symbian-qemu-0.9.1-12/python-2.6.1/Parser/pgen.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /* Parser generator */
       
     2 
       
     3 /* For a description, see the comments at end of this file */
       
     4 
       
     5 #include "Python.h"
       
     6 #include "pgenheaders.h"
       
     7 #include "token.h"
       
     8 #include "node.h"
       
     9 #include "grammar.h"
       
    10 #include "metagrammar.h"
       
    11 #include "pgen.h"
       
    12 
       
    13 extern int Py_DebugFlag;
       
    14 extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
       
    15 
       
    16 
       
    17 /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
       
    18 
       
    19 typedef struct _nfaarc {
       
    20 	int	ar_label;
       
    21 	int	ar_arrow;
       
    22 } nfaarc;
       
    23 
       
    24 typedef struct _nfastate {
       
    25 	int	st_narcs;
       
    26 	nfaarc	*st_arc;
       
    27 } nfastate;
       
    28 
       
    29 typedef struct _nfa {
       
    30 	int		nf_type;
       
    31 	char		*nf_name;
       
    32 	int		nf_nstates;
       
    33 	nfastate	*nf_state;
       
    34 	int		nf_start, nf_finish;
       
    35 } nfa;
       
    36 
       
    37 /* Forward */
       
    38 static void compile_rhs(labellist *ll,
       
    39 			nfa *nf, node *n, int *pa, int *pb);
       
    40 static void compile_alt(labellist *ll,
       
    41 			nfa *nf, node *n, int *pa, int *pb);
       
    42 static void compile_item(labellist *ll,
       
    43 			 nfa *nf, node *n, int *pa, int *pb);
       
    44 static void compile_atom(labellist *ll,
       
    45 			 nfa *nf, node *n, int *pa, int *pb);
       
    46 
       
    47 static int
       
    48 addnfastate(nfa *nf)
       
    49 {
       
    50 	nfastate *st;
       
    51 	
       
    52 	nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state, 
       
    53                                     sizeof(nfastate) * (nf->nf_nstates + 1));
       
    54 	if (nf->nf_state == NULL)
       
    55 		Py_FatalError("out of mem");
       
    56 	st = &nf->nf_state[nf->nf_nstates++];
       
    57 	st->st_narcs = 0;
       
    58 	st->st_arc = NULL;
       
    59 	return st - nf->nf_state;
       
    60 }
       
    61 
       
    62 static void
       
    63 addnfaarc(nfa *nf, int from, int to, int lbl)
       
    64 {
       
    65 	nfastate *st;
       
    66 	nfaarc *ar;
       
    67 	
       
    68 	st = &nf->nf_state[from];
       
    69 	st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
       
    70 				      sizeof(nfaarc) * (st->st_narcs + 1));
       
    71 	if (st->st_arc == NULL)
       
    72 		Py_FatalError("out of mem");
       
    73 	ar = &st->st_arc[st->st_narcs++];
       
    74 	ar->ar_label = lbl;
       
    75 	ar->ar_arrow = to;
       
    76 }
       
    77 
       
    78 static nfa *
       
    79 newnfa(char *name)
       
    80 {
       
    81 	nfa *nf;
       
    82 	static int type = NT_OFFSET; /* All types will be disjunct */
       
    83 	
       
    84 	nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
       
    85 	if (nf == NULL)
       
    86 		Py_FatalError("no mem for new nfa");
       
    87 	nf->nf_type = type++;
       
    88 	nf->nf_name = name; /* XXX strdup(name) ??? */
       
    89 	nf->nf_nstates = 0;
       
    90 	nf->nf_state = NULL;
       
    91 	nf->nf_start = nf->nf_finish = -1;
       
    92 	return nf;
       
    93 }
       
    94 
       
    95 typedef struct _nfagrammar {
       
    96 	int		gr_nnfas;
       
    97 	nfa		**gr_nfa;
       
    98 	labellist	gr_ll;
       
    99 } nfagrammar;
       
