |
|
746 } \ |
|
747 break; \ |
|
748 } \ |
|
749 /* fallthrough */ \ |
|
750 \ |
|
751 default: \ |
|
752 general16: \ |
|
753 blitter(2, Uint8, ALPHA_BLIT_ANY); \ |
|
754 } \ |
|
755 break; \ |
|
756 \ |
|
757 case 3: \ |
|
758 blitter(3, Uint8, ALPHA_BLIT_ANY); \ |
|
759 break; \ |
|
760 \ |
|
761 case 4: \ |
|
762 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \ |
|
763 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \ |
|
764 || fmt->Bmask == 0xff00)) { \ |
|
765 if(alpha == 128) \ |
|
766 blitter(4, Uint16, ALPHA_BLIT32_888_50); \ |
|
767 else \ |
|
768 blitter(4, Uint16, ALPHA_BLIT32_888); \ |
|
769 } else \ |
|
770 blitter(4, Uint16, ALPHA_BLIT_ANY); \ |
|
771 break; \ |
|
772 } \ |
|
773 } \ |
|
774 } while(0) |
|
775 |
|
776 #endif |
|
777 |
|
778 /* |
|
779 * This takes care of the case when the surface is clipped on the left and/or |
|
780 * right. Top clipping has already been taken care of. |
|
781 */ |
|
782 static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, |
|
783 Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha) |
|
784 { |
|
785 SDL_PixelFormat *fmt = dst->format; |
|
786 |
|
787 #define RLECLIPBLIT(bpp, Type, do_blit) \ |
|
788 do { \ |
|
789 int linecount = srcrect->h; \ |
|
790 int ofs = 0; \ |
|
791 int left = srcrect->x; \ |
|
792 int right = left + srcrect->w; \ |
|
793 dstbuf -= left * bpp; \ |
|
794 for(;;) { \ |
|
795 int run; \ |
|
796 ofs += *(Type *)srcbuf; \ |
|
797 run = ((Type *)srcbuf)[1]; \ |
|
798 srcbuf += 2 * sizeof(Type); \ |
|
799 if(run) { \ |
|
800 /* clip to left and right borders */ \ |
|
801 if(ofs < right) { \ |
|
802 int start = 0; \ |
|
803 int len = run; \ |
|
804 int startcol; \ |
|
805 if(left - ofs > 0) { \ |
|
806 start = left - ofs; \ |
|
807 len -= start; \ |
|
808 if(len <= 0) \ |
|
809 goto nocopy ## bpp ## do_blit; \ |
|
810 } \ |
|
811 startcol = ofs + start; \ |
|
812 if(len > right - startcol) \ |
|
813 len = right - startcol; \ |
|
814 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \ |
|
815 len, bpp, alpha); \ |
|
816 } \ |
|
817 nocopy ## bpp ## do_blit: \ |
|
818 srcbuf += run * bpp; \ |
|
819 ofs += run; \ |
|
820 } else if(!ofs) \ |
|
821 break; \ |
|
822 if(ofs == w) { \ |
|
823 ofs = 0; \ |
|
824 dstbuf += dst->pitch; \ |
|
825 if(!--linecount) \ |
|
826 break; \ |
|
827 } \ |
|
828 } \ |
|
829 } while(0) |
|
830 |
|
831 CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt); |
|
832 |
|
833 #undef RLECLIPBLIT |
|
834 |
|
835 } |
|
836 |
|
837 |
|
838 /* blit a colorkeyed RLE surface */ |
|
839 int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect, |
|
840 SDL_Surface *dst, SDL_Rect *dstrect) |
|
841 { |
|
842 Uint8 *dstbuf; |
|
843 Uint8 *srcbuf; |
|
844 int x, y; |
|
845 int w = src->w; |
|
846 unsigned alpha; |
|
847 |
|
848 /* Lock the destination if necessary */ |
|
849 if ( SDL_MUSTLOCK(dst) ) { |
|
850 if ( SDL_LockSurface(dst) < 0 ) { |
|
851 return(-1); |
|
852 } |
|
853 } |
|
854 |
|
855 /* Set up the source and destination pointers */ |
|
856 x = dstrect->x; |
|
857 y = dstrect->y; |
|
858 dstbuf = (Uint8 *)dst->pixels |
|
859 + y * dst->pitch + x * src->format->BytesPerPixel; |
|
860 srcbuf = (Uint8 *)src->map->sw_data->aux_data; |
|
861 |
|
862 { |
|
863 /* skip lines at the top if neccessary */ |
|
864 int vskip = srcrect->y; |
|
865 int ofs = 0; |
|
866 if(vskip) { |
|
867 |
|
868 #define RLESKIP(bpp, Type) \ |
|
869 for(;;) { \ |
|
870 int run; \ |
|
871 ofs += *(Type *)srcbuf; \ |
|
872 run = ((Type *)srcbuf)[1]; \ |
|
873 srcbuf += sizeof(Type) * 2; \ |
|
874 if(run) { \ |
|
875 srcbuf += run * bpp; \ |
|
876 ofs += run; \ |
|
877 } else if(!ofs) \ |
|
878 goto done; \ |
|
879 if(ofs == w) { \ |
|
880 ofs = 0; \ |
|
881 if(!--vskip) \ |
|
882 break; \ |
|
883 } \ |
|
884 } |
|
885 |
|
886 switch(src->format->BytesPerPixel) { |
|
887 case 1: RLESKIP(1, Uint8); break; |
|
888 case 2: RLESKIP(2, Uint8); break; |
|
889 case 3: RLESKIP(3, Uint8); break; |
|
890 case 4: RLESKIP(4, Uint16); break; |
|
891 } |
|
892 |
|
893 #undef RLESKIP |
|
894 |
|
895 } |
|
896 } |
|
897 |
|
898 alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA |
|
899 ? src->format->alpha : 255; |
|
900 /* if left or right edge clipping needed, call clip blit */ |
|
901 if ( srcrect->x || srcrect->w != src->w ) { |
|
902 RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha); |
|
903 } else { |
|
904 SDL_PixelFormat *fmt = src->format; |
|
905 |
|
906 #define RLEBLIT(bpp, Type, do_blit) \ |
|
907 do { \ |
|
908 int linecount = srcrect->h; \ |
|
909 int ofs = 0; \ |
|
910 for(;;) { \ |
|
911 unsigned run; \ |
