symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_random.py
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 #!/usr/bin/env python
       
     2 
       
     3 import unittest
       
     4 import random
       
     5 import time
       
     6 import pickle
       
     7 import warnings
       
     8 from math import log, exp, sqrt, pi, fsum as msum
       
     9 from test import test_support
       
    10 
       
    11 class TestBasicOps(unittest.TestCase):
       
    12     # Superclass with tests common to all generators.
       
    13     # Subclasses must arrange for self.gen to retrieve the Random instance
       
    14     # to be tested.
       
    15 
       
    16     def randomlist(self, n):
       
    17         """Helper function to make a list of random numbers"""
       
    18         return [self.gen.random() for i in xrange(n)]
       
    19 
       
    20     def test_autoseed(self):
       
    21         self.gen.seed()
       
    22         state1 = self.gen.getstate()
       
    23         time.sleep(0.1)
       
    24         self.gen.seed()      # diffent seeds at different times
       
    25         state2 = self.gen.getstate()
       
    26         self.assertNotEqual(state1, state2)
       
    27 
       
    28     def test_saverestore(self):
       
    29         N = 1000
       
    30         self.gen.seed()
       
    31         state = self.gen.getstate()
       
    32         randseq = self.randomlist(N)
       
    33         self.gen.setstate(state)    # should regenerate the same sequence
       
    34         self.assertEqual(randseq, self.randomlist(N))
       
    35 
       
    36     def test_seedargs(self):
       
    37         for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
       
    38                     3.14, 1+2j, 'a', tuple('abc')]:
       
    39             self.gen.seed(arg)
       
    40         for arg in [range(3), dict(one=1)]:
       
    41             self.assertRaises(TypeError, self.gen.seed, arg)
       
    42         self.assertRaises(TypeError, self.gen.seed, 1, 2)
       
    43         self.assertRaises(TypeError, type(self.gen), [])
       
    44 
       
    45     def test_jumpahead(self):
       
    46         self.gen.seed()
       
    47         state1 = self.gen.getstate()
       
    48         self.gen.jumpahead(100)
       
    49         state2 = self.gen.getstate()    # s/b distinct from state1
       
    50         self.assertNotEqual(state1, state2)
       
    51         self.gen.jumpahead(100)
       
    52         state3 = self.gen.getstate()    # s/b distinct from state2
       
    53         self.assertNotEqual(state2, state3)
       
    54 
       
    55         self.assertRaises(TypeError, self.gen.jumpahead)  # needs an arg
       
    56         self.assertRaises(TypeError, self.gen.jumpahead, "ick")  # wrong type
       
    57         self.assertRaises(TypeError, self.gen.jumpahead, 2.3)  # wrong type
       
    58         self.assertRaises(TypeError, self.gen.jumpahead, 2, 3)  # too many
       
    59 
       
    60     def test_sample(self):
       
    61         # For the entire allowable range of 0 <= k <= N, validate that
       
    62         # the sample is of the correct length and contains only unique items
       
    63         N = 100
       
    64         population = xrange(N)
       
    65         for k in xrange(N+1):
       
    66             s = self.gen.sample(population, k)
       
    67             self.assertEqual(len(s), k)
       
    68             uniq = set(s)
       
    69             self.assertEqual(len(uniq), k)
       
    70             self.failUnless(uniq <= set(population))
       
    71         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
       
    72 
       
    73     def test_sample_distribution(self):
       
    74         # For the entire allowable range of 0 <= k <= N, validate that
       
    75         # sample generates all possible permutations
       
    76         n = 5
       
    77         pop = range(n)
       
    78         trials = 10000  # large num prevents false negatives without slowing normal case
       
    79         def factorial(n):
       
    80             return reduce(int.__mul__, xrange(1, n), 1)
       
    81         for k in xrange(n):
       
    82             expected = factorial(n) // factorial(n-k)
       
    83             perms = {}
       
    84             for i in xrange(trials):
       
    85                 perms[tuple(self.gen.sample(pop, k))] = None
       
    86                 if len(perms) == expected:
       
    87                     break
       
    88             else:
       
    89                 self.fail()
       
    90 
       
    91     def test_sample_inputs(self):
       