   100 
       
   101 /* Forward */
       
   102 static void compile_rule(nfagrammar *gr, node *n);
       
   103 
       
   104 static nfagrammar *
       
   105 newnfagrammar(void)
       
   106 {
       
   107 	nfagrammar *gr;
       
   108 	
       
   109 	gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
       
   110 	if (gr == NULL)
       
   111 		Py_FatalError("no mem for new nfa grammar");
       
   112 	gr->gr_nnfas = 0;
       
   113 	gr->gr_nfa = NULL;
       
   114 	gr->gr_ll.ll_nlabels = 0;
       
   115 	gr->gr_ll.ll_label = NULL;
       
   116 	addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
       
   117 	return gr;
       
   118 }
       
   119 
       
   120 static nfa *
       
   121 addnfa(nfagrammar *gr, char *name)
       
   122 {
       
   123 	nfa *nf;
       
   124 	
       
   125 	nf = newnfa(name);
       
   126 	gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
       
   127 				      sizeof(nfa*) * (gr->gr_nnfas + 1));
       
   128 	if (gr->gr_nfa == NULL)
       
   129 		Py_FatalError("out of mem");
       
   130 	gr->gr_nfa[gr->gr_nnfas++] = nf;
       
   131 	addlabel(&gr->gr_ll, NAME, nf->nf_name);
       
   132 	return nf;
       
   133 }
       
   134 
       
   135 #ifdef Py_DEBUG
       
   136 
       
   137 static char REQNFMT[] = "metacompile: less than %d children\n";
       
   138 
       
   139 #define REQN(i, count) \
       
   140  	if (i < count) { \
       
   141 		fprintf(stderr, REQNFMT, count); \
       
   142 		Py_FatalError("REQN"); \
       
   143 	} else
       
   144 
       
   145 #else
       
   146 #define REQN(i, count)	/* empty */
       
   147 #endif
       
   148 
       
   149 static nfagrammar *
       
   150 metacompile(node *n)
       
   151 {
       
   152 	nfagrammar *gr;
       
   153 	int i;
       
   154 
       
   155 	if (Py_DebugFlag)
       
   156 		printf("Compiling (meta-) parse tree into NFA grammar\n");
       
   157 	gr = newnfagrammar();
       
   158 	REQ(n, MSTART);
       
   159 	i = n->n_nchildren - 1; /* Last child is ENDMARKER */
       
   160 	n = n->n_child;
       
   161 	for (; --i >= 0; n++) {
       
   162 		if (n->n_type != NEWLINE)
       
   163 			compile_rule(gr, n);
       
   164 	}
       
   165 	return gr;
       
   166 }
       
   167 
       
   168 static void
       
   169 compile_rule(nfagrammar *gr, node *n)
       
   170 {
       
   171 	nfa *nf;
       
   172 	
       
   173 	REQ(n, RULE);
       
   174 	REQN(n->n_nchildren, 4);
       
   175 	n = n->n_child;
       
   176 	REQ(n, NAME);
       
   177 	nf = addnfa(gr, n->n_str);
       
   178 	n++;
       
   179 	REQ(n, COLON);
       
   180 	n++;
       
   181 	REQ(n, RHS);
       
   182 	compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
       
   183 	n++;
       
   184 	REQ(n, NEWLINE);
       
   185 }
       
   186 
       
   187 static void
       
   188 compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
       
   189 {
       
   190 	int i;
       
   191 	int a, b;
       
   192 	
       
   193 	REQ(n, RHS);
       
   194 	i = n->n_nchildren;
       
   195 	REQN(i, 1);
       
   196 	n = n->n_child;
       
   197 	REQ(n, ALT);
       
   198 	compile_alt(ll, nf, n, pa, pb);
       
   199 	if (--i <= 0)
       
   200 		return;
       
   201 	n++;
       
   202 	a = *pa;
       
   203 	b = *pb;
       
   204 	*pa = addnfastate(nf);
       
   205 	*pb = addnfastate(nf);
       
   206 	addnfaarc(nf, *pa, a, EMPTY);
       