|
912 ofs += *(Type *)srcbuf; \ |
|
913 run = ((Type *)srcbuf)[1]; \ |
|
914 srcbuf += 2 * sizeof(Type); \ |
|
915 if(run) { \ |
|
916 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \ |
|
917 srcbuf += run * bpp; \ |
|
918 ofs += run; \ |
|
919 } else if(!ofs) \ |
|
920 break; \ |
|
921 if(ofs == w) { \ |
|
922 ofs = 0; \ |
|
923 dstbuf += dst->pitch; \ |
|
924 if(!--linecount) \ |
|
925 break; \ |
|
926 } \ |
|
927 } \ |
|
928 } while(0) |
|
929 |
|
930 CHOOSE_BLIT(RLEBLIT, alpha, fmt); |
|
931 |
|
932 #undef RLEBLIT |
|
933 } |
|
934 |
|
935 done: |
|
936 /* Unlock the destination if necessary */ |
|
937 if ( SDL_MUSTLOCK(dst) ) { |
|
938 SDL_UnlockSurface(dst); |
|
939 } |
|
940 return(0); |
|
941 } |
|
942 |
|
943 #undef OPAQUE_BLIT |
|
944 |
|
945 /* |
|
946 * Per-pixel blitting macros for translucent pixels: |
|
947 * These use the same techniques as the per-surface blitting macros |
|
948 */ |
|
949 |
|
950 /* |
|
951 * For 32bpp pixels, we have made sure the alpha is stored in the top |
|
952 * 8 bits, so proceed as usual |
|
953 */ |
|
954 #define BLIT_TRANSL_888(src, dst) \ |
|
955 do { \ |
|
956 Uint32 s = src; \ |
|
957 Uint32 d = dst; \ |
|
958 unsigned alpha = s >> 24; \ |
|
959 Uint32 s1 = s & 0xff00ff; \ |
|
960 Uint32 d1 = d & 0xff00ff; \ |
|
961 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
|
962 s &= 0xff00; \ |
|
963 d &= 0xff00; \ |
|
964 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
|
965 dst = d1 | d; \ |
|
966 } while(0) |
|
967 |
|
968 /* |
|
969 * For 16bpp pixels, we have stored the 5 most significant alpha bits in |
|
970 * bits 5-10. As before, we can process all 3 RGB components at the same time. |
|
971 */ |
|
972 #define BLIT_TRANSL_565(src, dst) \ |
|
973 do { \ |
|
974 Uint32 s = src; \ |
|
975 Uint32 d = dst; \ |
|
976 unsigned alpha = (s & 0x3e0) >> 5; \ |
|
977 s &= 0x07e0f81f; \ |
|
978 d = (d | d << 16) & 0x07e0f81f; \ |
|
979 d += (s - d) * alpha >> 5; \ |
|
980 d &= 0x07e0f81f; \ |
|
981 dst = (Uint16)(d | d >> 16); \ |
|
982 } while(0) |
|
983 |
|
984 #define BLIT_TRANSL_555(src, dst) \ |
|
985 do { \ |
|
986 Uint32 s = src; \ |
|
987 Uint32 d = dst; \ |
|
988 unsigned alpha = (s & 0x3e0) >> 5; \ |
|
989 s &= 0x03e07c1f; \ |
|
990 d = (d | d << 16) & 0x03e07c1f; \ |
|
991 d += (s - d) * alpha >> 5; \ |
|
992 d &= 0x03e07c1f; \ |
|
993 dst = (Uint16)(d | d >> 16); \ |
|
994 } while(0) |
|
995 |
|
996 /* used to save the destination format in the encoding. Designed to be |
|
997 macro-compatible with SDL_PixelFormat but without the unneeded fields */ |
|
998 typedef struct { |
|
999 Uint8 BytesPerPixel; |
|
1000 Uint8 Rloss; |
|
1001 Uint8 Gloss; |
|
1002 Uint8 Bloss; |
|
1003 Uint8 Rshift; |
|
1004 Uint8 Gshift; |
|
1005 Uint8 Bshift; |
|
1006 Uint8 Ashift; |
|
1007 Uint32 Rmask; |
|
1008 Uint32 Gmask; |
|
1009 Uint32 Bmask; |
|
1010 Uint32 Amask; |
|
1011 } RLEDestFormat; |
|
1012 |
|
1013 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */ |
|
1014 static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, |
|
1015 Uint8 *dstbuf, SDL_Rect *srcrect) |
|
1016 { |
|
1017 SDL_PixelFormat *df = dst->format; |
|
1018 /* |
|
1019 * clipped blitter: Ptype is the destination pixel type, |
|
1020 * Ctype the translucent count type, and do_blend the macro |
|
1021 * to blend one pixel. |
|
1022 */ |
|
1023 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \ |
|
1024 do { \ |
|
1025 int linecount = srcrect->h; \ |
|
1026 int left = srcrect->x; \ |
|
1027 int right = left + srcrect->w; \ |
|
1028 dstbuf -= left * sizeof(Ptype); \ |
|
1029 do { \ |
|
1030 int ofs = 0; \ |
|
1031 /* blit opaque pixels on one line */ \ |
|
1032 do { \ |
|
1033 unsigned run; \ |
|
1034 ofs += ((Ctype *)srcbuf)[0]; \ |
|
1035 run = ((Ctype *)srcbuf)[1]; \ |
|
1036 srcbuf += 2 * sizeof(Ctype); \ |
|
1037 if(run) { \ |
|
1038 /* clip to left and right borders */ \ |
|
1039 int cofs = ofs; \ |
|
1040 int crun = run; \ |
|
1041 if(left - cofs > 0) { \ |
|
1042 crun -= left - cofs; \ |
|
1043 cofs = left; \ |
|
1044 } \ |
|
1045 if(crun > right - cofs) \ |
|
1046 crun = right - cofs; \ |
|
1047 if(crun > 0) \ |
|
1048 PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \ |
|
1049 srcbuf + (cofs - ofs) * sizeof(Ptype), \ |
|
1050 (unsigned)crun, sizeof(Ptype)); \ |
|
1051 srcbuf += run * sizeof(Ptype); \ |
|
1052 ofs += run; \ |
|
1053 } else if(!ofs) \ |
|
1054 return; \ |
|
1055 } while(ofs < w); \ |
|
1056 /* skip padding if necessary */ \ |
|
1057 if(sizeof(Ptype) == 2) \ |
|
1058 srcbuf += (uintptr_t)srcbuf & 2; \ |
|
1059 /* blit translucent pixels on the same line */ \ |