    92         # SF bug #801342 -- population can be any iterable defining __len__()
       
    93         self.gen.sample(set(range(20)), 2)
       
    94         self.gen.sample(range(20), 2)
       
    95         self.gen.sample(xrange(20), 2)
       
    96         self.gen.sample(str('abcdefghijklmnopqrst'), 2)
       
    97         self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
       
    98 
       
    99     def test_sample_on_dicts(self):
       
   100         self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
       
   101 
       
   102         # SF bug #1460340 -- random.sample can raise KeyError
       
   103         a = dict.fromkeys(range(10)+range(10,100,2)+range(100,110))
       
   104         self.gen.sample(a, 3)
       
   105 
       
   106         # A followup to bug #1460340:  sampling from a dict could return
       
   107         # a subset of its keys or of its values, depending on the size of
       
   108         # the subset requested.
       
   109         N = 30
       
   110         d = dict((i, complex(i, i)) for i in xrange(N))
       
   111         for k in xrange(N+1):
       
   112             samp = self.gen.sample(d, k)
       
   113             # Verify that we got ints back (keys); the values are complex.
       
   114             for x in samp:
       
   115                 self.assert_(type(x) is int)
       
   116         samp.sort()
       
   117         self.assertEqual(samp, range(N))
       
   118 
       
   119     def test_gauss(self):
       
   120         # Ensure that the seed() method initializes all the hidden state.  In
       
   121         # particular, through 2.2.1 it failed to reset a piece of state used
       
   122         # by (and only by) the .gauss() method.
       
   123 
       
   124         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
       
   125             self.gen.seed(seed)
       
   126             x1 = self.gen.random()
       
   127             y1 = self.gen.gauss(0, 1)
       
   128 
       
   129             self.gen.seed(seed)
       
   130             x2 = self.gen.random()
       
   131             y2 = self.gen.gauss(0, 1)
       
   132 
       
   133             self.assertEqual(x1, x2)
       
   134             self.assertEqual(y1, y2)
       
   135 
       
   136     def test_pickling(self):
       
   137         state = pickle.dumps(self.gen)
       
   138         origseq = [self.gen.random() for i in xrange(10)]
       
   139         newgen = pickle.loads(state)
       
   140         restoredseq = [newgen.random() for i in xrange(10)]
       
   141         self.assertEqual(origseq, restoredseq)
       
   142 
       
   143     def test_bug_1727780(self):
       
   144         # verify that version-2-pickles can be loaded
       
   145         # fine, whether they are created on 32-bit or 64-bit
       
   146         # platforms, and that version-3-pickles load fine.
       
   147         files = [("randv2_32.pck", 780),
       
   148                  ("randv2_64.pck", 866),
       
   149                  ("randv3.pck", 343)]
       
   150         for file, value in files:
       
   151             f = open(test_support.findfile(file),"rb")
       
   152             r = pickle.load(f)
       
   153             f.close()
       
   154             self.assertEqual(r.randrange(1000), value)
       
   155 
       
   156 class WichmannHill_TestBasicOps(TestBasicOps):
       
   157     gen = random.WichmannHill()
       
   158 
       
   159     def test_setstate_first_arg(self):
       
   160         self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
       
   161 
       
   162     def test_strong_jumpahead(self):
       
   163         # tests that jumpahead(n) semantics correspond to n calls to random()
       
   164         N = 1000
       
   165         s = self.gen.getstate()
       
   166         self.gen.jumpahead(N)
       
   167         r1 = self.gen.random()
       
   168         # now do it the slow way
       
   169         self.gen.setstate(s)
       
   170         for i in xrange(N):
       
   171             self.gen.random()
       
   172         r2 = self.gen.random()
       
   173         self.assertEqual(r1, r2)
       
   174 
       
   175     def test_gauss_with_whseed(self):
       
   176         # Ensure that the seed() method initializes all the hidden state.  In
       
   177         # particular, through 2.2.1 it failed to reset a piece of state used
       
   178         # by (and only by) the .gauss() method.
       
