symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/pickletools.py
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 '''"Executable documentation" for the pickle module.
       
     2 
       
     3 Extensive comments about the pickle protocols and pickle-machine opcodes
       
     4 can be found here.  Some functions meant for external use:
       
     5 
       
     6 genops(pickle)
       
     7    Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
       
     8 
       
     9 dis(pickle, out=None, memo=None, indentlevel=4)
       
    10    Print a symbolic disassembly of a pickle.
       
    11 '''
       
    12 
       
    13 __all__ = ['dis', 'genops', 'optimize']
       
    14 
       
    15 # Other ideas:
       
    16 #
       
    17 # - A pickle verifier:  read a pickle and check it exhaustively for
       
    18 #   well-formedness.  dis() does a lot of this already.
       
    19 #
       
    20 # - A protocol identifier:  examine a pickle and return its protocol number
       
    21 #   (== the highest .proto attr value among all the opcodes in the pickle).
       
    22 #   dis() already prints this info at the end.
       
    23 #
       
    24 # - A pickle optimizer:  for example, tuple-building code is sometimes more
       
    25 #   elaborate than necessary, catering for the possibility that the tuple
       
    26 #   is recursive.  Or lots of times a PUT is generated that's never accessed
       
    27 #   by a later GET.
       
    28 
       
    29 
       
    30 """
       
    31 "A pickle" is a program for a virtual pickle machine (PM, but more accurately
       
    32 called an unpickling machine).  It's a sequence of opcodes, interpreted by the
       
    33 PM, building an arbitrarily complex Python object.
       
    34 
       
    35 For the most part, the PM is very simple:  there are no looping, testing, or
       
    36 conditional instructions, no arithmetic and no function calls.  Opcodes are
       
    37 executed once each, from first to last, until a STOP opcode is reached.
       
    38 
       
    39 The PM has two data areas, "the stack" and "the memo".
       
    40 
       
    41 Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
       
    42 integer object on the stack, whose value is gotten from a decimal string
       
    43 literal immediately following the INT opcode in the pickle bytestream.  Other
       
    44 opcodes take Python objects off the stack.  The result of unpickling is
       
    45 whatever object is left on the stack when the final STOP opcode is executed.
       
    46 
       
    47 The memo is simply an array of objects, or it can be implemented as a dict
       
    48 mapping little integers to objects.  The memo serves as the PM's "long term
       
    49 memory", and the little integers indexing the memo are akin to variable
       
    50 names.  Some opcodes pop a stack object into the memo at a given index,
       
    51 and others push a memo object at a given index onto the stack again.
       
    52 
       
    53 At heart, that's all the PM has.  Subtleties arise for these reasons:
       
    54 
       
    55 + Object identity.  Objects can be arbitrarily complex, and subobjects
       
    56   may be shared (for example, the list [a, a] refers to the same object a
       
    57   twice).  It can be vital that unpickling recreate an isomorphic object
       
    58   graph, faithfully reproducing sharing.
       
    59 
       
    60 + Recursive objects.  For example, after "L = []; L.append(L)", L is a
       
    61   list, and L[0] is the same list.  This is related to the object identity
       
    62   point, and some sequences of pickle opcodes are subtle in order to
       
    63   get the right result in all cases.
       
    64 
       
    65 + Things pickle doesn't know everything about.  Examples of things pickle
       
    66   does know everything about are Python's builtin scalar and container
       
    67   types, like ints and tuples.  They generally have opcodes dedicated to
       
    68   them.  For things like module references and instances of user-defined
       
    69   classes, pickle's knowledge is limited.  Historically, many enhancements
       
    70   have been made to the pickle protocol in order to do a better (faster,
       
    71   and/or more compact) job on those.
       
    72 
       
    73 + Backward compatibility and micro-optimization.  As explained below,
       
    74   pickle opcodes never go away, not even when better ways to do a thing
       
    75   get invented.  The repertoire of the PM just keeps growing over time.
       
    76   For example, protocol 0 had two opcodes for building Python integers (INT
       
    77   and LONG), protocol 1 added three more for more-efficient pickling of short
       
    78   integers, and protocol 2 added two more for more-efficient pickling of
       
    79   long integers (before protocol 2, the only ways to pickle a Python long
       
    80   took time quadratic in the number of digits, for both pickling and
       
    81   unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
       
    82   wearying complication.
       
    83 
       
    84 
       
    85 Pickle protocols:
       
    86 
       
    87 For compatibility, the meaning of a pickle opcode never changes.  Instead new
       
    88 pickle opcodes get added, and each version's unpickler can handle all the
       
    89 pickle opcodes in all protocol versions to date.  So old pickles continue to
       
    90 be readable forever.  The pickler can generally be told to restrict itself to
       
    91 the subset of opcodes available under previous protocol versions too, so that
       
    92 users can create pickles under the current version readable by older
       
    93 versions.  However, a pickle does not contain its version number embedded
       
    94 within it.  If an older unpickler tries to read a pickle using a later
       
    95 protocol, the result is most likely an exception due to seeing an unknown (in
       
    96 the older unpickler) opcode.
       
    97 
       
    98 The original pickle used what's now called "protocol 0", and what was called
       
    99 "text mode" before Python 2.3.  The entire pickle bytestream is made up of
       
   100 printable 7-bit ASCII characters, plus the newline character, in protocol 0.
       
   101 That's why it was called text mode.  Protocol 0 is small and elegant, but
       
   102 sometimes painfully inefficient.
       
   103 
       
   104 The second major set of additions is now called "protocol 1", and was called
       
   105 "binary mode" before Python 2.3.  This added many opcodes with arguments
       
   106 consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
       
   107 bytes.  Binary mode pickles can be substantially smaller than equivalent
       
   108 text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
       
   109 int as 4 bytes following the opcode, which is cheaper to unpickle than the
       
   110 (perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
       
   111 a number of opcodes that operate on many stack elements at once (like APPENDS
       
   112 and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
       
   113 
       
   114 The third major set of additions came in Python 2.3, and is called "protocol
       
   115 2".  This added:
       
   116 
       
   117 - A better way to pickle instances of new-style classes (NEWOBJ).
       
   118 
       
   119 - A way for a pickle to identify its protocol (PROTO).
       
   120 
       
   121 - Time- and space- efficient pickling of long ints (LONG{1,4}).
       
   122 
       
   123 - Shortcuts for small tuples (TUPLE{1,2,3}}.
       
   124 
       
   125 - Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
       
   126 
       
   127 - The "extension registry", a vector of popular objects that can be pushed
       
   128   efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
       
   129   the registry contents are predefined (there's nothing akin to the memo's
       
   130   PUT).
       
   131 
       
   132 Another independent change with Python 2.3 is the abandonment of any
       
   133 pretense that it might be safe to load pickles received from untrusted
       
   134 parties -- no sufficient security analysis has been done to guarantee
       
   135 this and there isn't a use case that warrants the expense of such an
       
   136 analysis.
       
   137 
       
   138 To this end, all tests for __safe_for_unpickling__ or for
       
   139 copy_reg.safe_constructors are removed from the unpickling code.
       
   140 References to these variables in the descriptions below are to be seen
       
   141 as describing unpickling in Python 2.2 and before.
       
   142 """
       
   143 
       
   144 # Meta-rule:  Descriptions are stored in instances of descriptor objects,
       
   145 # with plain constructors.  No meta-language is defined from which
       
   146 # descriptors could be constructed.  If you want, e.g., XML, write a little
       
   147 # program to generate XML from the objects.
       
   148 
       
   149 ##############################################################################
       
   150 # Some pickle opcodes have an argument, following the opcode in the
       
   151 # bytestream.  An argument is of a specific type, described by an instance
       
   152 # of ArgumentDescriptor.  These are not to be confused with arguments taken
       
   153 # off the stack -- ArgumentDescriptor applies only to arguments embedded in
       
   154 # the opcode stream, immediately following an opcode.
       
   155 
       
   156 # Represents the number of bytes consumed by an argument delimited by the
       
   157 # next newline character.
       
   158 UP_TO_NEWLINE = -1
       
   159 
       
   160 # Represents the number of bytes consumed by a two-argument opcode where
       
   161 # the first argument gives the number of bytes in the second argument.
       
   162 TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
       
   163 TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
       
   164 
       
   165 class ArgumentDescriptor(object):
       
   166     __slots__ = (
       
   167         # name of descriptor record, also a module global name; a string
       
   168         'name',
       
   169 
       
   170         # length of argument, in bytes; an int; UP_TO_NEWLINE and
       
   171         # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
       
   172         # cases
       
   173         'n',
       
   174 
       
   175         # a function taking a file-like object, reading this kind of argument
       
   176         # from the object at the current position, advancing the current
       
   177         # position by n bytes, and returning the value of the argument
       
   178         'reader',
       
   179 
       
   180         # human-readable docs for this arg descriptor; a string
       
   181         'doc',
       
   182     )
       
   183 
       
   184     def __init__(self, name, n, reader, doc):
       
   185         assert isinstance(name, str)
       
   186         self.name = name
       
   187 
       
   188         assert isinstance(n, int) and (n >= 0 or
       
   189                                        n in (UP_TO_NEWLINE,
       
   190                                              TAKEN_FROM_ARGUMENT1,
       
   191                                              TAKEN_FROM_ARGUMENT4))
       
   192         self.n = n
       
   193 
       
   194         self.reader = reader
       
   195 
       
   196         assert isinstance(doc, str)
       
   197         self.doc = doc
       
   198 
       
   199 from struct import unpack as _unpack
       
   200 
       
   201 def read_uint1(f):
       
   202     r"""
       
   203     >>> import StringIO
       
   204     >>> read_uint1(StringIO.StringIO('\xff'))
       
   205     255
       
   206     """
       
   207 
       
   208     data = f.read(1)
       
   209     if data:
       
   210         return ord(data)
       
   211     raise ValueError("not enough data in stream to read uint1")
       
   212 
       
   213 uint1 = ArgumentDescriptor(
       
   214             name='uint1',
       
   215             n=1,
       
   216             reader=read_uint1,
       
   217             doc="One-byte unsigned integer.")
       
   218 
       
   219 
       
   220 def read_uint2(f):
       
   221     r"""
       
   222     >>> import StringIO
       
   223     >>> read_uint2(StringIO.StringIO('\xff\x00'))
       
   224     255
       
   225     >>> read_uint2(StringIO.StringIO('\xff\xff'))
       
   226     65535
       
   227     """
       
   228 
       
   229     data = f.read(2)
       
   230     if len(data) == 2:
       
   231         return _unpack("<H", data)[0]
       
   232     raise ValueError("not enough data in stream to read uint2")
       
   233 
       
   234 uint2 = ArgumentDescriptor(
       
   235             name='uint2',
       
   236             n=2,
       
   237             reader=read_uint2,
       
   238             doc="Two-byte unsigned integer, little-endian.")
       
   239 
       
   240 
       
   241 def read_int4(f):
       
   242     r"""
       
   243     >>> import StringIO
       
   244     >>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
       
   245     255
       
   246     >>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
       
   247     True
       
   248     """
       
   249 
       
   250     data = f.read(4)
       
   251     if len(data) == 4:
       
   252         return _unpack("<i", data)[0]
       
   253     raise ValueError("not enough data in stream to read int4")
       
   254 
       
   255 int4 = ArgumentDescriptor(
       
   256            name='int4',
       
   257            n=4,
       
   258            reader=read_int4,
       
   259            doc="Four-byte signed integer, little-endian, 2's complement.")
       