|
1060 ofs = 0; \ |
|
1061 do { \ |
|
1062 unsigned run; \ |
|
1063 ofs += ((Uint16 *)srcbuf)[0]; \ |
|
1064 run = ((Uint16 *)srcbuf)[1]; \ |
|
1065 srcbuf += 4; \ |
|
1066 if(run) { \ |
|
1067 /* clip to left and right borders */ \ |
|
1068 int cofs = ofs; \ |
|
1069 int crun = run; \ |
|
1070 if(left - cofs > 0) { \ |
|
1071 crun -= left - cofs; \ |
|
1072 cofs = left; \ |
|
1073 } \ |
|
1074 if(crun > right - cofs) \ |
|
1075 crun = right - cofs; \ |
|
1076 if(crun > 0) { \ |
|
1077 Ptype *dst = (Ptype *)dstbuf + cofs; \ |
|
1078 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \ |
|
1079 int i; \ |
|
1080 for(i = 0; i < crun; i++) \ |
|
1081 do_blend(src[i], dst[i]); \ |
|
1082 } \ |
|
1083 srcbuf += run * 4; \ |
|
1084 ofs += run; \ |
|
1085 } \ |
|
1086 } while(ofs < w); \ |
|
1087 dstbuf += dst->pitch; \ |
|
1088 } while(--linecount); \ |
|
1089 } while(0) |
|
1090 |
|
1091 switch(df->BytesPerPixel) { |
|
1092 case 2: |
|
1093 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 |
|
1094 || df->Bmask == 0x07e0) |
|
1095 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565); |
|
1096 else |
|
1097 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555); |
|
1098 break; |
|
1099 case 4: |
|
1100 RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888); |
|
1101 break; |
|
1102 } |
|
1103 } |
|
1104 |
|
1105 /* blit a pixel-alpha RLE surface */ |
|
1106 int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect, |
|
1107 SDL_Surface *dst, SDL_Rect *dstrect) |
|
1108 { |
|
1109 int x, y; |
|
1110 int w = src->w; |
|
1111 Uint8 *srcbuf, *dstbuf; |
|
1112 SDL_PixelFormat *df = dst->format; |
|
1113 |
|
1114 /* Lock the destination if necessary */ |
|
1115 if ( SDL_MUSTLOCK(dst) ) { |
|
1116 if ( SDL_LockSurface(dst) < 0 ) { |
|
1117 return -1; |
|
1118 } |
|
1119 } |
|
1120 |
|
1121 x = dstrect->x; |
|
1122 y = dstrect->y; |
|
1123 dstbuf = (Uint8 *)dst->pixels |
|
1124 + y * dst->pitch + x * df->BytesPerPixel; |
|
1125 srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat); |
|
1126 |
|
1127 { |
|
1128 /* skip lines at the top if necessary */ |
|
1129 int vskip = srcrect->y; |
|
1130 if(vskip) { |
|
1131 int ofs; |
|
1132 if(df->BytesPerPixel == 2) { |
|
1133 /* the 16/32 interleaved format */ |
|
1134 do { |
|
1135 /* skip opaque line */ |
|
1136 ofs = 0; |
|
1137 do { |
|
1138 int run; |
|
1139 ofs += srcbuf[0]; |
|
1140 run = srcbuf[1]; |
|
1141 srcbuf += 2; |
|
1142 if(run) { |
|
1143 srcbuf += 2 * run; |
|
1144 ofs += run; |
|
1145 } else if(!ofs) |
|
1146 goto done; |
|
1147 } while(ofs < w); |
|
1148 |
|
1149 /* skip padding */ |
|
1150 srcbuf += (uintptr_t)srcbuf & 2; |
|
1151 |
|
1152 /* skip translucent line */ |
|
1153 ofs = 0; |
|
1154 do { |
|
1155 int run; |
|
1156 ofs += ((Uint16 *)srcbuf)[0]; |
|
1157 run = ((Uint16 *)srcbuf)[1]; |
|
1158 srcbuf += 4 * (run + 1); |
|
1159 ofs += run; |
|
1160 } while(ofs < w); |
|
1161 } while(--vskip); |
|
1162 } else { |
|
1163 /* the 32/32 interleaved format */ |
|
1164 vskip <<= 1; /* opaque and translucent have same format */ |
|
1165 do { |
|
1166 ofs = 0; |
|
1167 do { |
|
1168 int run; |
|
1169 ofs += ((Uint16 *)srcbuf)[0]; |
|
1170 run = ((Uint16 *)srcbuf)[1]; |
|
1171 srcbuf += 4; |
|
1172 if(run) { |
|
1173 srcbuf += 4 * run; |
|
1174 ofs += run; |
|
1175 } else if(!ofs) |
|
1176 goto done; |
|
1177 } while(ofs < w); |
|
1178 } while(--vskip); |
|
1179 } |
|
1180 } |
|
1181 } |
|
1182 |
|
1183 /* if left or right edge clipping needed, call clip blit */ |
|
1184 if(srcrect->x || srcrect->w != src->w) { |
|
1185 RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect); |
|
1186 } else { |
|
1187 |
|
1188 /* |
|
1189 * non-clipped blitter. Ptype is the destination pixel type, |
|
1190 * Ctype the translucent count type, and do_blend the |
|
1191 * macro to blend one pixel. |
|
1192 */ |
|
1193 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \ |
|
1194 do { \ |
|
1195 int linecount = srcrect->h; \ |
|
1196 do { \ |
|
1197 int ofs = 0; \ |
|
1198 /* blit opaque pixels on one line */ \ |
|
1199 do { \ |
|
1200 unsigned run; \ |
|
1201 ofs += ((Ctype *)srcbuf)[0]; \ |
|
1202 run = ((Ctype *)srcbuf)[1]; \ |
|
1203 srcbuf += 2 * sizeof(Ctype); \ |
|
1204 if(run) { \ |
|
1205 PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \ |
|
1206 run, sizeof(Ptype)); \ |
|
1207 srcbuf += run * sizeof(Ptype); \ |
|
1208 ofs += run; \ |
|
1209 } else if(!ofs) \ |
|
1210 goto done; \ |
|
1211 } while(ofs < w); \ |
|
1212 /* skip padding if necessary */ \ |
|
1213 if(sizeof(Ptype) == 2) \ |
|
1214 srcbuf += (uintptr_t)srcbuf & 2; \ |