   179 
       
   180         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
       
   181             self.gen.whseed(seed)
       
   182             x1 = self.gen.random()
       
   183             y1 = self.gen.gauss(0, 1)
       
   184 
       
   185             self.gen.whseed(seed)
       
   186             x2 = self.gen.random()
       
   187             y2 = self.gen.gauss(0, 1)
       
   188 
       
   189             self.assertEqual(x1, x2)
       
   190             self.assertEqual(y1, y2)
       
   191 
       
   192     def test_bigrand(self):
       
   193         # Verify warnings are raised when randrange is too large for random()
       
   194         with warnings.catch_warnings():
       
   195             warnings.filterwarnings("error", "Underlying random")
       
   196             self.assertRaises(UserWarning, self.gen.randrange, 2**60)
       
   197 
       
   198 class SystemRandom_TestBasicOps(TestBasicOps):
       
   199     gen = random.SystemRandom()
       
   200 
       
   201     def test_autoseed(self):
       
   202         # Doesn't need to do anything except not fail
       
   203         self.gen.seed()
       
   204 
       
   205     def test_saverestore(self):
       
   206         self.assertRaises(NotImplementedError, self.gen.getstate)
       
   207         self.assertRaises(NotImplementedError, self.gen.setstate, None)
       
   208 
       
   209     def test_seedargs(self):
       
   210         # Doesn't need to do anything except not fail
       
   211         self.gen.seed(100)
       
   212 
       
   213     def test_jumpahead(self):
       
   214         # Doesn't need to do anything except not fail
       
   215         self.gen.jumpahead(100)
       
   216 
       
   217     def test_gauss(self):
       
   218         self.gen.gauss_next = None
       
   219         self.gen.seed(100)
       
   220         self.assertEqual(self.gen.gauss_next, None)
       
   221 
       
   222     def test_pickling(self):
       
   223         self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
       
   224 
       
   225     def test_53_bits_per_float(self):
       
   226         # This should pass whenever a C double has 53 bit precision.
       
   227         span = 2 ** 53
       
   228         cum = 0
       
   229         for i in xrange(100):
       
   230             cum |= int(self.gen.random() * span)
       
   231         self.assertEqual(cum, span-1)
       
   232 
       
   233     def test_bigrand(self):
       
   234         # The randrange routine should build-up the required number of bits
       
   235         # in stages so that all bit positions are active.
       
   236         span = 2 ** 500
       
   237         cum = 0
       
   238         for i in xrange(100):
       
   239             r = self.gen.randrange(span)
       
   240             self.assert_(0 <= r < span)
       
   241             cum |= r
       
   242         self.assertEqual(cum, span-1)
       
   243 
       
   244     def test_bigrand_ranges(self):
       
   245         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
       
   246             start = self.gen.randrange(2 ** i)
       
   247             stop = self.gen.randrange(2 ** (i-2))
       
   248             if stop <= start:
       
   249                 return
       
   250             self.assert_(start <= self.gen.randrange(start, stop) < stop)
       
   251 
       
   252     def test_rangelimits(self):
       
   253         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
       
   254             self.assertEqual(set(range(start,stop)),
       
   255                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
       
   256 
       
   257     def test_genrandbits(self):
       
   258         # Verify ranges
       
   259         for k in xrange(1, 1000):
       
   260             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
       
   261 
       
   262         # Verify all bits active
       
   263         getbits = self.gen.getrandbits
       
   264         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
       
   265             cum = 0
       
   266             for i in xrange(100):
       
   267                 cum |= getbits(span)
       
   268             self.assertEqual(cum, 2**span-1)
       
   269 
       
   270         # Verify argument checking
       
   271         self.assertRaises(TypeError, self.gen.getrandbits)
       
   272         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
       
   273         self.assertRaises(ValueError, self.gen.getrandbits, 0)
       
   274         self.assertRaises(ValueError, self.gen.getrandbits, -1)
       
   275         self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
       
   276 
       
   277     def test_randbelow_logic(self, _log=log, int=int):
       
   278         # check bitcount transition points:  2**i and 2**(i+1)-1
       
   279         # show that: k = int(1.001 + _log(n, 2))
       
   280         # is equal to or one greater than the number of bits in n
       
   281         for i in xrange(1, 1000):
       
   282             n = 1L << i # check an exact power of two
       
   283             numbits = i+1
       
   284             k = int(1.00001 + _log(n, 2))
       