   260 
       
   261 
       
   262 def read_stringnl(f, decode=True, stripquotes=True):
       
   263     r"""
       
   264     >>> import StringIO
       
   265     >>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
       
   266     'abcd'
       
   267 
       
   268     >>> read_stringnl(StringIO.StringIO("\n"))
       
   269     Traceback (most recent call last):
       
   270     ...
       
   271     ValueError: no string quotes around ''
       
   272 
       
   273     >>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
       
   274     ''
       
   275 
       
   276     >>> read_stringnl(StringIO.StringIO("''\n"))
       
   277     ''
       
   278 
       
   279     >>> read_stringnl(StringIO.StringIO('"abcd"'))
       
   280     Traceback (most recent call last):
       
   281     ...
       
   282     ValueError: no newline found when trying to read stringnl
       
   283 
       
   284     Embedded escapes are undone in the result.
       
   285     >>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
       
   286     'a\n\\b\x00c\td'
       
   287     """
       
   288 
       
   289     data = f.readline()
       
   290     if not data.endswith('\n'):
       
   291         raise ValueError("no newline found when trying to read stringnl")
       
   292     data = data[:-1]    # lose the newline
       
   293 
       
   294     if stripquotes:
       
   295         for q in "'\"":
       
   296             if data.startswith(q):
       
   297                 if not data.endswith(q):
       
   298                     raise ValueError("strinq quote %r not found at both "
       
   299                                      "ends of %r" % (q, data))
       
   300                 data = data[1:-1]
       
   301                 break
       
   302         else:
       
   303             raise ValueError("no string quotes around %r" % data)
       
   304 
       
   305     # I'm not sure when 'string_escape' was added to the std codecs; it's
       
   306     # crazy not to use it if it's there.
       
   307     if decode:
       
   308         data = data.decode('string_escape')
       
   309     return data
       
   310 
       
   311 stringnl = ArgumentDescriptor(
       
   312                name='stringnl',
       
   313                n=UP_TO_NEWLINE,
       
   314                reader=read_stringnl,
       
   315                doc="""A newline-terminated string.
       
   316 
       
   317                    This is a repr-style string, with embedded escapes, and
       
   318                    bracketing quotes.
       
   319                    """)
       
   320 
       
   321 def read_stringnl_noescape(f):
       
   322     return read_stringnl(f, decode=False, stripquotes=False)
       
   323 
       
   324 stringnl_noescape = ArgumentDescriptor(
       
   325                         name='stringnl_noescape',
       
   326                         n=UP_TO_NEWLINE,
       
   327                         reader=read_stringnl_noescape,
       
   328                         doc="""A newline-terminated string.
       
   329 
       
   330                         This is a str-style string, without embedded escapes,
       
   331                         or bracketing quotes.  It should consist solely of
       
   332                         printable ASCII characters.
       
   333                         """)
       
   334 
       
   335 def read_stringnl_noescape_pair(f):
       
   336     r"""
       
   337     >>> import StringIO
       
   338     >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
       
   339     'Queue Empty'
       
   340     """
       
   341 
       
   342     return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
       
   343 
       
   344 stringnl_noescape_pair = ArgumentDescriptor(
       
   345                              name='stringnl_noescape_pair',
       
   346                              n=UP_TO_NEWLINE,
       
   347                              reader=read_stringnl_noescape_pair,
       
   348                              doc="""A pair of newline-terminated strings.
       
   349 
       
   350                              These are str-style strings, without embedded
       
   351                              escapes, or bracketing quotes.  They should
       
   352                              consist solely of printable ASCII characters.
       
   353                              The pair is returned as a single string, with
       
   354                              a single blank separating the two strings.
       
   355                              """)
       
   356 
       
   357 def read_string4(f):
       
   358     r"""
       
   359     >>> import StringIO
       
   360     >>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
       
   361     ''
       
   362     >>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
       
   363     'abc'
       
   364     >>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
       
   365     Traceback (most recent call last):
       
   366     ...
       
   367     ValueError: expected 50331648 bytes in a string4, but only 6 remain
       
   368     """
       
   369 
       
   370     n = read_int4(f)
       
   371     if n < 0:
       
   372         raise ValueError("string4 byte count < 0: %d" % n)
       
   373     data = f.read(n)
       
   374     if len(data) == n:
       
   375         return data
       
   376     raise ValueError("expected %d bytes in a string4, but only %d remain" %
       
   377                      (n, len(data)))
       
   378 
       
   379 string4 = ArgumentDescriptor(
       
   380               name="string4",
       
   381               n=TAKEN_FROM_ARGUMENT4,
       
   382               reader=read_string4,
       
   383               doc="""A counted string.
       
   384 
       
   385               The first argument is a 4-byte little-endian signed int giving
       
   386               the number of bytes in the string, and the second argument is
       
   387               that many bytes.
       
   388               """)
       
   389 
       
   390 
       
   391 def read_string1(f):
       
   392     r"""
       
   393     >>> import StringIO
       
   394     >>> read_string1(StringIO.StringIO("\x00"))
       
   395     ''
       
   396     >>> read_string1(StringIO.StringIO("\x03abcdef"))
       
   397     'abc'
       
   398     """
       
   399 
       
   400     n = read_uint1(f)
       
   401     assert n >= 0
       
   402     data = f.read(n)
       
   403     if len(data) == n:
       
   404         return data
       
   405     raise ValueError("expected %d bytes in a string1, but only %d remain" %
       
   406                      (n, len(data)))
       
   407 
       
   408 string1 = ArgumentDescriptor(
       
   409               name="string1",
       
   410               n=TAKEN_FROM_ARGUMENT1,
       
   411               reader=read_string1,
       
   412               doc="""A counted string.
       
   413 
       
   414               The first argument is a 1-byte unsigned int giving the number
       
   415               of bytes in the string, and the second argument is that many
       
   416               bytes.
       
   417               """)
       
   418 
       
   419 
       
   420 def read_unicodestringnl(f):
       
   421     r"""
       
   422     >>> import StringIO
       
   423     >>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
       
   424     u'abc\uabcd'
       
   425     """
       
   426 
       
   427     data = f.readline()
       
   428     if not data.endswith('\n'):
       
   429         raise ValueError("no newline found when trying to read "
       
   430                          "unicodestringnl")
       
   431     data = data[:-1]    # lose the newline
       
   432     return unicode(data, 'raw-unicode-escape')
       
   433 
       
   434 unicodestringnl = ArgumentDescriptor(
       
   435                       name='unicodestringnl',
       
   436                       n=UP_TO_NEWLINE,
       
   437                       reader=read_unicodestringnl,
       
   438                       doc="""A newline-terminated Unicode string.
       
   439 
       
   440                       This is raw-unicode-escape encoded, so consists of
       
   441                       printable ASCII characters, and may contain embedded
       
   442                       escape sequences.
       
   443                       """)
       
   444 
       
   445 def read_unicodestring4(f):
       
   446     r"""
       
   447     >>> import StringIO
       
   448     >>> s = u'abcd\uabcd'
       
   449     >>> enc = s.encode('utf-8')
       
   450     >>> enc
       
   451     'abcd\xea\xaf\x8d'
       
   452     >>> n = chr(len(enc)) + chr(0) * 3  # little-endian 4-byte length
       
   453     >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
       
   454     >>> s == t
       
   455     True
       
   456 
       
   457     >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
       
   458     Traceback (most recent call last):
       
   459     ...
       
   460     ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
       
   461     """
       
   462 
       
   463     n = read_int4(f)
       
   464     if n < 0:
       
   465         raise ValueError("unicodestring4 byte count < 0: %d" % n)
       
   466     data = f.read(n)
       
   467     if len(data) == n:
       
   468         return unicode(data, 'utf-8')
       
   469     raise ValueError("expected %d bytes in a unicodestring4, but only %d "
       
   470                      "remain" % (n, len(data)))
       
   471 
       
   472 unicodestring4 = ArgumentDescriptor(
       
   473                     name="unicodestring4",
       
   474                     n=TAKEN_FROM_ARGUMENT4,
       
   475                     reader=read_unicodestring4,
       
   476                     doc="""A counted Unicode string.
       
   477 
       
   478                     The first argument is a 4-byte little-endian signed int
       
   479                     giving the number of bytes in the string, and the second
       
   480                     argument-- the UTF-8 encoding of the Unicode string --
       
   481                     contains that many bytes.
       
   482                     """)
       
   483 
       
   484 
       
   485 def read_decimalnl_short(f):
       
   486     r"""
       
   487     >>> import StringIO
       
   488     >>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
       
   489     1234
       
   490 
       
   491     >>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
       
   492     Traceback (most recent call last):
       
   493     ...
       
   494     ValueError: trailing 'L' not allowed in '1234L'
       
   495     """
       
   496 
       
   497     s = read_stringnl(f, decode=False, stripquotes=False)
       
   498     if s.endswith("L"):
       
   499         raise ValueError("trailing 'L' not allowed in %r" % s)
       
   500 
       
   501     # It's not necessarily true that the result fits in a Python short int:
       
   502     # the pickle may have been written on a 64-bit box.  There's also a hack
       
   503     # for True and False here.
       
   504     if s == "00":
       
   505         return False
       
   506     elif s == "01":
       
   507         return True
       
   508 
       
   509     try:
       
   510         return int(s)
       
   511     except OverflowError:
       
   512         return long(s)
       
   513 
       
   514 def read_decimalnl_long(f):
       
   515     r"""
       
   516     >>> import StringIO
       
   517 
       
   518     >>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
       
   519     Traceback (most recent call last):
       
   520     ...
       
   521     ValueError: trailing 'L' required in '1234'
       
   522 
       
   523     Someday the trailing 'L' will probably go away from this output.
       
   524 
       
   525     >>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
       
   526     1234L
       
   527 
       
   528     >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
       
   529     123456789012345678901234L
       
   530     """
       
   531 
       
   532     s = read_stringnl(f, decode=False, stripquotes=False)
       
   533     if not s.endswith("L"):
       
   534         raise ValueError("trailing 'L' required in %r" % s)
       
   535     return long(s)
       
   536 
       
   537 
       
   538 decimalnl_short = ArgumentDescriptor(
       
   539                       name='decimalnl_short',
       
   540                       n=UP_TO_NEWLINE,
       
   541                       reader=read_decimalnl_short,
       
   542                       doc="""A newline-terminated decimal integer literal.
       
   543 
       
   544                           This never has a trailing 'L', and the integer fit
       
   545                           in a short Python int on the box where the pickle
       
   546                           was written -- but there's no guarantee it will fit
       
   547                           in a short Python int on the box where the pickle
       
   548                           is read.
       
   549                           """)
       
   550 
       
   551 decimalnl_long = ArgumentDescriptor(
       
   552                      name='decimalnl_long',
       
   553                      n=UP_TO_NEWLINE,
       
   554                      reader=read_decimalnl_long,
       
   555                      doc="""A newline-terminated decimal integer literal.
       
   556 
       
   557                          This has a trailing 'L', and can represent integers
       
   558                          of any size.
       
   559                          """)
       
   560 
       
   561 
       
   562 def read_floatnl(f):
       
   563     r"""
       
   564     >>> import StringIO
       
   565     >>> read_floatnl(StringIO.StringIO("-1.25\n6"))
       
   566     -1.25
       
   567     """
       
   568     s = read_stringnl(f, decode=False, stripquotes=False)
       
   569     return float(s)
       
   570 
       
   571 floatnl = ArgumentDescriptor(
       
   572               name='floatnl',
       
   573               n=UP_TO_NEWLINE,
       
   574               reader=read_floatnl,
       
   575               doc="""A newline-terminated decimal floating literal.
       