|
1215 /* blit translucent pixels on the same line */ \ |
|
1216 ofs = 0; \ |
|
1217 do { \ |
|
1218 unsigned run; \ |
|
1219 ofs += ((Uint16 *)srcbuf)[0]; \ |
|
1220 run = ((Uint16 *)srcbuf)[1]; \ |
|
1221 srcbuf += 4; \ |
|
1222 if(run) { \ |
|
1223 Ptype *dst = (Ptype *)dstbuf + ofs; \ |
|
1224 unsigned i; \ |
|
1225 for(i = 0; i < run; i++) { \ |
|
1226 Uint32 src = *(Uint32 *)srcbuf; \ |
|
1227 do_blend(src, *dst); \ |
|
1228 srcbuf += 4; \ |
|
1229 dst++; \ |
|
1230 } \ |
|
1231 ofs += run; \ |
|
1232 } \ |
|
1233 } while(ofs < w); \ |
|
1234 dstbuf += dst->pitch; \ |
|
1235 } while(--linecount); \ |
|
1236 } while(0) |
|
1237 |
|
1238 switch(df->BytesPerPixel) { |
|
1239 case 2: |
|
1240 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 |
|
1241 || df->Bmask == 0x07e0) |
|
1242 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565); |
|
1243 else |
|
1244 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555); |
|
1245 break; |
|
1246 case 4: |
|
1247 RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888); |
|
1248 break; |
|
1249 } |
|
1250 } |
|
1251 |
|
1252 done: |
|
1253 /* Unlock the destination if necessary */ |
|
1254 if ( SDL_MUSTLOCK(dst) ) { |
|
1255 SDL_UnlockSurface(dst); |
|
1256 } |
|
1257 return 0; |
|
1258 } |
|
1259 |
|
1260 /* |
|
1261 * Auxiliary functions: |
|
1262 * The encoding functions take 32bpp rgb + a, and |
|
1263 * return the number of bytes copied to the destination. |
|
1264 * The decoding functions copy to 32bpp rgb + a, and |
|
1265 * return the number of bytes copied from the source. |
|
1266 * These are only used in the encoder and un-RLE code and are therefore not |
|
1267 * highly optimised. |
|
1268 */ |
|
1269 |
|
1270 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */ |
|
1271 static int copy_opaque_16(void *dst, Uint32 *src, int n, |
|
1272 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1273 { |
|
1274 int i; |
|
1275 Uint16 *d = dst; |
|
1276 for(i = 0; i < n; i++) { |
|
1277 unsigned r, g, b; |
|
1278 RGB_FROM_PIXEL(*src, sfmt, r, g, b); |
|
1279 PIXEL_FROM_RGB(*d, dfmt, r, g, b); |
|
1280 src++; |
|
1281 d++; |
|
1282 } |
|
1283 return n * 2; |
|
1284 } |
|
1285 |
|
1286 /* decode opaque pixels from 16bpp to 32bpp rgb + a */ |
|
1287 static int uncopy_opaque_16(Uint32 *dst, void *src, int n, |
|
1288 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1289 { |
|
1290 int i; |
|
1291 Uint16 *s = src; |
|
1292 unsigned alpha = dfmt->Amask ? 255 : 0; |
|
1293 for(i = 0; i < n; i++) { |
|
1294 unsigned r, g, b; |
|
1295 RGB_FROM_PIXEL(*s, sfmt, r, g, b); |
|
1296 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha); |
|
1297 s++; |
|
1298 dst++; |
|
1299 } |
|
1300 return n * 2; |
|
1301 } |
|
1302 |
|
1303 |
|
1304 |
|
1305 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */ |
|
1306 static int copy_transl_565(void *dst, Uint32 *src, int n, |
|
1307 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1308 { |
|
1309 int i; |
|
1310 Uint32 *d = dst; |
|
1311 for(i = 0; i < n; i++) { |
|
1312 unsigned r, g, b, a; |
|
1313 Uint16 pix; |
|
1314 RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
|
1315 PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
|
1316 *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0); |
|
1317 src++; |
|
1318 d++; |
|
1319 } |
|
1320 return n * 4; |
|
1321 } |
|
1322 |
|
1323 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */ |
|
1324 static int copy_transl_555(void *dst, Uint32 *src, int n, |
|
1325 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1326 { |
|
1327 int i; |
|
1328 Uint32 *d = dst; |
|
1329 for(i = 0; i < n; i++) { |
|
1330 unsigned r, g, b, a; |
|
1331 Uint16 pix; |
|
1332 RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
|
1333 PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
|
1334 *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0); |
|
1335 src++; |
|
1336 d++; |
|
1337 } |
|
1338 return n * 4; |
|
1339 } |
|
1340 |
|
1341 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */ |
|
1342 static int uncopy_transl_16(Uint32 *dst, void *src, int n, |
|
1343 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1344 { |
|
1345 int i; |
|
1346 Uint32 *s = src; |
|
1347 for(i = 0; i < n; i++) { |
|
1348 unsigned r, g, b, a; |
|
1349 Uint32 pix = *s++; |
|
1350 a = (pix & 0x3e0) >> 2; |
|
1351 pix = (pix & ~0x3e0) | pix >> 16; |
|
1352 RGB_FROM_PIXEL(pix, sfmt, r, g, b); |
|
1353 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
|
1354 dst++; |
|
1355 } |
|
1356 return n * 4; |
|
1357 } |
|
1358 |
|
1359 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ |
