symbian-qemu-0.9.1-12/python-2.6.1/Doc/library/collections.rst
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 
       
     2 :mod:`collections` --- High-performance container datatypes
       
     3 ===========================================================
       
     4 
       
     5 .. module:: collections
       
     6    :synopsis: High-performance datatypes
       
     7 .. moduleauthor:: Raymond Hettinger <python@rcn.com>
       
     8 .. sectionauthor:: Raymond Hettinger <python@rcn.com>
       
     9 
       
    10 .. versionadded:: 2.4
       
    11 
       
    12 .. testsetup:: *
       
    13 
       
    14    from collections import *
       
    15    import itertools
       
    16    __name__ = '<doctest>'
       
    17 
       
    18 This module implements high-performance container datatypes.  Currently,
       
    19 there are two datatypes, :class:`deque` and :class:`defaultdict`, and
       
    20 one datatype factory function, :func:`namedtuple`.
       
    21 
       
    22 .. versionchanged:: 2.5
       
    23    Added :class:`defaultdict`.
       
    24 
       
    25 .. versionchanged:: 2.6
       
    26    Added :func:`namedtuple`.
       
    27 
       
    28 The specialized containers provided in this module provide alternatives
       
    29 to Python's general purpose built-in containers, :class:`dict`,
       
    30 :class:`list`, :class:`set`, and :class:`tuple`.
       
    31 
       
    32 Besides the containers provided here, the optional :mod:`bsddb`
       
    33 module offers the ability to create in-memory or file based ordered
       
    34 dictionaries with string keys using the :meth:`bsddb.btopen` method.
       
    35 
       
    36 In addition to containers, the collections module provides some ABCs
       
    37 (abstract base classes) that can be used to test whether a class
       
    38 provides a particular interface, for example, is it hashable or
       
    39 a mapping.
       
    40 
       
    41 .. versionchanged:: 2.6
       
    42    Added abstract base classes.
       
    43 
       
    44 ABCs - abstract base classes
       
    45 ----------------------------
       
    46 
       
    47 The collections module offers the following ABCs:
       
    48 
       
    49 =========================  =====================  ======================  ====================================================
       
    50 ABC                        Inherits               Abstract Methods        Mixin Methods
       
    51 =========================  =====================  ======================  ====================================================
       
    52 :class:`Container`                                ``__contains__``
       
    53 :class:`Hashable`                                 ``__hash__``
       
    54 :class:`Iterable`                                 ``__iter__``
       
    55 :class:`Iterator`          :class:`Iterable`      ``__next__``            ``__iter__``
       
    56 :class:`Sized`          			  ``__len__``
       
    57 :class:`Callable`                                 ``__call__``
       
    58                                                   
       
    59 :class:`Sequence`          :class:`Sized`,        ``__getitem__``         ``__contains__``. ``__iter__``, ``__reversed__``.
       
    60                            :class:`Iterable`,     and ``__len__``         ``index``, and ``count``
       
    61                            :class:`Container`     
       
    62                                                   
       
    63 :class:`MutableSequnce`    :class:`Sequence`      ``__getitem__``         Inherited Sequence methods and
       
    64                                                   ``__delitem__``,        ``append``, ``reverse``, ``extend``, ``pop``,
       
    65                                                   ``insert``,             ``remove``, and ``__iadd__``
       
    66                                                   and ``__len__``
       
    67                                                   
       
    68 :class:`Set`               :class:`Sized`,        ``__len__``,            ``__le__``, ``__lt__``, ``__eq__``, ``__ne__``,
       
    69                            :class:`Iterable`,     ``__iter__``, and       ``__gt__``, ``__ge__``, ``__and__``, ``__or__``
       
    70                            :class:`Container`     ``__contains__``        ``__sub__``, ``__xor__``, and ``isdisjoint``
       
    71                                                   
       
    72 :class:`MutableSet`        :class:`Set`           ``add`` and             Inherited Set methods and
       