   576 
       
   577               In general this requires 17 significant digits for roundtrip
       
   578               identity, and pickling then unpickling infinities, NaNs, and
       
   579               minus zero doesn't work across boxes, or on some boxes even
       
   580               on itself (e.g., Windows can't read the strings it produces
       
   581               for infinities or NaNs).
       
   582               """)
       
   583 
       
   584 def read_float8(f):
       
   585     r"""
       
   586     >>> import StringIO, struct
       
   587     >>> raw = struct.pack(">d", -1.25)
       
   588     >>> raw
       
   589     '\xbf\xf4\x00\x00\x00\x00\x00\x00'
       
   590     >>> read_float8(StringIO.StringIO(raw + "\n"))
       
   591     -1.25
       
   592     """
       
   593 
       
   594     data = f.read(8)
       
   595     if len(data) == 8:
       
   596         return _unpack(">d", data)[0]
       
   597     raise ValueError("not enough data in stream to read float8")
       
   598 
       
   599 
       
   600 float8 = ArgumentDescriptor(
       
   601              name='float8',
       
   602              n=8,
       
   603              reader=read_float8,
       
   604              doc="""An 8-byte binary representation of a float, big-endian.
       
   605 
       
   606              The format is unique to Python, and shared with the struct
       
   607              module (format string '>d') "in theory" (the struct and cPickle
       
   608              implementations don't share the code -- they should).  It's
       
   609              strongly related to the IEEE-754 double format, and, in normal
       
   610              cases, is in fact identical to the big-endian 754 double format.
       
   611              On other boxes the dynamic range is limited to that of a 754
       
   612              double, and "add a half and chop" rounding is used to reduce
       
   613              the precision to 53 bits.  However, even on a 754 box,
       
   614              infinities, NaNs, and minus zero may not be handled correctly
       
   615              (may not survive roundtrip pickling intact).
       
   616              """)
       
   617 
       
   618 # Protocol 2 formats
       
   619 
       
   620 from pickle import decode_long
       
   621 
       
   622 def read_long1(f):
       
   623     r"""
       
   624     >>> import StringIO
       
   625     >>> read_long1(StringIO.StringIO("\x00"))
       
   626     0L
       
   627     >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
       
   628     255L
       
   629     >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
       
   630     32767L
       
   631     >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
       
   632     -256L
       
   633     >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
       
   634     -32768L
       
   635     """
       
   636 
       
   637     n = read_uint1(f)
       
   638     data = f.read(n)
       
   639     if len(data) != n:
       
   640         raise ValueError("not enough data in stream to read long1")
       
   641     return decode_long(data)
       
   642 
       
   643 long1 = ArgumentDescriptor(
       
   644     name="long1",
       
   645     n=TAKEN_FROM_ARGUMENT1,
       
   646     reader=read_long1,
       
   647     doc="""A binary long, little-endian, using 1-byte size.
       
   648 
       
   649     This first reads one byte as an unsigned size, then reads that
       
   650     many bytes and interprets them as a little-endian 2's-complement long.
       
   651     If the size is 0, that's taken as a shortcut for the long 0L.
       
   652     """)
       
   653 
       
   654 def read_long4(f):
       
   655     r"""
       
   656     >>> import StringIO
       
   657     >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
       
   658     255L
       
   659     >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
       
   660     32767L
       
   661     >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
       
   662     -256L
       
   663     >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
       
   664     -32768L
       
   665     >>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
       
   666     0L
       
   667     """
       
   668 
       
   669     n = read_int4(f)
       
   670     if n < 0:
       
   671         raise ValueError("long4 byte count < 0: %d" % n)
       
   672     data = f.read(n)
       
   673     if len(data) != n:
       
   674         raise ValueError("not enough data in stream to read long4")
       
   675     return decode_long(data)
       
   676 
       
   677 long4 = ArgumentDescriptor(
       
   678     name="long4",
       
   679     n=TAKEN_FROM_ARGUMENT4,
       
   680     reader=read_long4,
       
   681     doc="""A binary representation of a long, little-endian.
       
   682 
       
   683     This first reads four bytes as a signed size (but requires the
       
   684     size to be >= 0), then reads that many bytes and interprets them
       
   685     as a little-endian 2's-complement long.  If the size is 0, that's taken
       
   686     as a shortcut for the long 0L, although LONG1 should really be used
       
   687     then instead (and in any case where # of bytes < 256).
       
   688     """)
       
   689 
       
   690 
       
   691 ##############################################################################
       
   692 # Object descriptors.  The stack used by the pickle machine holds objects,
       
   693 # and in the stack_before and stack_after attributes of OpcodeInfo
       
   694 # descriptors we need names to describe the various types of objects that can
       
   695 # appear on the stack.
       
   696 
       
   697 class StackObject(object):
       
   698     __slots__ = (
       
   699         # name of descriptor record, for info only
       
   700         'name',
       
   701 
       
   702         # type of object, or tuple of type objects (meaning the object can
       
   703         # be of any type in the tuple)
       
   704         'obtype',
       
   705 
       
   706         # human-readable docs for this kind of stack object; a string
       
   707         'doc',
       
   708     )
       
   709 
       
   710     def __init__(self, name, obtype, doc):
       
   711         assert isinstance(name, str)
       
   712         self.name = name
       
   713 
       
   714         assert isinstance(obtype, type) or isinstance(obtype, tuple)
       
   715         if isinstance(obtype, tuple):
       
   716             for contained in obtype:
       
   717                 assert isinstance(contained, type)
       
   718         self.obtype = obtype
       
   719 
       
   720         assert isinstance(doc, str)
       
   721         self.doc = doc
       
   722 
       
   723     def __repr__(self):
       
   724         return self.name
       
   725 
       
   726 
       
   727 pyint = StackObject(
       
   728             name='int',
       
   729             obtype=int,
       
   730             doc="A short (as opposed to long) Python integer object.")
       
   731 
       
   732 pylong = StackObject(
       
   733              name='long',
       
   734              obtype=long,
       
   735              doc="A long (as opposed to short) Python integer object.")
       
   736 
       
   737 pyinteger_or_bool = StackObject(
       
   738                         name='int_or_bool',
       
   739                         obtype=(int, long, bool),
       
   740                         doc="A Python integer object (short or long), or "
       
   741                             "a Python bool.")
       
   742 
       
   743 pybool = StackObject(
       
   744              name='bool',
       
   745              obtype=(bool,),
       
   746              doc="A Python bool object.")
       
   747 
       
   748 pyfloat = StackObject(
       
   749               name='float',
       
   750               obtype=float,
       
   751               doc="A Python float object.")
       
   752 
       
   753 pystring = StackObject(
       
   754                name='str',
       
   755                obtype=str,
       
   756                doc="A Python string object.")
       
   757 
       
   758 pyunicode = StackObject(
       
   759                 name='unicode',
       
   760                 obtype=unicode,
       
   761                 doc="A Python Unicode string object.")
       
   762 
       
   763 pynone = StackObject(
       
   764              name="None",
       
   765              obtype=type(None),
       
   766              doc="The Python None object.")
       
   767 
       
   768 pytuple = StackObject(
       
   769               name="tuple",
       
   770               obtype=tuple,
       
   771               doc="A Python tuple object.")
       
   772 
       
   773 pylist = StackObject(
       
   774              name="list",
       
   775              obtype=list,
       
   776              doc="A Python list object.")
       
   777 
       
   778 pydict = StackObject(
       
   779              name="dict",
       
   780              obtype=dict,
       
   781              doc="A Python dict object.")
       
   782 
       
   783 anyobject = StackObject(
       
   784                 name='any',
       
   785                 obtype=object,
       
   786                 doc="Any kind of object whatsoever.")
       
   787 
       
   788 markobject = StackObject(
       
   789                  name="mark",
       
   790                  obtype=StackObject,
       
   791                  doc="""'The mark' is a unique object.
       
   792 
       
   793                  Opcodes that operate on a variable number of objects
       
   794                  generally don't embed the count of objects in the opcode,
       
   795                  or pull it off the stack.  Instead the MARK opcode is used
       
   796                  to push a special marker object on the stack, and then
       
   797                  some other opcodes grab all the objects from the top of
       
   798                  the stack down to (but not including) the topmost marker
       
   799                  object.
       
   800                  """)
       
   801 
       
   802 stackslice = StackObject(
       
   803                  name="stackslice",
       
   804                  obtype=StackObject,
       
   805                  doc="""An object representing a contiguous slice of the stack.
       
   806 
       
   807                  This is used in conjuction with markobject, to represent all
       
   808                  of the stack following the topmost markobject.  For example,
       
   809                  the POP_MARK opcode changes the stack from
       
   810 
       
   811                      [..., markobject, stackslice]
       
   812                  to
       
   813                      [...]
       
   814 
       
   815                  No matter how many object are on the stack after the topmost
       
   816                  markobject, POP_MARK gets rid of all of them (including the
       
   817                  topmost markobject too).
       
   818                  """)
       
   819 
       
   820 ##############################################################################
       
   821 # Descriptors for pickle opcodes.
       
   822 
       
   823 class OpcodeInfo(object):
       
   824 
       
   825     __slots__ = (
       
   826         # symbolic name of opcode; a string
       
   827         'name',
       
   828 
       
   829         # the code used in a bytestream to represent the opcode; a
       
   830         # one-character string
       
   831         'code',
       
   832 
       
   833         # If the opcode has an argument embedded in the byte string, an
       
   834         # instance of ArgumentDescriptor specifying its type.  Note that
       
   835         # arg.reader(s) can be used to read and decode the argument from
       
   836         # the bytestream s, and arg.doc documents the format of the raw
       
   837         # argument bytes.  If the opcode doesn't have an argument embedded
       
   838         # in the bytestream, arg should be None.
       
   839         'arg',
       
   840 
       
   841         # what the stack looks like before this opcode runs; a list
       
   842         'stack_before',
       
   843 
       
   844         # what the stack looks like after this opcode runs; a list
       
   845         'stack_after',
       
   846 
       
   847         # the protocol number in which this opcode was introduced; an int
       
   848         'proto',
       
   849 
       
   850         # human-readable docs for this opcode; a string
       
   851         'doc',
       
   852     )
       
   853 
       
   854     def __init__(self, name, code, arg,
       
   855                  stack_before, stack_after, proto, doc):
       
   856         assert isinstance(name, str)
       
   857         self.name = name
       
   858 
       
   859         assert isinstance(code, str)
       
   860         assert len(code) == 1
       
   861         self.code = code
       
   862 
       
   863         assert arg is None or isinstance(arg, ArgumentDescriptor)
       
   864         self.arg = arg
       
   865 
       
   866         assert isinstance(stack_before, list)
       
   867         for x in stack_before:
       
   868             assert isinstance(x, StackObject)
       
   869         self.stack_before = stack_before
       
   870 
       
   871         assert isinstance(stack_after, list)
       
   872         for x in stack_after:
       
   873             assert isinstance(x, StackObject)
       
   874         self.stack_after = stack_after
       
   875 
       
   876         assert isinstance(proto, int) and 0 <= proto <= 2
       
   877         self.proto = proto
       
   878 
       
   879         assert isinstance(doc, str)
       
   880         self.doc = doc
       
   881 
       
   882 I = OpcodeInfo
       
   883 opcodes = [
       
   884 
       
   885     # Ways to spell integers.
       