   207 	addnfaarc(nf, b, *pb, EMPTY);
       
   208 	for (; --i >= 0; n++) {
       
   209 		REQ(n, VBAR);
       
   210 		REQN(i, 1);
       
   211 		--i;
       
   212 		n++;
       
   213 		REQ(n, ALT);
       
   214 		compile_alt(ll, nf, n, &a, &b);
       
   215 		addnfaarc(nf, *pa, a, EMPTY);
       
   216 		addnfaarc(nf, b, *pb, EMPTY);
       
   217 	}
       
   218 }
       
   219 
       
   220 static void
       
   221 compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
       
   222 {
       
   223 	int i;
       
   224 	int a, b;
       
   225 	
       
   226 	REQ(n, ALT);
       
   227 	i = n->n_nchildren;
       
   228 	REQN(i, 1);
       
   229 	n = n->n_child;
       
   230 	REQ(n, ITEM);
       
   231 	compile_item(ll, nf, n, pa, pb);
       
   232 	--i;
       
   233 	n++;
       
   234 	for (; --i >= 0; n++) {
       
   235 		REQ(n, ITEM);
       
   236 		compile_item(ll, nf, n, &a, &b);
       
   237 		addnfaarc(nf, *pb, a, EMPTY);
       
   238 		*pb = b;
       
   239 	}
       
   240 }
       
   241 
       
   242 static void
       
   243 compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
       
   244 {
       
   245 	int i;
       
   246 	int a, b;
       
   247 	
       
   248 	REQ(n, ITEM);
       
   249 	i = n->n_nchildren;
       
   250 	REQN(i, 1);
       
   251 	n = n->n_child;
       
   252 	if (n->n_type == LSQB) {
       
   253 		REQN(i, 3);
       
   254 		n++;
       
   255 		REQ(n, RHS);
       
   256 		*pa = addnfastate(nf);
       
   257 		*pb = addnfastate(nf);
       
   258 		addnfaarc(nf, *pa, *pb, EMPTY);
       
   259 		compile_rhs(ll, nf, n, &a, &b);
       
   260 		addnfaarc(nf, *pa, a, EMPTY);
       
   261 		addnfaarc(nf, b, *pb, EMPTY);
       
   262 		REQN(i, 1);
       
   263 		n++;
       
   264 		REQ(n, RSQB);
       
   265 	}
       
   266 	else {
       
   267 		compile_atom(ll, nf, n, pa, pb);
       
   268 		if (--i <= 0)
       
   269 			return;
       
   270 		n++;
       
   271 		addnfaarc(nf, *pb, *pa, EMPTY);
       
   272 		if (n->n_type == STAR)
       
   273 			*pb = *pa;
       
   274 		else
       
   275 			REQ(n, PLUS);
       
   276 	}
       
   277 }
       
   278 
       
   279 static void
       
   280 compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
       
   281 {
       
   282 	int i;
       
   283 	
       
   284 	REQ(n, ATOM);
       
   285 	i = n->n_nchildren;
       
   286 	REQN(i, 1);
       
   287 	n = n->n_child;
       
   288 	if (n->n_type == LPAR) {
       
   289 		REQN(i, 3);
       
   290 		n++;
       
   291 		REQ(n, RHS);
       
   292 		compile_rhs(ll, nf, n, pa, pb);
       
   293 		n++;
       
   294 		REQ(n, RPAR);
       
   295 	}
       
   296 	else if (n->n_type == NAME || n->n_type == STRING) {
       
   297 		*pa = addnfastate(nf);
       
   298 		*pb = addnfastate(nf);
       
   299 		addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
       
   300 	}
       
   301 	else
       
   302 		REQ(n, NAME);
       
   303 }
       
   304 
       
   305 static void
       
   306 dumpstate(labellist *ll, nfa *nf, int istate)
       
   307 {
       
   308 	nfastate *st;
       
   309 	int i;
       
   310 	nfaarc *ar;
       