    73                                                   ``discard``             ``clear``, ``pop``, ``remove``, ``__ior__``,
       
    74                                                                           ``__iand__``, ``__ixor__``, and ``__isub__``
       
    75                                                   
       
    76 :class:`Mapping`           :class:`Sized`,        ``__getitem__``,        ``__contains__``, ``keys``, ``items``, ``values``,
       
    77                            :class:`Iterable`,     ``__len__``. and        ``get``, ``__eq__``, and ``__ne__``
       
    78                            :class:`Container`     ``__iter__``
       
    79                                                   
       
    80 :class:`MutableMapping`    :class:`Mapping`       ``__getitem__``         Inherited Mapping methods and
       
    81                                                   ``__setitem__``,        ``pop``, ``popitem``, ``clear``, ``update``,
       
    82                                                   ``__delitem__``,        and ``setdefault``
       
    83 						  ``__iter__``, and
       
    84                                                   ``__len__``
       
    85                                                   
       
    86 :class:`MappingView`       :class:`Sized`                                 ``__len__``
       
    87 :class:`KeysView`          :class:`MappingView`,                          ``__contains__``,
       
    88                            :class:`Set`                                   ``__iter__``
       
    89 :class:`ItemsView`         :class:`MappingView`,                          ``__contains__``,
       
    90                            :class:`Set`                                   ``__iter__``
       
    91 :class:`ValuesView`        :class:`MappingView`                           ``__contains__``, ``__iter__``
       
    92 =========================  =====================  ======================  ====================================================
       
    93 
       
    94 These ABCs allow us to ask classes or instances if they provide
       
    95 particular functionality, for example::
       
    96 
       
    97     size = None
       
    98     if isinstance(myvar, collections.Sized):
       
    99 	size = len(myvar)
       
   100 
       
   101 Several of the ABCs are also useful as mixins that make it easier to develop
       
   102 classes supporting container APIs.  For example, to write a class supporting
       
   103 the full :class:`Set` API, it only necessary to supply the three underlying
       
   104 abstract methods: :meth:`__contains__`, :meth:`__iter__`, and :meth:`__len__`.
       
   105 The ABC supplies the remaining methods such as :meth:`__and__` and
       
   106 :meth:`isdisjoint` ::
       
   107 
       
   108     class ListBasedSet(collections.Set):
       
   109          ''' Alternate set implementation favoring space over speed
       
   110              and not requiring the set elements to be hashable. '''
       
   111          def __init__(self, iterable):
       
   112              self.elements = lst = []
       
   113              for value in iterable:
       
   114                  if value not in lst:
       
   115                      lst.append(value)
       
   116          def __iter__(self):
       
   117              return iter(self.elements)
       
   118          def __contains__(self, value):
       
   119              return value in self.elements
       
   120          def __len__(self):
       
   121              return len(self.elements)
       
   122 
       
   123     s1 = ListBasedSet('abcdef')
       
   124     s2 = ListBasedSet('defghi')
       
   125     overlap = s1 & s2            # The __and__() method is supported automatically
       
   126 
       
   127 Notes on using :class:`Set` and :class:`MutableSet` as a mixin:
       
   128 
       
   129 (1)
       
   130    Since some set operations create new sets, the default mixin methods need
       
   131    a way to create new instances from an iterable. The class constructor is
       
   132    assumed to have a signature in the form ``ClassName(iterable)``.
       
   133    That assumption is factored-out to an internal classmethod called
       
   134    :meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set.
       
   135    If the :class:`Set` mixin is being used in a class with a different
       
   136    constructor signature, you will need to override :meth:`from_iterable`
       
   137    with a classmethod that can construct new instances from
       
   138    an iterable argument.
       
   139 
       
   140 (2)
       
   141    To override the comparisons (presumably for speed, as the
       
   142    semantics are fixed), redefine :meth:`__le__` and
       
   143    then the other operations will automatically follow suit.
       