   285             self.assertEqual(k, numbits)
       
   286             self.assert_(n == 2**(k-1))
       
   287 
       
   288             n += n - 1      # check 1 below the next power of two
       
   289             k = int(1.00001 + _log(n, 2))
       
   290             self.assert_(k in [numbits, numbits+1])
       
   291             self.assert_(2**k > n > 2**(k-2))
       
   292 
       
   293             n -= n >> 15     # check a little farther below the next power of two
       
   294             k = int(1.00001 + _log(n, 2))
       
   295             self.assertEqual(k, numbits)        # note the stronger assertion
       
   296             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
       
   297 
       
   298 
       
   299 class MersenneTwister_TestBasicOps(TestBasicOps):
       
   300     gen = random.Random()
       
   301 
       
   302     def test_setstate_first_arg(self):
       
   303         self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
       
   304 
       
   305     def test_setstate_middle_arg(self):
       
   306         # Wrong type, s/b tuple
       
   307         self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
       
   308         # Wrong length, s/b 625
       
   309         self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
       
   310         # Wrong type, s/b tuple of 625 ints
       
   311         self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
       
   312         # Last element s/b an int also
       
   313         self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
       
   314 
       
   315     def test_referenceImplementation(self):
       
   316         # Compare the python implementation with results from the original
       
   317         # code.  Create 2000 53-bit precision random floats.  Compare only
       
   318         # the last ten entries to show that the independent implementations
       
   319         # are tracking.  Here is the main() function needed to create the
       
   320         # list of expected random numbers:
       
   321         #    void main(void){
       
   322         #         int i;
       
   323         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
       
   324         #         init_by_array(init, length);
       
   325         #         for (i=0; i<2000; i++) {
       
   326         #           printf("%.15f ", genrand_res53());
       
   327         #           if (i%5==4) printf("\n");
       
   328         #         }
       
   329         #     }
       
   330         expected = [0.45839803073713259,
       
   331                     0.86057815201978782,
       
   332                     0.92848331726782152,
       
   333                     0.35932681119782461,
       
   334                     0.081823493762449573,
       
   335                     0.14332226470169329,
       
   336                     0.084297823823520024,
       
   337                     0.53814864671831453,
       
   338                     0.089215024911993401,
       
   339                     0.78486196105372907]
       
   340 
       
   341         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
       
   342         actual = self.randomlist(2000)[-10:]
       
   343         for a, e in zip(actual, expected):
       
   344             self.assertAlmostEqual(a,e,places=14)
       
   345 
       
   346     def test_strong_reference_implementation(self):
       
   347         # Like test_referenceImplementation, but checks for exact bit-level
       
   348         # equality.  This should pass on any box where C double contains
       
   349         # at least 53 bits of precision (the underlying algorithm suffers
       
   350         # no rounding errors -- all results are exact).
       
   351         from math import ldexp
       
   352 
       
   353         expected = [0x0eab3258d2231fL,
       
   354                     0x1b89db315277a5L,
       
   355                     0x1db622a5518016L,
       
   356                     0x0b7f9af0d575bfL,
       
   357                     0x029e4c4db82240L,
       
   358                     0x04961892f5d673L,
       
   359                     0x02b291598e4589L,
       
   360                     0x11388382c15694L,
       
   361                     0x02dad977c9e1feL,
       
   362                     0x191d96d4d334c6L]
       
   363         self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
       
   364         actual = self.randomlist(2000)[-10:]
       
   365         for a, e in zip(actual, expected):
       
   366             self.assertEqual(long(ldexp(a, 53)), e)
       
   367 
       
   368     def test_long_seed(self):
       
   369         # This is most interesting to run in debug mode, just to make sure
       
   370         # nothing blows up.  Under the covers, a dynamically resized array
       
   371         # is allocated, consuming space proportional to the number of bits
       
   372         # in the seed.  Unfortunately, that's a quadratic-time algorithm,
       
   373         # so don't make this horribly big.
       
   374         seed = (1L << (10000 * 8)) - 1  # about 10K bytes
       
   375         self.gen.seed(seed)
       
   376 
       
   377     def test_53_bits_per_float(self):
       
   378         # This should pass whenever a C double has 53 bit precision.
       