|
1360 static int copy_32(void *dst, Uint32 *src, int n, |
|
1361 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1362 { |
|
1363 int i; |
|
1364 Uint32 *d = dst; |
|
1365 for(i = 0; i < n; i++) { |
|
1366 unsigned r, g, b, a; |
|
1367 Uint32 pixel; |
|
1368 RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
|
1369 PIXEL_FROM_RGB(pixel, dfmt, r, g, b); |
|
1370 *d++ = pixel | a << 24; |
|
1371 src++; |
|
1372 } |
|
1373 return n * 4; |
|
1374 } |
|
1375 |
|
1376 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ |
|
1377 static int uncopy_32(Uint32 *dst, void *src, int n, |
|
1378 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
|
1379 { |
|
1380 int i; |
|
1381 Uint32 *s = src; |
|
1382 for(i = 0; i < n; i++) { |
|
1383 unsigned r, g, b, a; |
|
1384 Uint32 pixel = *s++; |
|
1385 RGB_FROM_PIXEL(pixel, sfmt, r, g, b); |
|
1386 a = pixel >> 24; |
|
1387 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
|
1388 dst++; |
|
1389 } |
|
1390 return n * 4; |
|
1391 } |
|
1392 |
|
1393 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255) |
|
1394 |
|
1395 #define ISTRANSL(pixel, fmt) \ |
|
1396 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U) |
|
1397 |
|
1398 /* convert surface to be quickly alpha-blittable onto dest, if possible */ |
|
1399 static int RLEAlphaSurface(SDL_Surface *surface) |
|
1400 { |
|
1401 SDL_Surface *dest; |
|
1402 SDL_PixelFormat *df; |
|
1403 int maxsize = 0; |
|
1404 int max_opaque_run; |
|
1405 int max_transl_run = 65535; |
|
1406 unsigned masksum; |
|
1407 Uint8 *rlebuf, *dst; |
|
1408 int (*copy_opaque)(void *, Uint32 *, int, |
|
1409 SDL_PixelFormat *, SDL_PixelFormat *); |
|
1410 int (*copy_transl)(void *, Uint32 *, int, |
|
1411 SDL_PixelFormat *, SDL_PixelFormat *); |
|
1412 |
|
1413 dest = surface->map->dst; |
|
1414 if(!dest) |
|
1415 return -1; |
|
1416 df = dest->format; |
|
1417 if(surface->format->BitsPerPixel != 32) |
|
1418 return -1; /* only 32bpp source supported */ |
|
1419 |
|
1420 /* find out whether the destination is one we support, |
|
1421 and determine the max size of the encoded result */ |
|
1422 masksum = df->Rmask | df->Gmask | df->Bmask; |
|
1423 switch(df->BytesPerPixel) { |
|
1424 case 2: |
|
1425 /* 16bpp: only support 565 and 555 formats */ |
|
1426 switch(masksum) { |
|
1427 case 0xffff: |
|
1428 if(df->Gmask == 0x07e0 |
|
1429 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { |
|
1430 copy_opaque = copy_opaque_16; |
|
1431 copy_transl = copy_transl_565; |
|
1432 } else |
|
1433 return -1; |
|
1434 break; |
|
1435 case 0x7fff: |
|
1436 if(df->Gmask == 0x03e0 |
|
1437 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) { |
|
1438 copy_opaque = copy_opaque_16; |
|
1439 copy_transl = copy_transl_555; |
|
1440 } else |
|
1441 return -1; |
|
1442 break; |
|
1443 default: |
|
1444 return -1; |
|
1445 } |
|
1446 max_opaque_run = 255; /* runs stored as bytes */ |
|
1447 |
|
1448 /* worst case is alternating opaque and translucent pixels, |
|
1449 with room for alignment padding between lines */ |
|
1450 maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2; |
|
1451 break; |
|
1452 case 4: |
|
1453 if(masksum != 0x00ffffff) |
|
1454 return -1; /* requires unused high byte */ |
|
1455 copy_opaque = copy_32; |
|
1456 copy_transl = copy_32; |
|
1457 max_opaque_run = 255; /* runs stored as short ints */ |
|
1458 |
|
1459 /* worst case is alternating opaque and translucent pixels */ |
|
1460 maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4; |
|
1461 break; |
|
1462 default: |
|
1463 return -1; /* anything else unsupported right now */ |
|
1464 } |
|
1465 |
|
1466 maxsize += sizeof(RLEDestFormat); |
|
1467 rlebuf = (Uint8 *)SDL_malloc(maxsize); |
|
1468 if(!rlebuf) { |
|
1469 SDL_OutOfMemory(); |
|
1470 return -1; |
|
1471 } |
|
1472 { |
|
1473 /* save the destination format so we can undo the encoding later */ |
|
1474 RLEDestFormat *r = (RLEDestFormat *)rlebuf; |
|
1475 r->BytesPerPixel = df->BytesPerPixel; |
|
1476 r->Rloss = df->Rloss; |
|
1477 r->Gloss = df->Gloss; |
|
1478 r->Bloss = df->Bloss; |
|
1479 r->Rshift = df->Rshift; |
|
1480 r->Gshift = df->Gshift; |
|
1481 r->Bshift = df->Bshift; |
|
1482 r->Ashift = df->Ashift; |
|
1483 r->Rmask = df->Rmask; |
|
1484 r->Gmask = df->Gmask; |
|
1485 r->Bmask = df->Bmask; |
|
1486 r->Amask = df->Amask; |
|
1487 } |
|
1488 dst = rlebuf + sizeof(RLEDestFormat); |
|
1489 |
|
1490 /* Do the actual encoding */ |
|
1491 { |
|
1492 int x, y; |
|
1493 int h = surface->h, w = surface->w; |
|
1494 SDL_PixelFormat *sf = surface->format; |
|