   311 	
       
   312 	printf("%c%2d%c",
       
   313 		istate == nf->nf_start ? '*' : ' ',
       
   314 		istate,
       
   315 		istate == nf->nf_finish ? '.' : ' ');
       
   316 	st = &nf->nf_state[istate];
       
   317 	ar = st->st_arc;
       
   318 	for (i = 0; i < st->st_narcs; i++) {
       
   319 		if (i > 0)
       
   320 			printf("\n    ");
       
   321 		printf("-> %2d  %s", ar->ar_arrow,
       
   322 			PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
       
   323 		ar++;
       
   324 	}
       
   325 	printf("\n");
       
   326 }
       
   327 
       
   328 static void
       
   329 dumpnfa(labellist *ll, nfa *nf)
       
   330 {
       
   331 	int i;
       
   332 	
       
   333 	printf("NFA '%s' has %d states; start %d, finish %d\n",
       
   334 		nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
       
   335 	for (i = 0; i < nf->nf_nstates; i++)
       
   336 		dumpstate(ll, nf, i);
       
   337 }
       
   338 
       
   339 
       
   340 /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
       
   341 
       
   342 static void
       
   343 addclosure(bitset ss, nfa *nf, int istate)
       
   344 {
       
   345 	if (addbit(ss, istate)) {
       
   346 		nfastate *st = &nf->nf_state[istate];
       
   347 		nfaarc *ar = st->st_arc;
       
   348 		int i;
       
   349 		
       
   350 		for (i = st->st_narcs; --i >= 0; ) {
       
   351 			if (ar->ar_label == EMPTY)
       
   352 				addclosure(ss, nf, ar->ar_arrow);
       
   353 			ar++;
       
   354 		}
       
   355 	}
       
   356 }
       
   357 
       
   358 typedef struct _ss_arc {
       
   359 	bitset	sa_bitset;
       
   360 	int	sa_arrow;
       
   361 	int	sa_label;
       
   362 } ss_arc;
       
   363 
       
   364 typedef struct _ss_state {
       
   365 	bitset	ss_ss;
       
   366 	int	ss_narcs;
       
   367 	struct _ss_arc	*ss_arc;
       
   368 	int	ss_deleted;
       
   369 	int	ss_finish;
       
   370 	int	ss_rename;
       
   371 } ss_state;
       
   372 
       
   373 typedef struct _ss_dfa {
       
   374 	int	sd_nstates;
       
   375 	ss_state *sd_state;
       
   376 } ss_dfa;
       
   377 
       
   378 /* Forward */
       
   379 static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
       
   380 		       labellist *ll, char *msg);
       
   381 static void simplify(int xx_nstates, ss_state *xx_state);
       
   382 static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
       
   383 
       
   384 static void
       
   385 makedfa(nfagrammar *gr, nfa *nf, dfa *d)
       
   386 {
       
   387 	int nbits = nf->nf_nstates;
       
   388 	bitset ss;
       
   389 	int xx_nstates;
       
   390 	ss_state *xx_state, *yy;
       
   391 	ss_arc *zz;
       
   392 	int istate, jstate, iarc, jarc, ibit;
       
   393 	nfastate *st;
       
   394 	nfaarc *ar;
       
   395 	
       
   396 	ss = newbitset(nbits);
       
   397 	addclosure(ss, nf, nf->nf_start);
       
   398 	xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
       
   399 	if (xx_state == NULL)
       
   400 		Py_FatalError("no mem for xx_state in makedfa");
       
   401 	xx_nstates = 1;
       
   402 	yy = &xx_state[0];
       
   403 	yy->ss_ss = ss;
       
   404 	yy->ss_narcs = 0;
       
   405 	yy->ss_arc = NULL;
       
   406 	yy->ss_deleted = 0;
       
   407 	yy->ss_finish = testbit(ss, nf->nf_finish);
       
   408 	if (yy->ss_finish)
       
   409 		printf("Error: nonterminal '%s' may produce empty.\n",
       
   410 			nf->nf_name);
       