   886 
       
   887     I(name='INT',
       
   888       code='I',
       
   889       arg=decimalnl_short,
       
   890       stack_before=[],
       
   891       stack_after=[pyinteger_or_bool],
       
   892       proto=0,
       
   893       doc="""Push an integer or bool.
       
   894 
       
   895       The argument is a newline-terminated decimal literal string.
       
   896 
       
   897       The intent may have been that this always fit in a short Python int,
       
   898       but INT can be generated in pickles written on a 64-bit box that
       
   899       require a Python long on a 32-bit box.  The difference between this
       
   900       and LONG then is that INT skips a trailing 'L', and produces a short
       
   901       int whenever possible.
       
   902 
       
   903       Another difference is due to that, when bool was introduced as a
       
   904       distinct type in 2.3, builtin names True and False were also added to
       
   905       2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
       
   906       True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
       
   907       Leading zeroes are never produced for a genuine integer.  The 2.3
       
   908       (and later) unpicklers special-case these and return bool instead;
       
   909       earlier unpicklers ignore the leading "0" and return the int.
       
   910       """),
       
   911 
       
   912     I(name='BININT',
       
   913       code='J',
       
   914       arg=int4,
       
   915       stack_before=[],
       
   916       stack_after=[pyint],
       
   917       proto=1,
       
   918       doc="""Push a four-byte signed integer.
       
   919 
       
   920       This handles the full range of Python (short) integers on a 32-bit
       
   921       box, directly as binary bytes (1 for the opcode and 4 for the integer).
       
   922       If the integer is non-negative and fits in 1 or 2 bytes, pickling via
       
   923       BININT1 or BININT2 saves space.
       
   924       """),
       
   925 
       
   926     I(name='BININT1',
       
   927       code='K',
       
   928       arg=uint1,
       
   929       stack_before=[],
       
   930       stack_after=[pyint],
       
   931       proto=1,
       
   932       doc="""Push a one-byte unsigned integer.
       
   933 
       
   934       This is a space optimization for pickling very small non-negative ints,
       
   935       in range(256).
       
   936       """),
       
   937 
       
   938     I(name='BININT2',
       
   939       code='M',
       
   940       arg=uint2,
       
   941       stack_before=[],
       
   942       stack_after=[pyint],
       
   943       proto=1,
       
   944       doc="""Push a two-byte unsigned integer.
       
   945 
       
   946       This is a space optimization for pickling small positive ints, in
       
   947       range(256, 2**16).  Integers in range(256) can also be pickled via
       
   948       BININT2, but BININT1 instead saves a byte.
       
   949       """),
       
   950 
       
   951     I(name='LONG',
       
   952       code='L',
       
   953       arg=decimalnl_long,
       
   954       stack_before=[],
       
   955       stack_after=[pylong],
       
   956       proto=0,
       
   957       doc="""Push a long integer.
       
   958 
       
   959       The same as INT, except that the literal ends with 'L', and always
       
   960       unpickles to a Python long.  There doesn't seem a real purpose to the
       
   961       trailing 'L'.
       
   962 
       
   963       Note that LONG takes time quadratic in the number of digits when
       
   964       unpickling (this is simply due to the nature of decimal->binary
       
   965       conversion).  Proto 2 added linear-time (in C; still quadratic-time
       
   966       in Python) LONG1 and LONG4 opcodes.
       
   967       """),
       
   968 
       
   969     I(name="LONG1",
       
   970       code='\x8a',
       
   971       arg=long1,
       
   972       stack_before=[],
       
   973       stack_after=[pylong],
       
   974       proto=2,
       
   975       doc="""Long integer using one-byte length.
       
   976 
       
   977       A more efficient encoding of a Python long; the long1 encoding
       
   978       says it all."""),
       
   979 
       
   980     I(name="LONG4",
       
   981       code='\x8b',
       
   982       arg=long4,
       
   983       stack_before=[],
       
   984       stack_after=[pylong],
       
   985       proto=2,
       
   986       doc="""Long integer using found-byte length.
       
   987 
       
   988       A more efficient encoding of a Python long; the long4 encoding
       
   989       says it all."""),
       
   990 
       
   991     # Ways to spell strings (8-bit, not Unicode).
       
   992 
       
   993     I(name='STRING',
       
   994       code='S',
       
   995       arg=stringnl,
       
   996       stack_before=[],
       
   997       stack_after=[pystring],
       
   998       proto=0,
       
   999       doc="""Push a Python string object.
       
  1000 
       
  1001       The argument is a repr-style string, with bracketing quote characters,
       
  1002       and perhaps embedded escapes.  The argument extends until the next
       
  1003       newline character.
       
  1004       """),
       
  1005 
       
  1006     I(name='BINSTRING',
       
  1007       code='T',
       
  1008       arg=string4,
       
  1009       stack_before=[],
       
  1010       stack_after=[pystring],
       
  1011       proto=1,
       
  1012       doc="""Push a Python string object.
       
  1013 
       
  1014       There are two arguments:  the first is a 4-byte little-endian signed int
       
  1015       giving the number of bytes in the string, and the second is that many
       
  1016       bytes, which are taken literally as the string content.
       
  1017       """),
       
  1018 
       
  1019     I(name='SHORT_BINSTRING',
       
  1020       code='U',
       
  1021       arg=string1,
       
  1022       stack_before=[],
       
  1023       stack_after=[pystring],
       
  1024       proto=1,
       
  1025       doc="""Push a Python string object.
       
  1026 
       
  1027       There are two arguments:  the first is a 1-byte unsigned int giving
       
  1028       the number of bytes in the string, and the second is that many bytes,
       
  1029       which are taken literally as the string content.
       
  1030       """),
       
  1031 
       
  1032     # Ways to spell None.
       
  1033 
       
  1034     I(name='NONE',
       
  1035       code='N',
       
  1036       arg=None,
       
  1037       stack_before=[],
       
  1038       stack_after=[pynone],
       
  1039       proto=0,
       
  1040       doc="Push None on the stack."),
       
  1041 
       
  1042     # Ways to spell bools, starting with proto 2.  See INT for how this was
       
  1043     # done before proto 2.
       
  1044 
       
  1045     I(name='NEWTRUE',
       
  1046       code='\x88',
       
  1047       arg=None,
       
  1048       stack_before=[],
       
  1049       stack_after=[pybool],
       
  1050       proto=2,
       
  1051       doc="""True.
       
  1052 
       
  1053       Push True onto the stack."""),
       
  1054 
       
  1055     I(name='NEWFALSE',
       
  1056       code='\x89',
       
  1057       arg=None,
       
  1058       stack_before=[],
       
  1059       stack_after=[pybool],
       
  1060       proto=2,
       
  1061       doc="""True.
       
  1062 
       
  1063       Push False onto the stack."""),
       
  1064 
       
  1065     # Ways to spell Unicode strings.
       
  1066 
       
  1067     I(name='UNICODE',
       
  1068       code='V',
       
  1069       arg=unicodestringnl,
       
  1070       stack_before=[],
       
  1071       stack_after=[pyunicode],
       
  1072       proto=0,  # this may be pure-text, but it's a later addition
       
  1073       doc="""Push a Python Unicode string object.
       
  1074 
       
  1075       The argument is a raw-unicode-escape encoding of a Unicode string,
       
  1076       and so may contain embedded escape sequences.  The argument extends
       
  1077       until the next newline character.
       
  1078       """),
       
  1079 
       
  1080     I(name='BINUNICODE',
       
  1081       code='X',
       
  1082       arg=unicodestring4,
       
  1083       stack_before=[],
       
  1084       stack_after=[pyunicode],
       
  1085       proto=1,
       
  1086       doc="""Push a Python Unicode string object.
       
  1087 
       
  1088       There are two arguments:  the first is a 4-byte little-endian signed int
       
  1089       giving the number of bytes in the string.  The second is that many
       
  1090       bytes, and is the UTF-8 encoding of the Unicode string.
       
  1091       """),
       
  1092 
       
  1093     # Ways to spell floats.
       
  1094 
       
  1095     I(name='FLOAT',
       
  1096       code='F',
       
  1097       arg=floatnl,
       
  1098       stack_before=[],
       
  1099       stack_after=[pyfloat],
       
  1100       proto=0,
       
  1101       doc="""Newline-terminated decimal float literal.
       
  1102 
       
  1103       The argument is repr(a_float), and in general requires 17 significant
       
  1104       digits for roundtrip conversion to be an identity (this is so for
       
  1105       IEEE-754 double precision values, which is what Python float maps to
       
  1106       on most boxes).
       
  1107 
       
  1108       In general, FLOAT cannot be used to transport infinities, NaNs, or
       
  1109       minus zero across boxes (or even on a single box, if the platform C
       
  1110       library can't read the strings it produces for such things -- Windows
       
  1111       is like that), but may do less damage than BINFLOAT on boxes with
       
  1112       greater precision or dynamic range than IEEE-754 double.
       
  1113       """),
       
  1114 
       
  1115     I(name='BINFLOAT',
       
  1116       code='G',
       
  1117       arg=float8,
       
  1118       stack_before=[],
       
  1119       stack_after=[pyfloat],
       
  1120       proto=1,
       
  1121       doc="""Float stored in binary form, with 8 bytes of data.
       
  1122 
       
  1123       This generally requires less than half the space of FLOAT encoding.
       
  1124       In general, BINFLOAT cannot be used to transport infinities, NaNs, or
       
  1125       minus zero, raises an exception if the exponent exceeds the range of
       
  1126       an IEEE-754 double, and retains no more than 53 bits of precision (if
       
  1127       there are more than that, "add a half and chop" rounding is used to
       
  1128       cut it back to 53 significant bits).
       
  1129       """),
       
  1130 
       
  1131     # Ways to build lists.
       
  1132 
       
  1133     I(name='EMPTY_LIST',
       
  1134       code=']',
       
  1135       arg=None,
       
  1136       stack_before=[],
       
  1137       stack_after=[pylist],
       
  1138       proto=1,
       
  1139       doc="Push an empty list."),
       
  1140 
       
  1141     I(name='APPEND',
       
  1142       code='a',
       
  1143       arg=None,
       
  1144       stack_before=[pylist, anyobject],
       
  1145       stack_after=[pylist],
       
  1146       proto=0,
       
  1147       doc="""Append an object to a list.
       
  1148 
       
  1149       Stack before:  ... pylist anyobject
       
  1150       Stack after:   ... pylist+[anyobject]
       
  1151 
       
  1152       although pylist is really extended in-place.
       
  1153       """),
       
  1154 
       
  1155     I(name='APPENDS',
       
  1156       code='e',
       
  1157       arg=None,
       
  1158       stack_before=[pylist, markobject, stackslice],
       
  1159       stack_after=[pylist],
       
  1160       proto=1,
       
  1161       doc="""Extend a list by a slice of stack objects.
       
  1162 
       
  1163       Stack before:  ... pylist markobject stackslice
       
  1164       Stack after:   ... pylist+stackslice
       
  1165 
       
  1166       although pylist is really extended in-place.
       
  1167       """),
       
  1168 
       
  1169     I(name='LIST',
       
  1170       code='l',
       
  1171       arg=None,
       
  1172       stack_before=[markobject, stackslice],
       
  1173       stack_after=[pylist],
       
  1174       proto=0,
       
  1175       doc="""Build a list out of the topmost stack slice, after markobject.
       
  1176 
       
  1177       All the stack entries following the topmost markobject are placed into
       
  1178       a single Python list, which single list object replaces all of the
       
  1179       stack from the topmost markobject onward.  For example,
       
  1180 
       
  1181       Stack before: ... markobject 1 2 3 'abc'
       
  1182       Stack after:  ... [1, 2, 3, 'abc']
       
  1183       """),
       
  1184 
       
  1185     # Ways to build tuples.
       