1495 Uint32 *src = (Uint32 *)surface->pixels; |
|
1496 Uint8 *lastline = dst; /* end of last non-blank line */ |
|
1497 |
|
1498 /* opaque counts are 8 or 16 bits, depending on target depth */ |
|
1499 #define ADD_OPAQUE_COUNTS(n, m) \ |
|
1500 if(df->BytesPerPixel == 4) { \ |
|
1501 ((Uint16 *)dst)[0] = n; \ |
|
1502 ((Uint16 *)dst)[1] = m; \ |
|
1503 dst += 4; \ |
|
1504 } else { \ |
|
1505 dst[0] = n; \ |
|
1506 dst[1] = m; \ |
|
1507 dst += 2; \ |
|
1508 } |
|
1509 |
|
1510 /* translucent counts are always 16 bit */ |
|
1511 #define ADD_TRANSL_COUNTS(n, m) \ |
|
1512 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4) |
|
1513 |
|
1514 for(y = 0; y < h; y++) { |
|
1515 int runstart, skipstart; |
|
1516 int blankline = 0; |
|
1517 /* First encode all opaque pixels of a scan line */ |
|
1518 x = 0; |
|
1519 do { |
|
1520 int run, skip, len; |
|
1521 skipstart = x; |
|
1522 while(x < w && !ISOPAQUE(src[x], sf)) |
|
1523 x++; |
|
1524 runstart = x; |
|
1525 while(x < w && ISOPAQUE(src[x], sf)) |
|
1526 x++; |
|
1527 skip = runstart - skipstart; |
|
1528 if(skip == w) |
|
1529 blankline = 1; |
|
1530 run = x - runstart; |
|
1531 while(skip > max_opaque_run) { |
|
1532 ADD_OPAQUE_COUNTS(max_opaque_run, 0); |
|
1533 skip -= max_opaque_run; |
|
1534 } |
|
1535 len = MIN(run, max_opaque_run); |
|
1536 ADD_OPAQUE_COUNTS(skip, len); |
|
1537 dst += copy_opaque(dst, src + runstart, len, sf, df); |
|
1538 runstart += len; |
|
1539 run -= len; |
|
1540 while(run) { |
|
1541 len = MIN(run, max_opaque_run); |
|
1542 ADD_OPAQUE_COUNTS(0, len); |
|
1543 dst += copy_opaque(dst, src + runstart, len, sf, df); |
|
1544 runstart += len; |
|
1545 run -= len; |
|
1546 } |
|
1547 } while(x < w); |
|
1548 |
|
1549 /* Make sure the next output address is 32-bit aligned */ |
|
1550 dst += (uintptr_t)dst & 2; |
|
1551 |
|
1552 /* Next, encode all translucent pixels of the same scan line */ |
|
1553 x = 0; |
|
1554 do { |
|
1555 int run, skip, len; |
|
1556 skipstart = x; |
|
1557 while(x < w && !ISTRANSL(src[x], sf)) |
|
1558 x++; |
|
1559 runstart = x; |
|
1560 while(x < w && ISTRANSL(src[x], sf)) |
|
1561 x++; |
|
1562 skip = runstart - skipstart; |
|
1563 blankline &= (skip == w); |
|
1564 run = x - runstart; |
|
1565 while(skip > max_transl_run) { |
|
1566 ADD_TRANSL_COUNTS(max_transl_run, 0); |
|
1567 skip -= max_transl_run; |
|
1568 } |
|
1569 len = MIN(run, max_transl_run); |
|
1570 ADD_TRANSL_COUNTS(skip, len); |
|
1571 dst += copy_transl(dst, src + runstart, len, sf, df); |
|
1572 runstart += len; |
|
1573 run -= len; |
|
1574 while(run) { |
|
1575 len = MIN(run, max_transl_run); |
|
1576 ADD_TRANSL_COUNTS(0, len); |
|
1577 dst += copy_transl(dst, src + runstart, len, sf, df); |
|
1578 runstart += len; |
|
1579 run -= len; |
|
1580 } |
|
1581 if(!blankline) |
|
1582 lastline = dst; |
|
1583 } while(x < w); |
|
1584 |
|
1585 src += surface->pitch >> 2; |
|
1586 } |
|
1587 dst = lastline; /* back up past trailing blank lines */ |
|
1588 ADD_OPAQUE_COUNTS(0, 0); |
|
1589 } |
|
1590 |
|
1591 #undef ADD_OPAQUE_COUNTS |
|
1592 #undef ADD_TRANSL_COUNTS |
|
1593 |
|
1594 /* Now that we have it encoded, release the original pixels */ |
|
1595 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
|
1596 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
|
1597 SDL_free( surface->pixels ); |
|
1598 surface->pixels = NULL; |
|
1599 } |
|
1600 |
|
1601 /* realloc the buffer to release unused memory */ |
|
1602 { |
|
1603 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf); |
|
1604 if(!p) |
|
1605 p = rlebuf; |
|
1606 surface->map->sw_data->aux_data = p; |
|
1607 } |
|
1608 |
|
1609 return 0; |
|
1610 } |
|
1611 |
|
1612 static Uint32 getpix_8(Uint8 *srcbuf) |
|
1613 { |
|
1614 return *srcbuf; |
|
1615 } |
|
1616 |
|
1617 static Uint32 getpix_16(Uint8 *srcbuf) |
|
1618 { |
|
1619 return *(Uint16 *)srcbuf; |
|
1620 } |
|
1621 |
|
1622 static Uint32 getpix_24(Uint8 *srcbuf) |
|
1623 { |
|
1624 #if SDL_BYTEORDER == SDL_LIL_ENDIAN |
|
1625 return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16); |
|
1626 #else |
|
1627 return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2]; |
|
1628 #endif |
|
1629 } |
|
1630 |
|
1631 static Uint32 getpix_32(Uint8 *srcbuf) |
|
1632 { |
|
1633 return *(Uint32 *)srcbuf; |
|
1634 } |
|
1635 |
|
1636 typedef Uint32 (*getpix_func)(Uint8 *); |
|
1637 |
|
1638 static getpix_func getpixes[4] = { |
|
1639 getpix_8, getpix_16, getpix_24, getpix_32 |
|
1640 }; |
|
1641 |
|
1642 static int RLEColorkeySurface(SDL_Surface *surface) |
|
1643 { |
|
1644 Uint8 *rlebuf, *dst; |
|
1645 int maxn; |
|
1646 int y; |