   411 	
       
   412 	/* This algorithm is from a book written before
       
   413 	   the invention of structured programming... */
       
   414 
       
   415 	/* For each unmarked state... */
       
   416 	for (istate = 0; istate < xx_nstates; ++istate) {
       
   417 		size_t size;
       
   418 		yy = &xx_state[istate];
       
   419 		ss = yy->ss_ss;
       
   420 		/* For all its states... */
       
   421 		for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
       
   422 			if (!testbit(ss, ibit))
       
   423 				continue;
       
   424 			st = &nf->nf_state[ibit];
       
   425 			/* For all non-empty arcs from this state... */
       
   426 			for (iarc = 0; iarc < st->st_narcs; iarc++) {
       
   427 				ar = &st->st_arc[iarc];
       
   428 				if (ar->ar_label == EMPTY)
       
   429 					continue;
       
   430 				/* Look up in list of arcs from this state */
       
   431 				for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
       
   432 					zz = &yy->ss_arc[jarc];
       
   433 					if (ar->ar_label == zz->sa_label)
       
   434 						goto found;
       
   435 				}
       
   436 				/* Add new arc for this state */
       
   437 				size = sizeof(ss_arc) * (yy->ss_narcs + 1);
       
   438 				yy->ss_arc = (ss_arc *)PyObject_REALLOC(
       
   439                                                             yy->ss_arc, size);
       
   440 				if (yy->ss_arc == NULL)
       
   441 					Py_FatalError("out of mem");
       
   442 				zz = &yy->ss_arc[yy->ss_narcs++];
       
   443 				zz->sa_label = ar->ar_label;
       
   444 				zz->sa_bitset = newbitset(nbits);
       
   445 				zz->sa_arrow = -1;
       
   446 			 found:	;
       
   447 				/* Add destination */
       
   448 				addclosure(zz->sa_bitset, nf, ar->ar_arrow);
       
   449 			}
       
   450 		}
       
   451 		/* Now look up all the arrow states */
       
   452 		for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
       
   453 			zz = &xx_state[istate].ss_arc[jarc];
       
   454 			for (jstate = 0; jstate < xx_nstates; jstate++) {
       
   455 				if (samebitset(zz->sa_bitset,
       
   456 					xx_state[jstate].ss_ss, nbits)) {
       
   457 					zz->sa_arrow = jstate;
       
   458 					goto done;
       
   459 				}
       
   460 			}
       
   461 			size = sizeof(ss_state) * (xx_nstates + 1);
       
   462 			xx_state = (ss_state *)PyObject_REALLOC(xx_state, 
       
   463                                                                     size);
       
   464 			if (xx_state == NULL)
       
   465 				Py_FatalError("out of mem");
       
   466 			zz->sa_arrow = xx_nstates;
       
   467 			yy = &xx_state[xx_nstates++];
       
   468 			yy->ss_ss = zz->sa_bitset;
       
   469 			yy->ss_narcs = 0;
       
   470 			yy->ss_arc = NULL;
       
   471 			yy->ss_deleted = 0;
       
   472 			yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
       
   473 		 done:	;
       
   474 		}
       
   475 	}
       
   476 	
       
   477 	if (Py_DebugFlag)
       
   478 		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
       
   479 						"before minimizing");
       
   480 	
       
   481 	simplify(xx_nstates, xx_state);
       
   482 	
       
   483 	if (Py_DebugFlag)
       
   484 		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
       
   485 						"after minimizing");
       
   486 	
       
   487 	convert(d, xx_nstates, xx_state);
       
   488 	
       
   489 	/* XXX cleanup */
       
   490 	PyObject_FREE(xx_state);
       
   491 }
       
   492 
       
   493 static void
       
   494 printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
       
   495 	   labellist *ll, char *msg)
       
   496 {
       
   497 	int i, ibit, iarc;
       
   498 	ss_state *yy;
       
   499 	ss_arc *zz;
       
   500 	
       
   501 	printf("Subset DFA %s\n", msg);
       