  1186 
       
  1187     I(name='EMPTY_TUPLE',
       
  1188       code=')',
       
  1189       arg=None,
       
  1190       stack_before=[],
       
  1191       stack_after=[pytuple],
       
  1192       proto=1,
       
  1193       doc="Push an empty tuple."),
       
  1194 
       
  1195     I(name='TUPLE',
       
  1196       code='t',
       
  1197       arg=None,
       
  1198       stack_before=[markobject, stackslice],
       
  1199       stack_after=[pytuple],
       
  1200       proto=0,
       
  1201       doc="""Build a tuple out of the topmost stack slice, after markobject.
       
  1202 
       
  1203       All the stack entries following the topmost markobject are placed into
       
  1204       a single Python tuple, which single tuple object replaces all of the
       
  1205       stack from the topmost markobject onward.  For example,
       
  1206 
       
  1207       Stack before: ... markobject 1 2 3 'abc'
       
  1208       Stack after:  ... (1, 2, 3, 'abc')
       
  1209       """),
       
  1210 
       
  1211     I(name='TUPLE1',
       
  1212       code='\x85',
       
  1213       arg=None,
       
  1214       stack_before=[anyobject],
       
  1215       stack_after=[pytuple],
       
  1216       proto=2,
       
  1217       doc="""One-tuple.
       
  1218 
       
  1219       This code pops one value off the stack and pushes a tuple of
       
  1220       length 1 whose one item is that value back onto it.  IOW:
       
  1221 
       
  1222           stack[-1] = tuple(stack[-1:])
       
  1223       """),
       
  1224 
       
  1225     I(name='TUPLE2',
       
  1226       code='\x86',
       
  1227       arg=None,
       
  1228       stack_before=[anyobject, anyobject],
       
  1229       stack_after=[pytuple],
       
  1230       proto=2,
       
  1231       doc="""One-tuple.
       
  1232 
       
  1233       This code pops two values off the stack and pushes a tuple
       
  1234       of length 2 whose items are those values back onto it.  IOW:
       
  1235 
       
  1236           stack[-2:] = [tuple(stack[-2:])]
       
  1237       """),
       
  1238 
       
  1239     I(name='TUPLE3',
       
  1240       code='\x87',
       
  1241       arg=None,
       
  1242       stack_before=[anyobject, anyobject, anyobject],
       
  1243       stack_after=[pytuple],
       
  1244       proto=2,
       
  1245       doc="""One-tuple.
       
  1246 
       
  1247       This code pops three values off the stack and pushes a tuple
       
  1248       of length 3 whose items are those values back onto it.  IOW:
       
  1249 
       
  1250           stack[-3:] = [tuple(stack[-3:])]
       
  1251       """),
       
  1252 
       
  1253     # Ways to build dicts.
       
  1254 
       
  1255     I(name='EMPTY_DICT',
       
  1256       code='}',
       
  1257       arg=None,
       
  1258       stack_before=[],
       
  1259       stack_after=[pydict],
       
  1260       proto=1,
       
  1261       doc="Push an empty dict."),
       
  1262 
       
  1263     I(name='DICT',
       
  1264       code='d',
       
  1265       arg=None,
       
  1266       stack_before=[markobject, stackslice],
       
  1267       stack_after=[pydict],
       
  1268       proto=0,
       
  1269       doc="""Build a dict out of the topmost stack slice, after markobject.
       
  1270 
       
  1271       All the stack entries following the topmost markobject are placed into
       
  1272       a single Python dict, which single dict object replaces all of the
       
  1273       stack from the topmost markobject onward.  The stack slice alternates
       
  1274       key, value, key, value, ....  For example,
       
  1275 
       
  1276       Stack before: ... markobject 1 2 3 'abc'
       
  1277       Stack after:  ... {1: 2, 3: 'abc'}
       
  1278       """),
       
  1279 
       
  1280     I(name='SETITEM',
       
  1281       code='s',
       
  1282       arg=None,
       
  1283       stack_before=[pydict, anyobject, anyobject],
       
  1284       stack_after=[pydict],
       
  1285       proto=0,
       
  1286       doc="""Add a key+value pair to an existing dict.
       
  1287 
       
  1288       Stack before:  ... pydict key value
       
  1289       Stack after:   ... pydict
       
  1290 
       
  1291       where pydict has been modified via pydict[key] = value.
       
  1292       """),
       
  1293 
       
  1294     I(name='SETITEMS',
       
  1295       code='u',
       
  1296       arg=None,
       
  1297       stack_before=[pydict, markobject, stackslice],
       
  1298       stack_after=[pydict],
       
  1299       proto=1,
       
  1300       doc="""Add an arbitrary number of key+value pairs to an existing dict.
       
  1301 
       
  1302       The slice of the stack following the topmost markobject is taken as
       
  1303       an alternating sequence of keys and values, added to the dict
       
  1304       immediately under the topmost markobject.  Everything at and after the
       
  1305       topmost markobject is popped, leaving the mutated dict at the top
       
  1306       of the stack.
       
  1307 
       
  1308       Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
       
  1309       Stack after:   ... pydict
       
  1310 
       
  1311       where pydict has been modified via pydict[key_i] = value_i for i in
       
  1312       1, 2, ..., n, and in that order.
       
  1313       """),
       
  1314 
       
  1315     # Stack manipulation.
       
  1316 
       
  1317     I(name='POP',
       
  1318       code='0',
       
  1319       arg=None,
       
  1320       stack_before=[anyobject],
       
  1321       stack_after=[],
       
  1322       proto=0,
       
  1323       doc="Discard the top stack item, shrinking the stack by one item."),
       
  1324 
       
  1325     I(name='DUP',
       
  1326       code='2',
       
  1327       arg=None,
       
  1328       stack_before=[anyobject],
       
  1329       stack_after=[anyobject, anyobject],
       
  1330       proto=0,
       
  1331       doc="Push the top stack item onto the stack again, duplicating it."),
       
  1332 
       
  1333     I(name='MARK',
       
  1334       code='(',
       
  1335       arg=None,
       
  1336       stack_before=[],
       
  1337       stack_after=[markobject],
       
  1338       proto=0,
       
  1339       doc="""Push markobject onto the stack.
       
  1340 
       
  1341       markobject is a unique object, used by other opcodes to identify a
       
  1342       region of the stack containing a variable number of objects for them
       
  1343       to work on.  See markobject.doc for more detail.
       
  1344       """),
       
  1345 
       
  1346     I(name='POP_MARK',
       
  1347       code='1',
       
  1348       arg=None,
       
  1349       stack_before=[markobject, stackslice],
       
  1350       stack_after=[],
       
  1351       proto=0,
       
  1352       doc="""Pop all the stack objects at and above the topmost markobject.
       
  1353 
       
  1354       When an opcode using a variable number of stack objects is done,
       
  1355       POP_MARK is used to remove those objects, and to remove the markobject
       
  1356       that delimited their starting position on the stack.
       
  1357       """),
       
  1358 
       
  1359     # Memo manipulation.  There are really only two operations (get and put),
       
  1360     # each in all-text, "short binary", and "long binary" flavors.
       
  1361 
       
  1362     I(name='GET',
       
  1363       code='g',
       
  1364       arg=decimalnl_short,
       
  1365       stack_before=[],
       
  1366       stack_after=[anyobject],
       
  1367       proto=0,
       
  1368       doc="""Read an object from the memo and push it on the stack.
       
  1369 
       
  1370       The index of the memo object to push is given by the newline-teriminated
       
  1371       decimal string following.  BINGET and LONG_BINGET are space-optimized
       
  1372       versions.
       
  1373       """),
       
  1374 
       
  1375     I(name='BINGET',
       
  1376       code='h',
       
  1377       arg=uint1,
       
  1378       stack_before=[],
       
  1379       stack_after=[anyobject],
       
  1380       proto=1,
       
  1381       doc="""Read an object from the memo and push it on the stack.
       
  1382 
       
  1383       The index of the memo object to push is given by the 1-byte unsigned
       
  1384       integer following.
       
  1385       """),
       
  1386 
       
  1387     I(name='LONG_BINGET',
       
  1388       code='j',
       
  1389       arg=int4,
       
  1390       stack_before=[],
       
  1391       stack_after=[anyobject],
       
  1392       proto=1,
       
  1393       doc="""Read an object from the memo and push it on the stack.
       
  1394 
       
  1395       The index of the memo object to push is given by the 4-byte signed
       
  1396       little-endian integer following.
       
  1397       """),
       
  1398 
       
  1399     I(name='PUT',
       
  1400       code='p',
       
  1401       arg=decimalnl_short,
       
  1402       stack_before=[],
       
  1403       stack_after=[],
       
  1404       proto=0,
       
  1405       doc="""Store the stack top into the memo.  The stack is not popped.
       
  1406 
       
  1407       The index of the memo location to write into is given by the newline-
       
  1408       terminated decimal string following.  BINPUT and LONG_BINPUT are
       
  1409       space-optimized versions.
       
  1410       """),
       
  1411 
       
  1412     I(name='BINPUT',
       
  1413       code='q',
       
  1414       arg=uint1,
       
  1415       stack_before=[],
       
  1416       stack_after=[],
       
  1417       proto=1,
       
  1418       doc="""Store the stack top into the memo.  The stack is not popped.
       
  1419 
       
  1420       The index of the memo location to write into is given by the 1-byte
       
  1421       unsigned integer following.
       
  1422       """),
       
  1423 
       
  1424     I(name='LONG_BINPUT',
       
  1425       code='r',
       
  1426       arg=int4,
       
  1427       stack_before=[],
       
  1428       stack_after=[],
       
  1429       proto=1,
       
  1430       doc="""Store the stack top into the memo.  The stack is not popped.
       
  1431 
       
  1432       The index of the memo location to write into is given by the 4-byte
       
  1433       signed little-endian integer following.
       
  1434       """),
       
  1435 
       
  1436     # Access the extension registry (predefined objects).  Akin to the GET
       
  1437     # family.
       
  1438 
       
  1439     I(name='EXT1',
       
  1440       code='\x82',
       
  1441       arg=uint1,
       
  1442       stack_before=[],
       
  1443       stack_after=[anyobject],
       
  1444       proto=2,
       
  1445       doc="""Extension code.
       
  1446 
       
  1447       This code and the similar EXT2 and EXT4 allow using a registry
       
  1448       of popular objects that are pickled by name, typically classes.
       
  1449       It is envisioned that through a global negotiation and
       
  1450       registration process, third parties can set up a mapping between
       
  1451       ints and object names.
       
  1452 
       
  1453       In order to guarantee pickle interchangeability, the extension
       
  1454       code registry ought to be global, although a range of codes may
       
  1455       be reserved for private use.
       
  1456 
       
  1457       EXT1 has a 1-byte integer argument.  This is used to index into the
       
  1458       extension registry, and the object at that index is pushed on the stack.
       
  1459       """),
       
  1460 
       
  1461     I(name='EXT2',
       
  1462       code='\x83',
       
  1463       arg=uint2,
       
  1464       stack_before=[],
       
  1465       stack_after=[anyobject],
       
  1466       proto=2,
       
  1467       doc="""Extension code.
       