   144 
       
   145 (3)
       
   146    The :class:`Set` mixin provides a :meth:`_hash` method to compute a hash value
       
   147    for the set; however, :meth:`__hash__` is not defined because not all sets
       
   148    are hashable or immutable.  To add set hashabilty using mixins,
       
   149    inherit from both :meth:`Set` and :meth:`Hashable`, then define
       
   150    ``__hash__ = Set._hash``.
       
   151 
       
   152 (For more about ABCs, see the :mod:`abc` module and :pep:`3119`.)
       
   153 
       
   154 
       
   155 
       
   156 .. _deque-objects:
       
   157 
       
   158 :class:`deque` objects
       
   159 ----------------------
       
   160 
       
   161 
       
   162 .. class:: deque([iterable[, maxlen]])
       
   163 
       
   164    Returns a new deque object initialized left-to-right (using :meth:`append`) with
       
   165    data from *iterable*.  If *iterable* is not specified, the new deque is empty.
       
   166 
       
   167    Deques are a generalization of stacks and queues (the name is pronounced "deck"
       
   168    and is short for "double-ended queue").  Deques support thread-safe, memory
       
   169    efficient appends and pops from either side of the deque with approximately the
       
   170    same O(1) performance in either direction.
       
   171 
       
   172    Though :class:`list` objects support similar operations, they are optimized for
       
   173    fast fixed-length operations and incur O(n) memory movement costs for
       
   174    ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
       
   175    position of the underlying data representation.
       
   176 
       
   177    .. versionadded:: 2.4
       
   178 
       
   179    If *maxlen* is not specified or is *None*, deques may grow to an
       
   180    arbitrary length.  Otherwise, the deque is bounded to the specified maximum
       
   181    length.  Once a bounded length deque is full, when new items are added, a
       
   182    corresponding number of items are discarded from the opposite end.  Bounded
       
   183    length deques provide functionality similar to the ``tail`` filter in
       
   184    Unix. They are also useful for tracking transactions and other pools of data
       
   185    where only the most recent activity is of interest.
       
   186 
       
   187    .. versionchanged:: 2.6
       
   188       Added *maxlen* parameter.
       
   189 
       
   190    Deque objects support the following methods:
       
   191 
       
   192 
       
   193    .. method:: append(x)
       
   194 
       
   195       Add *x* to the right side of the deque.
       
   196 
       
   197 
       
   198    .. method:: appendleft(x)
       
   199 
       
   200       Add *x* to the left side of the deque.
       
   201 
       
   202 
       
   203    .. method:: clear()
       
   204 
       
   205       Remove all elements from the deque leaving it with length 0.
       
   206 
       
   207 
       
   208    .. method:: extend(iterable)
       
   209 
       
   210       Extend the right side of the deque by appending elements from the iterable
       
   211       argument.
       
   212 
       
   213 
       
   214    .. method:: extendleft(iterable)
       
   215 
       
   216       Extend the left side of the deque by appending elements from *iterable*.
       
   217       Note, the series of left appends results in reversing the order of
       
   218       elements in the iterable argument.
       
   219 
       
   220 
       
   221    .. method:: pop()
       
   222 
       
   223       Remove and return an element from the right side of the deque. If no
       
   224       elements are present, raises an :exc:`IndexError`.
       
   225 
       
   226 
       
   227    .. method:: popleft()
       
   228 
       
   229       Remove and return an element from the left side of the deque. If no
       
   230       elements are present, raises an :exc:`IndexError`.
       
   231 
       
   232 
       
   233    .. method:: remove(value)
       
   234 
       
   235       Removed the first occurrence of *value*.  If not found, raises a
       
   236       :exc:`ValueError`.
       
   237 
       
   238       .. versionadded:: 2.5
       
   239 
       
   240 
       
   241    .. method:: rotate(n)
       
   242 
       
   243       Rotate the deque *n* steps to the right.  If *n* is negative, rotate to
       
   244       the left.  Rotating one step to the right is equivalent to:
       
   245       ``d.appendleft(d.pop())``.
       