   379         span = 2 ** 53
       
   380         cum = 0
       
   381         for i in xrange(100):
       
   382             cum |= int(self.gen.random() * span)
       
   383         self.assertEqual(cum, span-1)
       
   384 
       
   385     def test_bigrand(self):
       
   386         # The randrange routine should build-up the required number of bits
       
   387         # in stages so that all bit positions are active.
       
   388         span = 2 ** 500
       
   389         cum = 0
       
   390         for i in xrange(100):
       
   391             r = self.gen.randrange(span)
       
   392             self.assert_(0 <= r < span)
       
   393             cum |= r
       
   394         self.assertEqual(cum, span-1)
       
   395 
       
   396     def test_bigrand_ranges(self):
       
   397         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
       
   398             start = self.gen.randrange(2 ** i)
       
   399             stop = self.gen.randrange(2 ** (i-2))
       
   400             if stop <= start:
       
   401                 return
       
   402             self.assert_(start <= self.gen.randrange(start, stop) < stop)
       
   403 
       
   404     def test_rangelimits(self):
       
   405         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
       
   406             self.assertEqual(set(range(start,stop)),
       
   407                 set([self.gen.randrange(start,stop) for i in xrange(100)]))
       
   408 
       
   409     def test_genrandbits(self):
       
   410         # Verify cross-platform repeatability
       
   411         self.gen.seed(1234567)
       
   412         self.assertEqual(self.gen.getrandbits(100),
       
   413                          97904845777343510404718956115L)
       
   414         # Verify ranges
       
   415         for k in xrange(1, 1000):
       
   416             self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
       
   417 
       
   418         # Verify all bits active
       
   419         getbits = self.gen.getrandbits
       
   420         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
       
   421             cum = 0
       
   422             for i in xrange(100):
       
   423                 cum |= getbits(span)
       
   424             self.assertEqual(cum, 2**span-1)
       
   425 
       
   426         # Verify argument checking
       
   427         self.assertRaises(TypeError, self.gen.getrandbits)
       
   428         self.assertRaises(TypeError, self.gen.getrandbits, 'a')
       
   429         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
       
   430         self.assertRaises(ValueError, self.gen.getrandbits, 0)
       
   431         self.assertRaises(ValueError, self.gen.getrandbits, -1)
       
   432 
       
   433     def test_randbelow_logic(self, _log=log, int=int):
       
   434         # check bitcount transition points:  2**i and 2**(i+1)-1
       
   435         # show that: k = int(1.001 + _log(n, 2))
       
   436         # is equal to or one greater than the number of bits in n
       
   437         for i in xrange(1, 1000):
       
   438             n = 1L << i # check an exact power of two
       
   439             numbits = i+1
       
   440             k = int(1.00001 + _log(n, 2))
       
   441             self.assertEqual(k, numbits)
       
   442             self.assert_(n == 2**(k-1))
       
   443 
       
   444             n += n - 1      # check 1 below the next power of two
       
   445             k = int(1.00001 + _log(n, 2))
       
   446             self.assert_(k in [numbits, numbits+1])
       
   447             self.assert_(2**k > n > 2**(k-2))
       
   448 
       
   449             n -= n >> 15     # check a little farther below the next power of two
       
   450             k = int(1.00001 + _log(n, 2))
       
   451             self.assertEqual(k, numbits)        # note the stronger assertion
       
   452             self.assert_(2**k > n > 2**(k-1))   # note the stronger assertion
       
   453 
       
   454     def test_randrange_bug_1590891(self):
       
   455         start = 1000000000000
       
   456         stop = -100000000000000000000
       
   457         step = -200
       
   458         x = self.gen.randrange(start, stop, step)
       
   459         self.assert_(stop < x <= start)
       
   460         self.assertEqual((x+stop)%step, 0)
       
   461 
       
   462 _gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
       
   463               771.3234287757674,  -176.6150291498386, 12.50734324009056,
       
   464               -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
       
   465 
       
   466 def gamma(z, cof=_gammacoeff, g=7):
       
   467     z -= 1.0
       
   468     s = msum([cof[0]] + [cof[i] / (z+i) for i in range(1,len(cof))])
       