  1468 
       
  1469       See EXT1.  EXT2 has a two-byte integer argument.
       
  1470       """),
       
  1471 
       
  1472     I(name='EXT4',
       
  1473       code='\x84',
       
  1474       arg=int4,
       
  1475       stack_before=[],
       
  1476       stack_after=[anyobject],
       
  1477       proto=2,
       
  1478       doc="""Extension code.
       
  1479 
       
  1480       See EXT1.  EXT4 has a four-byte integer argument.
       
  1481       """),
       
  1482 
       
  1483     # Push a class object, or module function, on the stack, via its module
       
  1484     # and name.
       
  1485 
       
  1486     I(name='GLOBAL',
       
  1487       code='c',
       
  1488       arg=stringnl_noescape_pair,
       
  1489       stack_before=[],
       
  1490       stack_after=[anyobject],
       
  1491       proto=0,
       
  1492       doc="""Push a global object (module.attr) on the stack.
       
  1493 
       
  1494       Two newline-terminated strings follow the GLOBAL opcode.  The first is
       
  1495       taken as a module name, and the second as a class name.  The class
       
  1496       object module.class is pushed on the stack.  More accurately, the
       
  1497       object returned by self.find_class(module, class) is pushed on the
       
  1498       stack, so unpickling subclasses can override this form of lookup.
       
  1499       """),
       
  1500 
       
  1501     # Ways to build objects of classes pickle doesn't know about directly
       
  1502     # (user-defined classes).  I despair of documenting this accurately
       
  1503     # and comprehensibly -- you really have to read the pickle code to
       
  1504     # find all the special cases.
       
  1505 
       
  1506     I(name='REDUCE',
       
  1507       code='R',
       
  1508       arg=None,
       
  1509       stack_before=[anyobject, anyobject],
       
  1510       stack_after=[anyobject],
       
  1511       proto=0,
       
  1512       doc="""Push an object built from a callable and an argument tuple.
       
  1513 
       
  1514       The opcode is named to remind of the __reduce__() method.
       
  1515 
       
  1516       Stack before: ... callable pytuple
       
  1517       Stack after:  ... callable(*pytuple)
       
  1518 
       
  1519       The callable and the argument tuple are the first two items returned
       
  1520       by a __reduce__ method.  Applying the callable to the argtuple is
       
  1521       supposed to reproduce the original object, or at least get it started.
       
  1522       If the __reduce__ method returns a 3-tuple, the last component is an
       
  1523       argument to be passed to the object's __setstate__, and then the REDUCE
       
  1524       opcode is followed by code to create setstate's argument, and then a
       
  1525       BUILD opcode to apply  __setstate__ to that argument.
       
  1526 
       
  1527       If type(callable) is not ClassType, REDUCE complains unless the
       
  1528       callable has been registered with the copy_reg module's
       
  1529       safe_constructors dict, or the callable has a magic
       
  1530       '__safe_for_unpickling__' attribute with a true value.  I'm not sure
       
  1531       why it does this, but I've sure seen this complaint often enough when
       
  1532       I didn't want to <wink>.
       
  1533       """),
       
  1534 
       
  1535     I(name='BUILD',
       
  1536       code='b',
       
  1537       arg=None,
       
  1538       stack_before=[anyobject, anyobject],
       
  1539       stack_after=[anyobject],
       
  1540       proto=0,
       
  1541       doc="""Finish building an object, via __setstate__ or dict update.
       
  1542 
       
  1543       Stack before: ... anyobject argument
       
  1544       Stack after:  ... anyobject
       
  1545 
       
  1546       where anyobject may have been mutated, as follows:
       
  1547 
       
  1548       If the object has a __setstate__ method,
       
  1549 
       
  1550           anyobject.__setstate__(argument)
       
  1551 
       
  1552       is called.
       
  1553 
       
  1554       Else the argument must be a dict, the object must have a __dict__, and
       
  1555       the object is updated via
       
  1556 
       
  1557           anyobject.__dict__.update(argument)
       
  1558 
       
  1559       This may raise RuntimeError in restricted execution mode (which
       
  1560       disallows access to __dict__ directly); in that case, the object
       
  1561       is updated instead via
       
  1562 
       
  1563           for k, v in argument.items():
       
  1564               anyobject[k] = v
       
  1565       """),
       
  1566 
       
  1567     I(name='INST',
       
  1568       code='i',
       
  1569       arg=stringnl_noescape_pair,
       
  1570       stack_before=[markobject, stackslice],
       
  1571       stack_after=[anyobject],
       
  1572       proto=0,
       
  1573       doc="""Build a class instance.
       
  1574 
       
  1575       This is the protocol 0 version of protocol 1's OBJ opcode.
       
  1576       INST is followed by two newline-terminated strings, giving a
       
  1577       module and class name, just as for the GLOBAL opcode (and see
       
  1578       GLOBAL for more details about that).  self.find_class(module, name)
       
  1579       is used to get a class object.
       
  1580 
       
  1581       In addition, all the objects on the stack following the topmost
       
  1582       markobject are gathered into a tuple and popped (along with the
       
  1583       topmost markobject), just as for the TUPLE opcode.
       
  1584 
       
  1585       Now it gets complicated.  If all of these are true:
       
  1586 
       
  1587         + The argtuple is empty (markobject was at the top of the stack
       
  1588           at the start).
       
  1589 
       
  1590         + It's an old-style class object (the type of the class object is
       
  1591           ClassType).
       
  1592 
       
  1593         + The class object does not have a __getinitargs__ attribute.
       
  1594 
       
  1595       then we want to create an old-style class instance without invoking
       
  1596       its __init__() method (pickle has waffled on this over the years; not
       
  1597       calling __init__() is current wisdom).  In this case, an instance of
       
  1598       an old-style dummy class is created, and then we try to rebind its
       
  1599       __class__ attribute to the desired class object.  If this succeeds,
       
  1600       the new instance object is pushed on the stack, and we're done.  In
       
  1601       restricted execution mode it can fail (assignment to __class__ is
       
  1602       disallowed), and I'm not really sure what happens then -- it looks
       
  1603       like the code ends up calling the class object's __init__ anyway,
       
  1604       via falling into the next case.
       
  1605 
       
  1606       Else (the argtuple is not empty, it's not an old-style class object,
       
  1607       or the class object does have a __getinitargs__ attribute), the code
       
  1608       first insists that the class object have a __safe_for_unpickling__
       
  1609       attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
       
  1610       it doesn't matter whether this attribute has a true or false value, it
       
  1611       only matters whether it exists (XXX this is a bug; cPickle
       
  1612       requires the attribute to be true).  If __safe_for_unpickling__
       
  1613       doesn't exist, UnpicklingError is raised.
       
  1614 
       
  1615       Else (the class object does have a __safe_for_unpickling__ attr),
       
  1616       the class object obtained from INST's arguments is applied to the
       
  1617       argtuple obtained from the stack, and the resulting instance object
       
  1618       is pushed on the stack.
       
  1619 
       
  1620       NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
       
  1621       """),
       
  1622 
       
  1623     I(name='OBJ',
       
  1624       code='o',
       
  1625       arg=None,
       
  1626       stack_before=[markobject, anyobject, stackslice],
       
  1627       stack_after=[anyobject],
       
  1628       proto=1,
       
  1629       doc="""Build a class instance.
       
  1630 
       
  1631       This is the protocol 1 version of protocol 0's INST opcode, and is
       
  1632       very much like it.  The major difference is that the class object
       
  1633       is taken off the stack, allowing it to be retrieved from the memo
       
  1634       repeatedly if several instances of the same class are created.  This
       
  1635       can be much more efficient (in both time and space) than repeatedly
       
  1636       embedding the module and class names in INST opcodes.
       
  1637 
       
  1638       Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
       
  1639       the class object is taken off the stack, immediately above the
       
  1640       topmost markobject:
       
  1641 
       
  1642       Stack before: ... markobject classobject stackslice
       
  1643       Stack after:  ... new_instance_object
       
  1644 
       
  1645       As for INST, the remainder of the stack above the markobject is
       
  1646       gathered into an argument tuple, and then the logic seems identical,
       
  1647       except that no __safe_for_unpickling__ check is done (XXX this is
       
  1648       a bug; cPickle does test __safe_for_unpickling__).  See INST for
       
  1649       the gory details.
       
  1650 
       
  1651       NOTE:  In Python 2.3, INST and OBJ are identical except for how they
       
  1652       get the class object.  That was always the intent; the implementations
       
  1653       had diverged for accidental reasons.
       
  1654       """),
       
  1655 
       
  1656     I(name='NEWOBJ',
       
  1657       code='\x81',
       
  1658       arg=None,
       
  1659       stack_before=[anyobject, anyobject],
       
  1660       stack_after=[anyobject],
       
  1661       proto=2,
       
  1662       doc="""Build an object instance.
       
  1663 
       
  1664       The stack before should be thought of as containing a class
       
  1665       object followed by an argument tuple (the tuple being the stack
       
  1666       top).  Call these cls and args.  They are popped off the stack,
       
  1667       and the value returned by cls.__new__(cls, *args) is pushed back
       
  1668       onto the stack.
       
  1669       """),
       
  1670 
       
  1671     # Machine control.
       
  1672 
       
  1673     I(name='PROTO',
       
  1674       code='\x80',
       
  1675       arg=uint1,
       
  1676       stack_before=[],
       
  1677       stack_after=[],
       
  1678       proto=2,
       
  1679       doc="""Protocol version indicator.
       
  1680 
       
  1681       For protocol 2 and above, a pickle must start with this opcode.
       
  1682       The argument is the protocol version, an int in range(2, 256).
       
  1683       """),
       
  1684 
       
  1685     I(name='STOP',
       
  1686       code='.',
       
  1687       arg=None,
       
  1688       stack_before=[anyobject],
       
  1689       stack_after=[],
       
  1690       proto=0,
       
  1691       doc="""Stop the unpickling machine.
       
  1692 
       
  1693       Every pickle ends with this opcode.  The object at the top of the stack
       
  1694       is popped, and that's the result of unpickling.  The stack should be
       
  1695       empty then.
       
  1696       """),
       
  1697 
       
  1698     # Ways to deal with persistent IDs.
       
  1699 
       
  1700     I(name='PERSID',
       
  1701       code='P',
       
  1702       arg=stringnl_noescape,
       
  1703       stack_before=[],
       
  1704       stack_after=[anyobject],
       
  1705       proto=0,
       
  1706       doc="""Push an object identified by a persistent ID.
       
  1707 
       
  1708       The pickle module doesn't define what a persistent ID means.  PERSID's
       
  1709       argument is a newline-terminated str-style (no embedded escapes, no
       
  1710       bracketing quote characters) string, which *is* "the persistent ID".
       
  1711       The unpickler passes this string to self.persistent_load().  Whatever
       
  1712       object that returns is pushed on the stack.  There is no implementation
       
  1713       of persistent_load() in Python's unpickler:  it must be supplied by an
       
  1714       unpickler subclass.
       
  1715       """),
       
  1716 
       
  1717     I(name='BINPERSID',
       
  1718       code='Q',
       
  1719       arg=None,
       
  1720       stack_before=[anyobject],
       
  1721       stack_after=[anyobject],
       
  1722       proto=1,
       
  1723       doc="""Push an object identified by a persistent ID.
       
  1724 
       
  1725       Like PERSID, except the persistent ID is popped off the stack (instead
       
  1726       of being a string embedded in the opcode bytestream).  The persistent
       
  1727       ID is passed to self.persistent_load(), and whatever object that
       
  1728       returns is pushed on the stack.  See PERSID for more detail.
       
  1729       """),
       
  1730 ]
       
  1731 del I
       
  1732 
       
  1733 # Verify uniqueness of .name and .code members.
       