   246 
       
   247 
       
   248 In addition to the above, deques support iteration, pickling, ``len(d)``,
       
   249 ``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
       
   250 the :keyword:`in` operator, and subscript references such as ``d[-1]``.  Indexed
       
   251 access is O(1) at both ends but slows to O(n) in the middle.  For fast random
       
   252 access, use lists instead.
       
   253 
       
   254 Example:
       
   255 
       
   256 .. doctest::
       
   257 
       
   258    >>> from collections import deque
       
   259    >>> d = deque('ghi')                 # make a new deque with three items
       
   260    >>> for elem in d:                   # iterate over the deque's elements
       
   261    ...     print elem.upper()
       
   262    G
       
   263    H
       
   264    I
       
   265 
       
   266    >>> d.append('j')                    # add a new entry to the right side
       
   267    >>> d.appendleft('f')                # add a new entry to the left side
       
   268    >>> d                                # show the representation of the deque
       
   269    deque(['f', 'g', 'h', 'i', 'j'])
       
   270 
       
   271    >>> d.pop()                          # return and remove the rightmost item
       
   272    'j'
       
   273    >>> d.popleft()                      # return and remove the leftmost item
       
   274    'f'
       
   275    >>> list(d)                          # list the contents of the deque
       
   276    ['g', 'h', 'i']
       
   277    >>> d[0]                             # peek at leftmost item
       
   278    'g'
       
   279    >>> d[-1]                            # peek at rightmost item
       
   280    'i'
       
   281 
       
   282    >>> list(reversed(d))                # list the contents of a deque in reverse
       
   283    ['i', 'h', 'g']
       
   284    >>> 'h' in d                         # search the deque
       
   285    True
       
   286    >>> d.extend('jkl')                  # add multiple elements at once
       
   287    >>> d
       
   288    deque(['g', 'h', 'i', 'j', 'k', 'l'])
       
   289    >>> d.rotate(1)                      # right rotation
       
   290    >>> d
       
   291    deque(['l', 'g', 'h', 'i', 'j', 'k'])
       
   292    >>> d.rotate(-1)                     # left rotation
       
   293    >>> d
       
   294    deque(['g', 'h', 'i', 'j', 'k', 'l'])
       
   295 
       
   296    >>> deque(reversed(d))               # make a new deque in reverse order
       
   297    deque(['l', 'k', 'j', 'i', 'h', 'g'])
       
   298    >>> d.clear()                        # empty the deque
       
   299    >>> d.pop()                          # cannot pop from an empty deque
       
   300    Traceback (most recent call last):
       
   301      File "<pyshell#6>", line 1, in -toplevel-
       
   302        d.pop()
       
   303    IndexError: pop from an empty deque
       
   304 
       
   305    >>> d.extendleft('abc')              # extendleft() reverses the input order
       
   306    >>> d
       
   307    deque(['c', 'b', 'a'])
       
   308 
       
   309 
       
   310 .. _deque-recipes:
       
   311 
       
   312 :class:`deque` Recipes
       
   313 ^^^^^^^^^^^^^^^^^^^^^^
       
   314 
       
   315 This section shows various approaches to working with deques.
       
   316 
       
   317 The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
       
   318 deletion.  For example, a pure python implementation of ``del d[n]`` relies on
       
   319 the :meth:`rotate` method to position elements to be popped::
       
   320 
       
   321    def delete_nth(d, n):
       
   322        d.rotate(-n)
       
   323        d.popleft()
       
   324        d.rotate(n)
       
   325 
       
   326 To implement :class:`deque` slicing, use a similar approach applying
       
   327 :meth:`rotate` to bring a target element to the left side of the deque. Remove
       
   328 old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
       
   329 reverse the rotation.
       