|
1647 Uint8 *srcbuf, *curbuf, *lastline; |
|
1648 int maxsize = 0; |
|
1649 int skip, run; |
|
1650 int bpp = surface->format->BytesPerPixel; |
|
1651 getpix_func getpix; |
|
1652 Uint32 ckey, rgbmask; |
|
1653 int w, h; |
|
1654 |
|
1655 /* calculate the worst case size for the compressed surface */ |
|
1656 switch(bpp) { |
|
1657 case 1: |
|
1658 /* worst case is alternating opaque and transparent pixels, |
|
1659 starting with an opaque pixel */ |
|
1660 maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2; |
|
1661 break; |
|
1662 case 2: |
|
1663 case 3: |
|
1664 /* worst case is solid runs, at most 255 pixels wide */ |
|
1665 maxsize = surface->h * (2 * (surface->w / 255 + 1) |
|
1666 + surface->w * bpp) + 2; |
|
1667 break; |
|
1668 case 4: |
|
1669 /* worst case is solid runs, at most 65535 pixels wide */ |
|
1670 maxsize = surface->h * (4 * (surface->w / 65535 + 1) |
|
1671 + surface->w * 4) + 4; |
|
1672 break; |
|
1673 } |
|
1674 |
|
1675 rlebuf = (Uint8 *)SDL_malloc(maxsize); |
|
1676 if ( rlebuf == NULL ) { |
|
1677 SDL_OutOfMemory(); |
|
1678 return(-1); |
|
1679 } |
|
1680 |
|
1681 /* Set up the conversion */ |
|
1682 srcbuf = (Uint8 *)surface->pixels; |
|
1683 curbuf = srcbuf; |
|
1684 maxn = bpp == 4 ? 65535 : 255; |
|
1685 skip = run = 0; |
|
1686 dst = rlebuf; |
|
1687 rgbmask = ~surface->format->Amask; |
|
1688 ckey = surface->format->colorkey & rgbmask; |
|
1689 lastline = dst; |
|
1690 getpix = getpixes[bpp - 1]; |
|
1691 w = surface->w; |
|
1692 h = surface->h; |
|
1693 |
|
1694 #define ADD_COUNTS(n, m) \ |
|
1695 if(bpp == 4) { \ |
|
1696 ((Uint16 *)dst)[0] = n; \ |
|
1697 ((Uint16 *)dst)[1] = m; \ |
|
1698 dst += 4; \ |
|
1699 } else { \ |
|
1700 dst[0] = n; \ |
|
1701 dst[1] = m; \ |
|
1702 dst += 2; \ |
|
1703 } |
|
1704 |
|
1705 for(y = 0; y < h; y++) { |
|
1706 int x = 0; |
|
1707 int blankline = 0; |
|
1708 do { |
|
1709 int run, skip, len; |
|
1710 int runstart; |
|
1711 int skipstart = x; |
|
1712 |
|
1713 /* find run of transparent, then opaque pixels */ |
|
1714 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey) |
|
1715 x++; |
|
1716 runstart = x; |
|
1717 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey) |
|
1718 x++; |
|
1719 skip = runstart - skipstart; |
|
1720 if(skip == w) |
|
1721 blankline = 1; |
|
1722 run = x - runstart; |
|
1723 |
|
1724 /* encode segment */ |
|
1725 while(skip > maxn) { |
|
1726 ADD_COUNTS(maxn, 0); |
|
1727 skip -= maxn; |
|
1728 } |
|
1729 len = MIN(run, maxn); |
|
1730 ADD_COUNTS(skip, len); |
|
1731 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp); |
|
1732 dst += len * bpp; |
|
1733 run -= len; |
|
1734 runstart += len; |
|
1735 while(run) { |
|
1736 len = MIN(run, maxn); |
|
1737 ADD_COUNTS(0, len); |
|
1738 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp); |
|
1739 dst += len * bpp; |
|
1740 runstart += len; |
|
1741 run -= len; |
|
1742 } |
|
1743 if(!blankline) |
|
1744 lastline = dst; |
|
1745 } while(x < w); |
|
1746 |
|
1747 srcbuf += surface->pitch; |
|
1748 } |
|
1749 dst = lastline; /* back up bast trailing blank lines */ |
|
1750 ADD_COUNTS(0, 0); |
|
1751 |
|
1752 #undef ADD_COUNTS |
|
1753 |
|
1754 /* Now that we have it encoded, release the original pixels */ |
|
1755 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
|
1756 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
|
1757 SDL_free( surface->pixels ); |
|
1758 surface->pixels = NULL; |
|
1759 } |
|
1760 |
|
1761 /* realloc the buffer to release unused memory */ |
|
1762 { |
|
1763 /* If realloc returns NULL, the original block is left intact */ |
|
1764 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf); |
|
1765 if(!p) |
|
1766 p = rlebuf; |
|
1767 surface->map->sw_data->aux_data = p; |
|
1768 } |
|
1769 |
|
1770 return(0); |
|
1771 } |
|
1772 |
|
1773 int SDL_RLESurface(SDL_Surface *surface) |
|
1774 { |
|
1775 int retcode; |
|
1776 |
|
1777 /* Clear any previous RLE conversion */ |
|
1778 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { |
|
1779 SDL_UnRLESurface(surface, 1); |
|
1780 } |
|
1781 |
|
1782 /* We don't support RLE encoding of bitmaps */ |
|
1783 if ( surface->format->BitsPerPixel < 8 ) { |
|
1784 return(-1); |
|
1785 } |
|
1786 |
|
1787 /* Lock the surface if it's in hardware */ |
|
1788 if ( SDL_MUSTLOCK(surface) ) { |
|
1789 if ( SDL_LockSurface(surface) < 0 ) { |
|
1790 return(-1); |
|
1791 } |
|
1792 } |
|
1793 |
|
1794 /* Encode */ |
|
1795 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { |
|
1796 retcode = RLEColorkeySurface(surface); |
|
1797 } else { |
|