   469     z += 0.5
       
   470     return (z+g)**z / exp(z+g) * sqrt(2.0*pi) * s
       
   471 
       
   472 class TestDistributions(unittest.TestCase):
       
   473     def test_zeroinputs(self):
       
   474         # Verify that distributions can handle a series of zero inputs'
       
   475         g = random.Random()
       
   476         x = [g.random() for i in xrange(50)] + [0.0]*5
       
   477         g.random = x[:].pop; g.uniform(1,10)
       
   478         g.random = x[:].pop; g.paretovariate(1.0)
       
   479         g.random = x[:].pop; g.expovariate(1.0)
       
   480         g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
       
   481         g.random = x[:].pop; g.normalvariate(0.0, 1.0)
       
   482         g.random = x[:].pop; g.gauss(0.0, 1.0)
       
   483         g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
       
   484         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
       
   485         g.random = x[:].pop; g.gammavariate(0.01, 1.0)
       
   486         g.random = x[:].pop; g.gammavariate(1.0, 1.0)
       
   487         g.random = x[:].pop; g.gammavariate(200.0, 1.0)
       
   488         g.random = x[:].pop; g.betavariate(3.0, 3.0)
       
   489         g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
       
   490 
       
   491     def test_avg_std(self):
       
   492         # Use integration to test distribution average and standard deviation.
       
   493         # Only works for distributions which do not consume variates in pairs
       
   494         g = random.Random()
       
   495         N = 5000
       
   496         x = [i/float(N) for i in xrange(1,N)]
       
   497         for variate, args, mu, sigmasqrd in [
       
   498                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
       
   499                 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
       
   500                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
       
   501                 (g.paretovariate, (5.0,), 5.0/(5.0-1),
       
   502                                   5.0/((5.0-1)**2*(5.0-2))),
       
   503                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
       
   504                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
       
   505             g.random = x[:].pop
       
   506             y = []
       
   507             for i in xrange(len(x)):
       
   508                 try:
       
   509                     y.append(variate(*args))
       
   510                 except IndexError:
       
   511                     pass
       
   512             s1 = s2 = 0
       
   513             for e in y:
       
   514                 s1 += e
       
   515                 s2 += (e - mu) ** 2
       
   516             N = len(y)
       
   517             self.assertAlmostEqual(s1/N, mu, 2)
       
   518             self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
       
   519 
       
   520 class TestModule(unittest.TestCase):
       
   521     def testMagicConstants(self):
       
   522         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
       
   523         self.assertAlmostEqual(random.TWOPI, 6.28318530718)
       
   524         self.assertAlmostEqual(random.LOG4, 1.38629436111989)
       
   525         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
       
   526 
       
   527     def test__all__(self):
       
   528         # tests validity but not completeness of the __all__ list
       
   529         self.failUnless(set(random.__all__) <= set(dir(random)))
       
   530 
       
   531     def test_random_subclass_with_kwargs(self):
       
   532         # SF bug #1486663 -- this used to erroneously raise a TypeError
       
   533         class Subclass(random.Random):
       
   534             def __init__(self, newarg=None):
       
   535                 random.Random.__init__(self)
       
   536         Subclass(newarg=1)
       
   537 
       
   538 
       
   539 def test_main(verbose=None):
       
   540     testclasses =    [WichmannHill_TestBasicOps,
       
   541                       MersenneTwister_TestBasicOps,
       
   542                       TestDistributions,
       
   543                       TestModule]
       
   544 
       
   545     try:
       
   546         random.SystemRandom().random()
       
   547     except NotImplementedError:
       
   548         pass
       
   549     else:
       
   550         testclasses.append(SystemRandom_TestBasicOps)
       
   551 
       
   552     test_support.run_unittest(*testclasses)
       
   553 
       
   554     # verify reference counting
       
   555     import sys
       
   556     if verbose and hasattr(sys, "gettotalrefcount"):
       
   557         counts = [None] * 5
       
   558         for i in xrange(len(counts)):
       
   559             test_support.run_unittest(*testclasses)
       
   560             counts[i] = sys.gettotalrefcount()
       
   561         print counts
       
   562 
       
   563 if __name__ == "__main__":
       
   564     test_main(verbose=True)