   330 With minor variations on that approach, it is easy to implement Forth style
       
   331 stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
       
   332 ``rot``, and ``roll``.
       
   333 
       
   334 Multi-pass data reduction algorithms can be succinctly expressed and efficiently
       
   335 coded by extracting elements with multiple calls to :meth:`popleft`, applying
       
   336 a reduction function, and calling :meth:`append` to add the result back to the
       
   337 deque.
       
   338 
       
   339 For example, building a balanced binary tree of nested lists entails reducing
       
   340 two adjacent nodes into one by grouping them in a list:
       
   341 
       
   342    >>> def maketree(iterable):
       
   343    ...     d = deque(iterable)
       
   344    ...     while len(d) > 1:
       
   345    ...         pair = [d.popleft(), d.popleft()]
       
   346    ...         d.append(pair)
       
   347    ...     return list(d)
       
   348    ...
       
   349    >>> print maketree('abcdefgh')
       
   350    [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
       
   351 
       
   352 Bounded length deques provide functionality similar to the ``tail`` filter
       
   353 in Unix::
       
   354 
       
   355    def tail(filename, n=10):
       
   356        'Return the last n lines of a file'
       
   357        return deque(open(filename), n)
       
   358 
       
   359 .. _defaultdict-objects:
       
   360 
       
   361 :class:`defaultdict` objects
       
   362 ----------------------------
       
   363 
       
   364 
       
   365 .. class:: defaultdict([default_factory[, ...]])
       
   366 
       
   367    Returns a new dictionary-like object.  :class:`defaultdict` is a subclass of the
       
   368    builtin :class:`dict` class.  It overrides one method and adds one writable
       
   369    instance variable.  The remaining functionality is the same as for the
       
   370    :class:`dict` class and is not documented here.
       
   371 
       
   372    The first argument provides the initial value for the :attr:`default_factory`
       
   373    attribute; it defaults to ``None``. All remaining arguments are treated the same
       
   374    as if they were passed to the :class:`dict` constructor, including keyword
       
   375    arguments.
       
   376 
       
   377    .. versionadded:: 2.5
       
   378 
       
   379    :class:`defaultdict` objects support the following method in addition to the
       
   380    standard :class:`dict` operations:
       
   381 
       
   382 
       
   383    .. method:: defaultdict.__missing__(key)
       
   384 
       
   385       If the :attr:`default_factory` attribute is ``None``, this raises a
       
   386       :exc:`KeyError` exception with the *key* as argument.
       
   387 
       
   388       If :attr:`default_factory` is not ``None``, it is called without arguments
       
   389       to provide a default value for the given *key*, this value is inserted in
       
   390       the dictionary for the *key*, and returned.
       
   391 
       
   392       If calling :attr:`default_factory` raises an exception this exception is
       
   393       propagated unchanged.
       
   394 
       
   395       This method is called by the :meth:`__getitem__` method of the
       
   396       :class:`dict` class when the requested key is not found; whatever it
       
   397       returns or raises is then returned or raised by :meth:`__getitem__`.
       
   398 
       
   399 
       
   400    :class:`defaultdict` objects support the following instance variable:
       
   401 
       
   402 
       
   403    .. attribute:: defaultdict.default_factory
       
   404 
       
   405       This attribute is used by the :meth:`__missing__` method; it is
       
   406       initialized from the first argument to the constructor, if present, or to
       
   407       ``None``, if absent.
       
   408 
       
   409 
       
   410 .. _defaultdict-examples:
       
   411 
       
   412 :class:`defaultdict` Examples
       
   413 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
       
   414 
       
   415 Using :class:`list` as the :attr:`default_factory`, it is easy to group a
       
   416 sequence of key-value pairs into a dictionary of lists:
       
   417 
       
   418    >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
       
   419    >>> d = defaultdict(list)
       
   420    >>> for k, v in s:
       
   421    ...     d[k].append(v)
       
   422    ...
       