  1734 name2i = {}
       
  1735 code2i = {}
       
  1736 
       
  1737 for i, d in enumerate(opcodes):
       
  1738     if d.name in name2i:
       
  1739         raise ValueError("repeated name %r at indices %d and %d" %
       
  1740                          (d.name, name2i[d.name], i))
       
  1741     if d.code in code2i:
       
  1742         raise ValueError("repeated code %r at indices %d and %d" %
       
  1743                          (d.code, code2i[d.code], i))
       
  1744 
       
  1745     name2i[d.name] = i
       
  1746     code2i[d.code] = i
       
  1747 
       
  1748 del name2i, code2i, i, d
       
  1749 
       
  1750 ##############################################################################
       
  1751 # Build a code2op dict, mapping opcode characters to OpcodeInfo records.
       
  1752 # Also ensure we've got the same stuff as pickle.py, although the
       
  1753 # introspection here is dicey.
       
  1754 
       
  1755 code2op = {}
       
  1756 for d in opcodes:
       
  1757     code2op[d.code] = d
       
  1758 del d
       
  1759 
       
  1760 def assure_pickle_consistency(verbose=False):
       
  1761     import pickle, re
       
  1762 
       
  1763     copy = code2op.copy()
       
  1764     for name in pickle.__all__:
       
  1765         if not re.match("[A-Z][A-Z0-9_]+$", name):
       
  1766             if verbose:
       
  1767                 print "skipping %r: it doesn't look like an opcode name" % name
       
  1768             continue
       
  1769         picklecode = getattr(pickle, name)
       
  1770         if not isinstance(picklecode, str) or len(picklecode) != 1:
       
  1771             if verbose:
       
  1772                 print ("skipping %r: value %r doesn't look like a pickle "
       
  1773                        "code" % (name, picklecode))
       
  1774             continue
       
  1775         if picklecode in copy:
       
  1776             if verbose:
       
  1777                 print "checking name %r w/ code %r for consistency" % (
       
  1778                       name, picklecode)
       
  1779             d = copy[picklecode]
       
  1780             if d.name != name:
       
  1781                 raise ValueError("for pickle code %r, pickle.py uses name %r "
       
  1782                                  "but we're using name %r" % (picklecode,
       
  1783                                                               name,
       
  1784                                                               d.name))
       
  1785             # Forget this one.  Any left over in copy at the end are a problem
       
  1786             # of a different kind.
       
  1787             del copy[picklecode]
       
  1788         else:
       
  1789             raise ValueError("pickle.py appears to have a pickle opcode with "
       
  1790                              "name %r and code %r, but we don't" %
       
  1791                              (name, picklecode))
       
  1792     if copy:
       
  1793         msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
       
  1794         for code, d in copy.items():
       
  1795             msg.append("    name %r with code %r" % (d.name, code))
       
  1796         raise ValueError("\n".join(msg))
       
  1797 
       
  1798 assure_pickle_consistency()
       
  1799 del assure_pickle_consistency
       
  1800 
       
  1801 ##############################################################################
       
  1802 # A pickle opcode generator.
       
  1803 
       
  1804 def genops(pickle):
       
  1805     """Generate all the opcodes in a pickle.
       
  1806 
       
  1807     'pickle' is a file-like object, or string, containing the pickle.
       
  1808 
       
  1809     Each opcode in the pickle is generated, from the current pickle position,
       
  1810     stopping after a STOP opcode is delivered.  A triple is generated for
       
  1811     each opcode:
       
  1812 
       
  1813         opcode, arg, pos
       
  1814 
       
  1815     opcode is an OpcodeInfo record, describing the current opcode.
       
  1816 
       
  1817     If the opcode has an argument embedded in the pickle, arg is its decoded
       
  1818     value, as a Python object.  If the opcode doesn't have an argument, arg
       
  1819     is None.
       
  1820 
       
  1821     If the pickle has a tell() method, pos was the value of pickle.tell()
       
  1822     before reading the current opcode.  If the pickle is a string object,
       
  1823     it's wrapped in a StringIO object, and the latter's tell() result is
       
  1824     used.  Else (the pickle doesn't have a tell(), and it's not obvious how
       
  1825     to query its current position) pos is None.
       
  1826     """
       
  1827 
       
  1828     import cStringIO as StringIO
       
  1829 
       
  1830     if isinstance(pickle, str):
       
  1831         pickle = StringIO.StringIO(pickle)
       
  1832 
       
  1833     if hasattr(pickle, "tell"):
       
  1834         getpos = pickle.tell
       
  1835     else:
       
  1836         getpos = lambda: None
       
  1837 
       
  1838     while True:
       
  1839         pos = getpos()
       
  1840         code = pickle.read(1)
       
  1841         opcode = code2op.get(code)
       
  1842         if opcode is None:
       
  1843             if code == "":
       
  1844                 raise ValueError("pickle exhausted before seeing STOP")
       
  1845             else:
       
  1846                 raise ValueError("at position %s, opcode %r unknown" % (
       
  1847                                  pos is None and "<unknown>" or pos,
       
  1848                                  code))
       
  1849         if opcode.arg is None:
       
  1850             arg = None
       
  1851         else:
       
  1852             arg = opcode.arg.reader(pickle)
       
  1853         yield opcode, arg, pos
       
  1854         if code == '.':
       
  1855             assert opcode.name == 'STOP'
       
  1856             break
       
  1857 
       
  1858 ##############################################################################
       
  1859 # A pickle optimizer.
       
  1860 
       
  1861 def optimize(p):
       
  1862     'Optimize a pickle string by removing unused PUT opcodes'
       
  1863     gets = set()            # set of args used by a GET opcode
       
  1864     puts = []               # (arg, startpos, stoppos) for the PUT opcodes
       
  1865     prevpos = None          # set to pos if previous opcode was a PUT
       
  1866     for opcode, arg, pos in genops(p):
       
  1867         if prevpos is not None:
       
  1868             puts.append((prevarg, prevpos, pos))
       
  1869             prevpos = None
       
  1870         if 'PUT' in opcode.name:
       
  1871             prevarg, prevpos = arg, pos
       
  1872         elif 'GET' in opcode.name:
       
  1873             gets.add(arg)
       
  1874 
       
  1875     # Copy the pickle string except for PUTS without a corresponding GET
       
  1876     s = []
       
  1877     i = 0
       
  1878     for arg, start, stop in puts:
       
  1879         j = stop if (arg in gets) else start
       
  1880         s.append(p[i:j])
       
  1881         i = stop
       
  1882     s.append(p[i:])
       
  1883     return ''.join(s)
       
  1884 
       
  1885 ##############################################################################
       
  1886 # A symbolic pickle disassembler.
       
  1887 
       
  1888 def dis(pickle, out=None, memo=None, indentlevel=4):
       
  1889     """Produce a symbolic disassembly of a pickle.
       
  1890 
       
  1891     'pickle' is a file-like object, or string, containing a (at least one)
       
  1892     pickle.  The pickle is disassembled from the current position, through
       
  1893     the first STOP opcode encountered.
       
  1894 
       
  1895     Optional arg 'out' is a file-like object to which the disassembly is
       
  1896     printed.  It defaults to sys.stdout.
       
  1897 
       
  1898     Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
       
  1899     may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
       
  1900     Passing the same memo object to another dis() call then allows disassembly
       
  1901     to proceed across multiple pickles that were all created by the same
       
  1902     pickler with the same memo.  Ordinarily you don't need to worry about this.
       
  1903 
       
  1904     Optional arg indentlevel is the number of blanks by which to indent
       
  1905     a new MARK level.  It defaults to 4.
       
  1906 
       
  1907     In addition to printing the disassembly, some sanity checks are made:
       
  1908 
       
  1909     + All embedded opcode arguments "make sense".
       
  1910 
       
  1911     + Explicit and implicit pop operations have enough items on the stack.
       
  1912 
       
  1913     + When an opcode implicitly refers to a markobject, a markobject is
       
  1914       actually on the stack.
       
  1915 
       
  1916     + A memo entry isn't referenced before it's defined.
       
  1917 
       
  1918     + The markobject isn't stored in the memo.
       
  1919 
       
  1920     + A memo entry isn't redefined.
       
  1921     """
       
  1922 
       
  1923     # Most of the hair here is for sanity checks, but most of it is needed
       
  1924     # anyway to detect when a protocol 0 POP takes a MARK off the stack
       
  1925     # (which in turn is needed to indent MARK blocks correctly).
       
  1926 
       
  1927     stack = []          # crude emulation of unpickler stack
       
  1928     if memo is None:
       
  1929         memo = {}       # crude emulation of unpicker memo
       
  1930     maxproto = -1       # max protocol number seen
       
  1931     markstack = []      # bytecode positions of MARK opcodes
       
  1932     indentchunk = ' ' * indentlevel
       
  1933     errormsg = None
       
  1934     for opcode, arg, pos in genops(pickle):
       
  1935         if pos is not None:
       
  1936             print >> out, "%5d:" % pos,
       
  1937 
       
  1938         line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
       
  1939                               indentchunk * len(markstack),
       
  1940                               opcode.name)
       
  1941 
       
  1942         maxproto = max(maxproto, opcode.proto)
       
  1943         before = opcode.stack_before    # don't mutate
       
  1944         after = opcode.stack_after      # don't mutate
       
  1945         numtopop = len(before)
       
  1946 
       
  1947         # See whether a MARK should be popped.
       
  1948         markmsg = None
       
  1949         if markobject in before or (opcode.name == "POP" and
       
  1950                                     stack and
       
  1951                                     stack[-1] is markobject):
       
  1952             assert markobject not in after
       
  1953             if __debug__:
       
  1954                 if markobject in before:
       
  1955                     assert before[-1] is stackslice
       
  1956             if markstack:
       
  1957                 markpos = markstack.pop()
       
  1958                 if markpos is None:
       
  1959                     markmsg = "(MARK at unknown opcode offset)"
       
  1960                 else:
       
  1961                     markmsg = "(MARK at %d)" % markpos
       
  1962                 # Pop everything at and after the topmost markobject.
       
  1963                 while stack[-1] is not markobject:
       
  1964                     stack.pop()
       
  1965                 stack.pop()
       
  1966                 # Stop later code from popping too much.
       
  1967                 try:
       
  1968                     numtopop = before.index(markobject)
       
  1969                 except ValueError:
       
  1970                     assert opcode.name == "POP"
       
  1971                     numtopop = 0
       
  1972             else:
       
  1973                 errormsg = markmsg = "no MARK exists on stack"
       
  1974 
       
  1975         # Check for correct memo usage.
       
  1976         if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
       
  1977             assert arg is not None
       
  1978             if arg in memo:
       
  1979                 errormsg = "memo key %r already defined" % arg
       
  1980             elif not stack:
       
  1981                 errormsg = "stack is empty -- can't store into memo"
       
  1982             elif stack[-1] is markobject:
       
  1983                 errormsg = "can't store markobject in the memo"
       
  1984             else:
       
  1985                 memo[arg] = stack[-1]
       
  1986 
       
  1987         elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
       
  1988             if arg in memo:
       
  1989                 assert len(after) == 1
       
  1990                 after = [memo[arg]]     # for better stack emulation
       
  1991             else:
       
  1992                 errormsg = "memo key %r has never been stored into" % arg
       
  1993 
       
  1994         if arg is not None or markmsg:
       
  1995             # make a mild effort to align arguments
       
  1996             line += ' ' * (10 - len(opcode.name))
       
  1997             if arg is not None:
       
  1998                 line += ' ' + repr(arg)
       
  1999             if markmsg:
       
  2000                 line += ' ' + markmsg
       
  2001         print >> out, line
       
  2002 
       
  2003         if errormsg:
       
  2004             # Note that we delayed complaining until the offending opcode
       
  2005             # was printed.
       