   502 	for (i = 0; i < xx_nstates; i++) {
       
   503 		yy = &xx_state[i];
       
   504 		if (yy->ss_deleted)
       
   505 			continue;
       
   506 		printf(" Subset %d", i);
       
   507 		if (yy->ss_finish)
       
   508 			printf(" (finish)");
       
   509 		printf(" { ");
       
   510 		for (ibit = 0; ibit < nbits; ibit++) {
       
   511 			if (testbit(yy->ss_ss, ibit))
       
   512 				printf("%d ", ibit);
       
   513 		}
       
   514 		printf("}\n");
       
   515 		for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
       
   516 			zz = &yy->ss_arc[iarc];
       
   517 			printf("  Arc to state %d, label %s\n",
       
   518 				zz->sa_arrow,
       
   519 				PyGrammar_LabelRepr(
       
   520 					&ll->ll_label[zz->sa_label]));
       
   521 		}
       
   522 	}
       
   523 }
       
   524 
       
   525 
       
   526 /* PART THREE -- SIMPLIFY DFA */
       
   527 
       
   528 /* Simplify the DFA by repeatedly eliminating states that are
       
   529    equivalent to another oner.  This is NOT Algorithm 3.3 from
       
   530    [Aho&Ullman 77].  It does not always finds the minimal DFA,
       
   531    but it does usually make a much smaller one...  (For an example
       
   532    of sub-optimal behavior, try S: x a b+ | y a b+.)
       
   533 */
       
   534 
       
   535 static int
       
   536 samestate(ss_state *s1, ss_state *s2)
       
   537 {
       
   538 	int i;
       
   539 	
       
   540 	if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
       
   541 		return 0;
       
   542 	for (i = 0; i < s1->ss_narcs; i++) {
       
   543 		if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
       
   544 			s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
       
   545 			return 0;
       
   546 	}
       
   547 	return 1;
       
   548 }
       
   549 
       
   550 static void
       
   551 renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
       
   552 {
       
   553 	int i, j;
       
   554 	
       
   555 	if (Py_DebugFlag)
       
   556 		printf("Rename state %d to %d.\n", from, to);
       
   557 	for (i = 0; i < xx_nstates; i++) {
       
   558 		if (xx_state[i].ss_deleted)
       
   559 			continue;
       
   560 		for (j = 0; j < xx_state[i].ss_narcs; j++) {
       
   561 			if (xx_state[i].ss_arc[j].sa_arrow == from)
       
   562 				xx_state[i].ss_arc[j].sa_arrow = to;
       
   563 		}
       
   564 	}
       
   565 }
       
   566 
       
   567 static void
       
   568 simplify(int xx_nstates, ss_state *xx_state)
       
   569 {
       
   570 	int changes;
       
   571 	int i, j;
       
   572 	
       
   573 	do {
       
   574 		changes = 0;
       
   575 		for (i = 1; i < xx_nstates; i++) {
       
   576 			if (xx_state[i].ss_deleted)
       
   577 				continue;
       
   578 			for (j = 0; j < i; j++) {
       
   579 				if (xx_state[j].ss_deleted)
       
   580 					continue;
       
   581 				if (samestate(&xx_state[i], &xx_state[j])) {
       
   582 					xx_state[i].ss_deleted++;
       
   583 					renamestates(xx_nstates, xx_state,
       
   584 						     i, j);
       
   585 					changes++;
       
   586 					break;
       
   587 				}
       
   588 			}
       
   589 		}
       
   590 	} while (changes);
       
   591 }
       
   592 
       
   593 
       
   594 /* PART FOUR -- GENERATE PARSING TABLES */
       
   595 
       
   596 /* Convert the DFA into a grammar that can be used by our parser */
       
   597 
       
   598 static void
       
   599 convert(dfa *d, int xx_nstates, ss_state *xx_state)
       
   600 {
       
   601 	int i, j;
       
   602 	ss_state *yy;
       
   603 	ss_arc *zz;
       