   423    >>> d.items()
       
   424    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
       
   425 
       
   426 When each key is encountered for the first time, it is not already in the
       
   427 mapping; so an entry is automatically created using the :attr:`default_factory`
       
   428 function which returns an empty :class:`list`.  The :meth:`list.append`
       
   429 operation then attaches the value to the new list.  When keys are encountered
       
   430 again, the look-up proceeds normally (returning the list for that key) and the
       
   431 :meth:`list.append` operation adds another value to the list. This technique is
       
   432 simpler and faster than an equivalent technique using :meth:`dict.setdefault`:
       
   433 
       
   434    >>> d = {}
       
   435    >>> for k, v in s:
       
   436    ...     d.setdefault(k, []).append(v)
       
   437    ...
       
   438    >>> d.items()
       
   439    [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
       
   440 
       
   441 Setting the :attr:`default_factory` to :class:`int` makes the
       
   442 :class:`defaultdict` useful for counting (like a bag or multiset in other
       
   443 languages):
       
   444 
       
   445    >>> s = 'mississippi'
       
   446    >>> d = defaultdict(int)
       
   447    >>> for k in s:
       
   448    ...     d[k] += 1
       
   449    ...
       
   450    >>> d.items()
       
   451    [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
       
   452 
       
   453 When a letter is first encountered, it is missing from the mapping, so the
       
   454 :attr:`default_factory` function calls :func:`int` to supply a default count of
       
   455 zero.  The increment operation then builds up the count for each letter.
       
   456 
       
   457 The function :func:`int` which always returns zero is just a special case of
       
   458 constant functions.  A faster and more flexible way to create constant functions
       
   459 is to use :func:`itertools.repeat` which can supply any constant value (not just
       
   460 zero):
       
   461 
       
   462    >>> def constant_factory(value):
       
   463    ...     return itertools.repeat(value).next
       
   464    >>> d = defaultdict(constant_factory('<missing>'))
       
   465    >>> d.update(name='John', action='ran')
       
   466    >>> '%(name)s %(action)s to %(object)s' % d
       
   467    'John ran to <missing>'
       
   468 
       
   469 Setting the :attr:`default_factory` to :class:`set` makes the
       
   470 :class:`defaultdict` useful for building a dictionary of sets:
       
   471 
       
   472    >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
       
   473    >>> d = defaultdict(set)
       
   474    >>> for k, v in s:
       
   475    ...     d[k].add(v)
       
   476    ...
       
   477    >>> d.items()
       
   478    [('blue', set([2, 4])), ('red', set([1, 3]))]
       
   479 
       
   480 
       
   481 .. _named-tuple-factory:
       
   482 
       
   483 :func:`namedtuple` Factory Function for Tuples with Named Fields
       
   484 ----------------------------------------------------------------
       
   485 
       
   486 Named tuples assign meaning to each position in a tuple and allow for more readable,
       
   487 self-documenting code.  They can be used wherever regular tuples are used, and
       
   488 they add the ability to access fields by name instead of position index.
       
   489 
       
   490 .. function:: namedtuple(typename, fieldnames, [verbose])
       
   491 
       
   492    Returns a new tuple subclass named *typename*.  The new subclass is used to
       
   493    create tuple-like objects that have fields accessible by attribute lookup as
       
   494    well as being indexable and iterable.  Instances of the subclass also have a
       
   495    helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__`
       
   496    method which lists the tuple contents in a ``name=value`` format.
       
   497 
       
   498    The *fieldnames* are a single string with each fieldname separated by whitespace
       
   499    and/or commas, for example ``'x y'`` or ``'x, y'``.  Alternatively, *fieldnames*
       
   500    can be a sequence of strings such as ``['x', 'y']``.
       
   501 
       
   502    Any valid Python identifier may be used for a fieldname except for names
       
   503    starting with an underscore.  Valid identifiers consist of letters, digits,
       
   504    and underscores but do not start with a digit or underscore and cannot be
       
   505    a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*, *print*,
       
   506    or *raise*.
       