  2006             raise ValueError(errormsg)
       
  2007 
       
  2008         # Emulate the stack effects.
       
  2009         if len(stack) < numtopop:
       
  2010             raise ValueError("tries to pop %d items from stack with "
       
  2011                              "only %d items" % (numtopop, len(stack)))
       
  2012         if numtopop:
       
  2013             del stack[-numtopop:]
       
  2014         if markobject in after:
       
  2015             assert markobject not in before
       
  2016             markstack.append(pos)
       
  2017 
       
  2018         stack.extend(after)
       
  2019 
       
  2020     print >> out, "highest protocol among opcodes =", maxproto
       
  2021     if stack:
       
  2022         raise ValueError("stack not empty after STOP: %r" % stack)
       
  2023 
       
  2024 # For use in the doctest, simply as an example of a class to pickle.
       
  2025 class _Example:
       
  2026     def __init__(self, value):
       
  2027         self.value = value
       
  2028 
       
  2029 _dis_test = r"""
       
  2030 >>> import pickle
       
  2031 >>> x = [1, 2, (3, 4), {'abc': u"def"}]
       
  2032 >>> pkl = pickle.dumps(x, 0)
       
  2033 >>> dis(pkl)
       
  2034     0: (    MARK
       
  2035     1: l        LIST       (MARK at 0)
       
  2036     2: p    PUT        0
       
  2037     5: I    INT        1
       
  2038     8: a    APPEND
       
  2039     9: I    INT        2
       
  2040    12: a    APPEND
       
  2041    13: (    MARK
       
  2042    14: I        INT        3
       
  2043    17: I        INT        4
       
  2044    20: t        TUPLE      (MARK at 13)
       
  2045    21: p    PUT        1
       
  2046    24: a    APPEND
       
  2047    25: (    MARK
       
  2048    26: d        DICT       (MARK at 25)
       
  2049    27: p    PUT        2
       
  2050    30: S    STRING     'abc'
       
  2051    37: p    PUT        3
       
  2052    40: V    UNICODE    u'def'
       
  2053    45: p    PUT        4
       
  2054    48: s    SETITEM
       
  2055    49: a    APPEND
       
  2056    50: .    STOP
       
  2057 highest protocol among opcodes = 0
       
  2058 
       
  2059 Try again with a "binary" pickle.
       
  2060 
       
  2061 >>> pkl = pickle.dumps(x, 1)
       
  2062 >>> dis(pkl)
       
  2063     0: ]    EMPTY_LIST
       
  2064     1: q    BINPUT     0
       
  2065     3: (    MARK
       
  2066     4: K        BININT1    1
       
  2067     6: K        BININT1    2
       
  2068     8: (        MARK
       
  2069     9: K            BININT1    3
       
  2070    11: K            BININT1    4
       
  2071    13: t            TUPLE      (MARK at 8)
       
  2072    14: q        BINPUT     1
       
  2073    16: }        EMPTY_DICT
       
  2074    17: q        BINPUT     2
       
  2075    19: U        SHORT_BINSTRING 'abc'
       
  2076    24: q        BINPUT     3
       
  2077    26: X        BINUNICODE u'def'
       
  2078    34: q        BINPUT     4
       
  2079    36: s        SETITEM
       
  2080    37: e        APPENDS    (MARK at 3)
       
  2081    38: .    STOP
       
  2082 highest protocol among opcodes = 1
       
  2083 
       
  2084 Exercise the INST/OBJ/BUILD family.
       
  2085 
       
  2086 >>> import random
       
  2087 >>> dis(pickle.dumps(random.random, 0))
       
  2088     0: c    GLOBAL     'random random'
       
  2089    15: p    PUT        0
       
  2090    18: .    STOP
       
  2091 highest protocol among opcodes = 0
       
  2092 
       
  2093 >>> from pickletools import _Example
       
  2094 >>> x = [_Example(42)] * 2
       
  2095 >>> dis(pickle.dumps(x, 0))
       
  2096     0: (    MARK
       
  2097     1: l        LIST       (MARK at 0)
       
  2098     2: p    PUT        0
       
  2099     5: (    MARK
       
  2100     6: i        INST       'pickletools _Example' (MARK at 5)
       
  2101    28: p    PUT        1
       
  2102    31: (    MARK
       
  2103    32: d        DICT       (MARK at 31)
       
  2104    33: p    PUT        2
       
  2105    36: S    STRING     'value'
       
  2106    45: p    PUT        3
       
  2107    48: I    INT        42
       
  2108    52: s    SETITEM
       
  2109    53: b    BUILD
       
  2110    54: a    APPEND
       
  2111    55: g    GET        1
       
  2112    58: a    APPEND
       
  2113    59: .    STOP
       
  2114 highest protocol among opcodes = 0
       
  2115 
       
  2116 >>> dis(pickle.dumps(x, 1))
       
  2117     0: ]    EMPTY_LIST
       
  2118     1: q    BINPUT     0
       
  2119     3: (    MARK
       
  2120     4: (        MARK
       
  2121     5: c            GLOBAL     'pickletools _Example'
       
  2122    27: q            BINPUT     1
       
  2123    29: o            OBJ        (MARK at 4)
       
  2124    30: q        BINPUT     2
       
  2125    32: }        EMPTY_DICT
       
  2126    33: q        BINPUT     3
       
  2127    35: U        SHORT_BINSTRING 'value'
       
  2128    42: q        BINPUT     4
       
  2129    44: K        BININT1    42
       
  2130    46: s        SETITEM
       
  2131    47: b        BUILD
       
  2132    48: h        BINGET     2
       
  2133    50: e        APPENDS    (MARK at 3)
       
  2134    51: .    STOP
       
  2135 highest protocol among opcodes = 1
       
  2136 
       
  2137 Try "the canonical" recursive-object test.
       
  2138 
       
  2139 >>> L = []
       
  2140 >>> T = L,
       
  2141 >>> L.append(T)
       
  2142 >>> L[0] is T
       
  2143 True
       
  2144 >>> T[0] is L
       
  2145 True
       
  2146 >>> L[0][0] is L
       
  2147 True
       
  2148 >>> T[0][0] is T
       
  2149 True
       
  2150 >>> dis(pickle.dumps(L, 0))
       
  2151     0: (    MARK
       
  2152     1: l        LIST       (MARK at 0)
       
  2153     2: p    PUT        0
       
  2154     5: (    MARK
       
  2155     6: g        GET        0
       
  2156     9: t        TUPLE      (MARK at 5)
       
  2157    10: p    PUT        1
       
  2158    13: a    APPEND
       
  2159    14: .    STOP
       
  2160 highest protocol among opcodes = 0
       
  2161 
       
  2162 >>> dis(pickle.dumps(L, 1))
       
  2163     0: ]    EMPTY_LIST
       
  2164     1: q    BINPUT     0
       
  2165     3: (    MARK
       
  2166     4: h        BINGET     0
       
  2167     6: t        TUPLE      (MARK at 3)
       
  2168     7: q    BINPUT     1
       
  2169     9: a    APPEND
       
  2170    10: .    STOP
       
  2171 highest protocol among opcodes = 1
       
  2172 
       
  2173 Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
       
  2174 has to emulate the stack in order to realize that the POP opcode at 16 gets
       
  2175 rid of the MARK at 0.
       
  2176 
       
  2177 >>> dis(pickle.dumps(T, 0))
       
  2178     0: (    MARK
       
  2179     1: (        MARK
       
  2180     2: l            LIST       (MARK at 1)
       
  2181     3: p        PUT        0
       
  2182     6: (        MARK
       
  2183     7: g            GET        0
       
  2184    10: t            TUPLE      (MARK at 6)
       
  2185    11: p        PUT        1
       
  2186    14: a        APPEND
       
  2187    15: 0        POP
       
  2188    16: 0        POP        (MARK at 0)
       
  2189    17: g    GET        1
       
  2190    20: .    STOP
       
  2191 highest protocol among opcodes = 0
       
  2192 
       
  2193 >>> dis(pickle.dumps(T, 1))
       
  2194     0: (    MARK
       
  2195     1: ]        EMPTY_LIST
       
  2196     2: q        BINPUT     0
       
  2197     4: (        MARK
       
  2198     5: h            BINGET     0
       
  2199     7: t            TUPLE      (MARK at 4)
       
  2200     8: q        BINPUT     1
       
  2201    10: a        APPEND
       
  2202    11: 1        POP_MARK   (MARK at 0)
       
  2203    12: h    BINGET     1
       
  2204    14: .    STOP
       
  2205 highest protocol among opcodes = 1
       
  2206 
       
  2207 Try protocol 2.
       
  2208 
       
  2209 >>> dis(pickle.dumps(L, 2))
       
  2210     0: \x80 PROTO      2
       
  2211     2: ]    EMPTY_LIST
       
  2212     3: q    BINPUT     0
       
  2213     5: h    BINGET     0
       
  2214     7: \x85 TUPLE1
       
  2215     8: q    BINPUT     1
       
  2216    10: a    APPEND
       
  2217    11: .    STOP
       
  2218 highest protocol among opcodes = 2
       
  2219 
       
  2220 >>> dis(pickle.dumps(T, 2))
       
  2221     0: \x80 PROTO      2
       
  2222     2: ]    EMPTY_LIST
       
  2223     3: q    BINPUT     0
       
  2224     5: h    BINGET     0
       
  2225     7: \x85 TUPLE1
       
  2226     8: q    BINPUT     1
       
  2227    10: a    APPEND
       
  2228    11: 0    POP
       
  2229    12: h    BINGET     1
       
  2230    14: .    STOP
       
  2231 highest protocol among opcodes = 2
       
  2232 """
       
  2233 
       
  2234 _memo_test = r"""
       
  2235 >>> import pickle
       
  2236 >>> from StringIO import StringIO
       
  2237 >>> f = StringIO()
       
  2238 >>> p = pickle.Pickler(f, 2)
       
  2239 >>> x = [1, 2, 3]
       
  2240 >>> p.dump(x)
       
  2241 >>> p.dump(x)
       
  2242 >>> f.seek(0)
       
  2243 >>> memo = {}
       
  2244 >>> dis(f, memo=memo)
       
  2245     0: \x80 PROTO      2
       
  2246     2: ]    EMPTY_LIST
       
  2247     3: q    BINPUT     0
       
  2248     5: (    MARK
       
  2249     6: K        BININT1    1
       
  2250     8: K        BININT1    2
       
  2251    10: K        BININT1    3
       
  2252    12: e        APPENDS    (MARK at 5)
       
  2253    13: .    STOP
       
  2254 highest protocol among opcodes = 2
       
  2255 >>> dis(f, memo=memo)
       
  2256    14: \x80 PROTO      2
       
  2257    16: h    BINGET     0
       
  2258    18: .    STOP
       
  2259 highest protocol among opcodes = 2
       
  2260 """
       
  2261 
       
  2262 __test__ = {'disassembler_test': _dis_test,
       
  2263             'disassembler_memo_test': _memo_test,
       
  2264            }
       
  2265 
       
  2266 def _test():
       
  2267     import doctest
       
  2268     return doctest.testmod()
       
  2269 
       
  2270 if __name__ == "__main__":
       
  2271     _test()