   604 	
       
   605 	for (i = 0; i < xx_nstates; i++) {
       
   606 		yy = &xx_state[i];
       
   607 		if (yy->ss_deleted)
       
   608 			continue;
       
   609 		yy->ss_rename = addstate(d);
       
   610 	}
       
   611 	
       
   612 	for (i = 0; i < xx_nstates; i++) {
       
   613 		yy = &xx_state[i];
       
   614 		if (yy->ss_deleted)
       
   615 			continue;
       
   616 		for (j = 0; j < yy->ss_narcs; j++) {
       
   617 			zz = &yy->ss_arc[j];
       
   618 			addarc(d, yy->ss_rename,
       
   619 				xx_state[zz->sa_arrow].ss_rename,
       
   620 				zz->sa_label);
       
   621 		}
       
   622 		if (yy->ss_finish)
       
   623 			addarc(d, yy->ss_rename, yy->ss_rename, 0);
       
   624 	}
       
   625 	
       
   626 	d->d_initial = 0;
       
   627 }
       
   628 
       
   629 
       
   630 /* PART FIVE -- GLUE IT ALL TOGETHER */
       
   631 
       
   632 static grammar *
       
   633 maketables(nfagrammar *gr)
       
   634 {
       
   635 	int i;
       
   636 	nfa *nf;
       
   637 	dfa *d;
       
   638 	grammar *g;
       
   639 	
       
   640 	if (gr->gr_nnfas == 0)
       
   641 		return NULL;
       
   642 	g = newgrammar(gr->gr_nfa[0]->nf_type);
       
   643 			/* XXX first rule must be start rule */
       
   644 	g->g_ll = gr->gr_ll;
       
   645 	
       
   646 	for (i = 0; i < gr->gr_nnfas; i++) {
       
   647 		nf = gr->gr_nfa[i];
       
   648 		if (Py_DebugFlag) {
       
   649 			printf("Dump of NFA for '%s' ...\n", nf->nf_name);
       
   650 			dumpnfa(&gr->gr_ll, nf);
       
   651 			printf("Making DFA for '%s' ...\n", nf->nf_name);
       
   652 		}
       
   653 		d = adddfa(g, nf->nf_type, nf->nf_name);
       
   654 		makedfa(gr, gr->gr_nfa[i], d);
       
   655 	}
       
   656 	
       
   657 	return g;
       
   658 }
       
   659 
       
   660 grammar *
       
   661 pgen(node *n)
       
   662 {
       
   663 	nfagrammar *gr;
       
   664 	grammar *g;
       
   665 	
       
   666 	gr = metacompile(n);
       
   667 	g = maketables(gr);
       
   668 	translatelabels(g);
       
   669 	addfirstsets(g);
       
   670 	PyObject_FREE(gr);
       
   671 	return g;
       
   672 }
       
   673 
       
   674 grammar *
       
   675 Py_pgen(node *n)
       
   676 {
       
   677   return pgen(n);
       
   678 }
       
   679 
       
   680 /*
       
   681 
       
   682 Description
       
   683 -----------
       
   684 
       
   685 Input is a grammar in extended BNF (using * for repetition, + for
       
   686 at-least-once repetition, [] for optional parts, | for alternatives and
       
   687 () for grouping).  This has already been parsed and turned into a parse
       
   688 tree.
       
   689 
       
   690 Each rule is considered as a regular expression in its own right.
       
   691 It is turned into a Non-deterministic Finite Automaton (NFA), which
       
   692 is then turned into a Deterministic Finite Automaton (DFA), which is then
       
   693 optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
       
   694 or similar compiler books (this technique is more often used for lexical
       
   695 analyzers).
       
   696 
       
   697 The DFA's are used by the parser as parsing tables in a special way
       
   698 that's probably unique.  Before they are usable, the FIRST sets of all
       
   699 non-terminals are computed.
       
   700 
       
   701 Reference
       
   702 ---------
       
   703 
       
   704 [Aho&Ullman 77]
       
   705 	Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
       
   706 	(first edition)
       
   707 
       
   708 */