   507 
       
   508    If *verbose* is true, the class definition is printed just before being built.
       
   509 
       
   510    Named tuple instances do not have per-instance dictionaries, so they are
       
   511    lightweight and require no more memory than regular tuples.
       
   512 
       
   513    .. versionadded:: 2.6
       
   514 
       
   515 Example:
       
   516 
       
   517 .. doctest::
       
   518    :options: +NORMALIZE_WHITESPACE
       
   519 
       
   520    >>> Point = namedtuple('Point', 'x y', verbose=True)
       
   521    class Point(tuple):
       
   522            'Point(x, y)'
       
   523    <BLANKLINE>
       
   524            __slots__ = ()
       
   525    <BLANKLINE>
       
   526            _fields = ('x', 'y')
       
   527    <BLANKLINE>
       
   528            def __new__(cls, x, y):
       
   529                return tuple.__new__(cls, (x, y))
       
   530    <BLANKLINE>
       
   531            @classmethod
       
   532            def _make(cls, iterable, new=tuple.__new__, len=len):
       
   533                'Make a new Point object from a sequence or iterable'
       
   534                result = new(cls, iterable)
       
   535                if len(result) != 2:
       
   536                    raise TypeError('Expected 2 arguments, got %d' % len(result))
       
   537                return result
       
   538    <BLANKLINE>
       
   539            def __repr__(self):
       
   540                return 'Point(x=%r, y=%r)' % self
       
   541    <BLANKLINE>
       
   542            def _asdict(t):
       
   543                'Return a new dict which maps field names to their values'
       
   544                return {'x': t[0], 'y': t[1]}
       
   545    <BLANKLINE>
       
   546            def _replace(self, **kwds):
       
   547                'Return a new Point object replacing specified fields with new values'
       
   548                result = self._make(map(kwds.pop, ('x', 'y'), self))
       
   549                if kwds:
       
   550                    raise ValueError('Got unexpected field names: %r' % kwds.keys())
       
   551                return result
       
   552    <BLANKLINE>            
       
   553            def __getnewargs__(self): 
       
   554                return tuple(self)
       
   555    <BLANKLINE>
       
   556            x = property(itemgetter(0))
       
   557            y = property(itemgetter(1))
       
   558 
       
   559    >>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
       
   560    >>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
       
   561    33
       
   562    >>> x, y = p                # unpack like a regular tuple
       
   563    >>> x, y
       
   564    (11, 22)
       
   565    >>> p.x + p.y               # fields also accessible by name
       
   566    33
       
   567    >>> p                       # readable __repr__ with a name=value style
       
   568    Point(x=11, y=22)
       
   569 
       
   570 Named tuples are especially useful for assigning field names to result tuples returned
       
   571 by the :mod:`csv` or :mod:`sqlite3` modules::
       
   572 
       
   573    EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')
       
   574 
       
   575    import csv
       
   576    for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
       
   577        print emp.name, emp.title
       
   578 
       
   579    import sqlite3
       
   580    conn = sqlite3.connect('/companydata')
       
   581    cursor = conn.cursor()
       
   582    cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
       
   583    for emp in map(EmployeeRecord._make, cursor.fetchall()):
       
   584        print emp.name, emp.title
       
   585 
       
   586 In addition to the methods inherited from tuples, named tuples support
       
   587 three additional methods and one attribute.  To prevent conflicts with
       
   588 field names, the method and attribute names start with an underscore.
       