1798 if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA |
|
1799 && surface->format->Amask != 0) |
|
1800 retcode = RLEAlphaSurface(surface); |
|
1801 else |
|
1802 retcode = -1; /* no RLE for per-surface alpha sans ckey */ |
|
1803 } |
|
1804 |
|
1805 /* Unlock the surface if it's in hardware */ |
|
1806 if ( SDL_MUSTLOCK(surface) ) { |
|
1807 SDL_UnlockSurface(surface); |
|
1808 } |
|
1809 |
|
1810 if(retcode < 0) |
|
1811 return -1; |
|
1812 |
|
1813 /* The surface is now accelerated */ |
|
1814 surface->flags |= SDL_RLEACCEL; |
|
1815 |
|
1816 return(0); |
|
1817 } |
|
1818 |
|
1819 /* |
|
1820 * Un-RLE a surface with pixel alpha |
|
1821 * This may not give back exactly the image before RLE-encoding; all |
|
1822 * completely transparent pixels will be lost, and colour and alpha depth |
|
1823 * may have been reduced (when encoding for 16bpp targets). |
|
1824 */ |
|
1825 static SDL_bool UnRLEAlpha(SDL_Surface *surface) |
|
1826 { |
|
1827 Uint8 *srcbuf; |
|
1828 Uint32 *dst; |
|
1829 SDL_PixelFormat *sf = surface->format; |
|
1830 RLEDestFormat *df = surface->map->sw_data->aux_data; |
|
1831 int (*uncopy_opaque)(Uint32 *, void *, int, |
|
1832 RLEDestFormat *, SDL_PixelFormat *); |
|
1833 int (*uncopy_transl)(Uint32 *, void *, int, |
|
1834 RLEDestFormat *, SDL_PixelFormat *); |
|
1835 int w = surface->w; |
|
1836 int bpp = df->BytesPerPixel; |
|
1837 |
|
1838 if(bpp == 2) { |
|
1839 uncopy_opaque = uncopy_opaque_16; |
|
1840 uncopy_transl = uncopy_transl_16; |
|
1841 } else { |
|
1842 uncopy_opaque = uncopy_transl = uncopy_32; |
|
1843 } |
|
1844 |
|
1845 surface->pixels = SDL_malloc(surface->h * surface->pitch); |
|
1846 if ( !surface->pixels ) { |
|
1847 return(SDL_FALSE); |
|
1848 } |
|
1849 /* fill background with transparent pixels */ |
|
1850 SDL_memset(surface->pixels, 0, surface->h * surface->pitch); |
|
1851 |
|
1852 dst = surface->pixels; |
|
1853 srcbuf = (Uint8 *)(df + 1); |
|
1854 for(;;) { |
|
1855 /* copy opaque pixels */ |
|
1856 int ofs = 0; |
|
1857 do { |
|
1858 unsigned run; |
|
1859 if(bpp == 2) { |
|
1860 ofs += srcbuf[0]; |
|
1861 run = srcbuf[1]; |
|
1862 srcbuf += 2; |
|
1863 } else { |
|
1864 ofs += ((Uint16 *)srcbuf)[0]; |
|
1865 run = ((Uint16 *)srcbuf)[1]; |
|
1866 srcbuf += 4; |
|
1867 } |
|
1868 if(run) { |
|
1869 srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf); |
|
1870 ofs += run; |
|
1871 } else if(!ofs) |
|
1872 return(SDL_TRUE); |
|
1873 } while(ofs < w); |
|
1874 |
|
1875 /* skip padding if needed */ |
|
1876 if(bpp == 2) |
|
1877 srcbuf += (uintptr_t)srcbuf & 2; |
|
1878 |
|
1879 /* copy translucent pixels */ |
|
1880 ofs = 0; |
|
1881 do { |
|
1882 unsigned run; |
|
1883 ofs += ((Uint16 *)srcbuf)[0]; |
|
1884 run = ((Uint16 *)srcbuf)[1]; |
|
1885 srcbuf += 4; |
|
1886 if(run) { |
|
1887 srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf); |
|
1888 ofs += run; |
|
1889 } |
|
1890 } while(ofs < w); |
|
1891 dst += surface->pitch >> 2; |
|
1892 } |
|
1893 /* Make the compiler happy */ |
|
1894 return(SDL_TRUE); |
|
1895 } |
|
1896 |
|
1897 void SDL_UnRLESurface(SDL_Surface *surface, int recode) |
|
1898 { |
|
1899 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { |
|
1900 surface->flags &= ~SDL_RLEACCEL; |
|
1901 |
|
1902 if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
|
1903 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
|
1904 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { |
|
1905 SDL_Rect full; |
|
1906 unsigned alpha_flag; |
|
1907 |
|
1908 /* re-create the original surface */ |
|
1909 surface->pixels = SDL_malloc(surface->h * surface->pitch); |
|
1910 if ( !surface->pixels ) { |
|
1911 /* Oh crap... */ |
|
1912 surface->flags |= SDL_RLEACCEL; |
|
1913 return; |
|
1914 } |
|
1915 |
|
1916 /* fill it with the background colour */ |
|
1917 SDL_FillRect(surface, NULL, surface->format->colorkey); |
|
1918 |
|
1919 /* now render the encoded surface */ |
|
1920 full.x = full.y = 0; |
|
1921 full.w = surface->w; |
|
1922 full.h = surface->h; |
|
1923 alpha_flag = surface->flags & SDL_SRCALPHA; |
|
1924 surface->flags &= ~SDL_SRCALPHA; /* opaque blit */ |
|
1925 SDL_RLEBlit(surface, &full, surface, &full); |
|
1926 surface->flags |= alpha_flag; |
|
1927 } else { |
|
1928 if ( !UnRLEAlpha(surface) ) { |
|
1929 /* Oh crap... */ |
|
1930 surface->flags |= SDL_RLEACCEL; |
|
1931 return; |
|
1932 } |
|
1933 } |
|
1934 } |
|
1935 |
|
1936 if ( surface->map && surface->map->sw_data->aux_data ) { |
|
1937 SDL_free(surface->map->sw_data->aux_data); |
|
1938 surface->map->sw_data->aux_data = NULL; |
|
1939 } |
|
1940 } |
|
1941 } |
|
1942 |
|
1943 |