   589 
       
   590 .. method:: somenamedtuple._make(iterable)
       
   591 
       
   592    Class method that makes a new instance from an existing sequence or iterable.
       
   593 
       
   594 .. doctest::
       
   595 
       
   596       >>> t = [11, 22]
       
   597       >>> Point._make(t)
       
   598       Point(x=11, y=22)
       
   599 
       
   600 .. method:: somenamedtuple._asdict()
       
   601 
       
   602    Return a new dict which maps field names to their corresponding values::
       
   603 
       
   604       >>> p._asdict()
       
   605       {'x': 11, 'y': 22}
       
   606 
       
   607 .. method:: somenamedtuple._replace(kwargs)
       
   608 
       
   609    Return a new instance of the named tuple replacing specified fields with new
       
   610    values:
       
   611 
       
   612 ::
       
   613 
       
   614       >>> p = Point(x=11, y=22)
       
   615       >>> p._replace(x=33)
       
   616       Point(x=33, y=22)
       
   617 
       
   618       >>> for partnum, record in inventory.items():
       
   619       ...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
       
   620 
       
   621 .. attribute:: somenamedtuple._fields
       
   622 
       
   623    Tuple of strings listing the field names.  Useful for introspection
       
   624    and for creating new named tuple types from existing named tuples.
       
   625 
       
   626 .. doctest::
       
   627 
       
   628       >>> p._fields            # view the field names
       
   629       ('x', 'y')
       
   630 
       
   631       >>> Color = namedtuple('Color', 'red green blue')
       
   632       >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
       
   633       >>> Pixel(11, 22, 128, 255, 0)
       
   634       Pixel(x=11, y=22, red=128, green=255, blue=0)
       
   635 
       
   636 To retrieve a field whose name is stored in a string, use the :func:`getattr`
       
   637 function:
       
   638 
       
   639     >>> getattr(p, 'x')
       
   640     11
       
   641 
       
   642 To convert a dictionary to a named tuple, use the double-star-operator [#]_:
       
   643 
       
   644    >>> d = {'x': 11, 'y': 22}
       
   645    >>> Point(**d)
       
   646    Point(x=11, y=22)
       
   647 
       
   648 Since a named tuple is a regular Python class, it is easy to add or change
       
   649 functionality with a subclass.  Here is how to add a calculated field and
       
   650 a fixed-width print format:
       
   651 
       
   652     >>> class Point(namedtuple('Point', 'x y')):
       
   653     ...     __slots__ = ()
       
   654     ...     @property
       
   655     ...     def hypot(self):
       
   656     ...         return (self.x ** 2 + self.y ** 2) ** 0.5
       
   657     ...     def __str__(self):
       
   658     ...         return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)
       
   659 
       
   660     >>> for p in Point(3, 4), Point(14, 5/7.):
       
   661     ...     print p
       
   662     Point: x= 3.000  y= 4.000  hypot= 5.000
       
   663     Point: x=14.000  y= 0.714  hypot=14.018
       
   664 
       
   665 The subclass shown above sets ``__slots__`` to an empty tuple.  This keeps
       
   666 keep memory requirements low by preventing the creation of instance dictionaries.
       
   667 
       
   668 Subclassing is not useful for adding new, stored fields.  Instead, simply
       
   669 create a new named tuple type from the :attr:`_fields` attribute:
       
   670 
       
   671     >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
       
   672 
       
   673 Default values can be implemented by using :meth:`_replace` to
       
   674 customize a prototype instance:
       
   675 
       
   676     >>> Account = namedtuple('Account', 'owner balance transaction_count')
       
   677     >>> default_account = Account('<owner name>', 0.0, 0)
       
   678     >>> johns_account = default_account._replace(owner='John')
       
   679 
       
   680 Enumerated constants can be implemented with named tuples, but it is simpler
       
   681 and more efficient to use a simple class declaration:
       
   682 
       
   683     >>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
       
   684     >>> Status.open, Status.pending, Status.closed
       
   685     (0, 1, 2)
       
   686     >>> class Status:
       
   687     ...     open, pending, closed = range(3)
       
   688 
       
   689 .. rubric:: Footnotes
       
   690 
       
   691 .. [#] For information on the double-star-operator see
       
   692    :ref:`tut-unpacking-arguments` and :ref:`calls`.