symbian-qemu-0.9.1-12/qemu-symbian-svp/fpu/softfloat-native.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /* Native implementation of soft float functions. Only a single status
       
     2    context is supported */
       
     3 #include "softfloat.h"
       
     4 #include <math.h>
       
     5 
       
     6 void set_float_rounding_mode(int val STATUS_PARAM)
       
     7 {
       
     8     STATUS(float_rounding_mode) = val;
       
     9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
       
    10     fpsetround(val);
       
    11 #elif defined(__arm__)
       
    12     /* nothing to do */
       
    13 #else
       
    14     fesetround(val);
       
    15 #endif
       
    16 }
       
    17 
       
    18 #ifdef FLOATX80
       
    19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
       
    20 {
       
    21     STATUS(floatx80_rounding_precision) = val;
       
    22 }
       
    23 #endif
       
    24 
       
    25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
       
    26 #define lrint(d)		((int32_t)rint(d))
       
    27 #define llrint(d)		((int64_t)rint(d))
       
    28 #define lrintf(f)		((int32_t)rint(f))
       
    29 #define llrintf(f)		((int64_t)rint(f))
       
    30 #define sqrtf(f)		((float)sqrt(f))
       
    31 #define remainderf(fa, fb)	((float)remainder(fa, fb))
       
    32 #define rintf(f)		((float)rint(f))
       
    33 #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
       
    34 extern long double rintl(long double);
       
    35 extern long double scalbnl(long double, int);
       
    36 
       
    37 long long
       
    38 llrintl(long double x) {
       
    39 	return ((long long) rintl(x));
       
    40 }
       
    41 
       
    42 long
       
    43 lrintl(long double x) {
       
    44 	return ((long) rintl(x));
       
    45 }
       
    46 
       
    47 long double
       
    48 ldexpl(long double x, int n) {
       
    49 	return (scalbnl(x, n));
       
    50 }
       
    51 #endif
       
    52 #endif
       
    53 
       
    54 #if defined(__powerpc__)
       
    55 
       
    56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
       
    57 double qemu_rint(double x)
       
    58 {
       
    59     double y = 4503599627370496.0;
       
    60     if (fabs(x) >= y)
       
    61         return x;
       
    62     if (x < 0)
       
    63         y = -y;
       
    64     y = (x + y) - y;
       
    65     if (y == 0.0)
       
    66         y = copysign(y, x);
       
    67     return y;
       
    68 }
       
    69 
       
    70 #define rint qemu_rint
       
    71 #endif
       
    72 
       
    73 /*----------------------------------------------------------------------------
       
    74 | Software IEC/IEEE integer-to-floating-point conversion routines.
       
    75 *----------------------------------------------------------------------------*/
       
    76 float32 int32_to_float32(int v STATUS_PARAM)
       
    77 {
       
    78     return (float32)v;
       
    79 }
       
    80 
       
    81 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
       
    82 {
       
    83     return (float32)v;
       
    84 }
       
    85 
       
    86 float64 int32_to_float64(int v STATUS_PARAM)
       
    87 {
       
    88     return (float64)v;
       
    89 }
       
    90 
       
    91 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
       
    92 {
       
    93     return (float64)v;
       
    94 }
       
    95 
       
    96 #ifdef FLOATX80
       
    97 floatx80 int32_to_floatx80(int v STATUS_PARAM)
       
    98 {
       
    99     return (floatx80)v;
       
   100 }
       
   101 #endif
       
   102 float32 int64_to_float32( int64_t v STATUS_PARAM)
       
   103 {
       
   104     return (float32)v;
       
   105 }
       
   106 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
       
   107 {
       
   108     return (float32)v;
       
   109 }
       
   110 float64 int64_to_float64( int64_t v STATUS_PARAM)
       
   111 {
       
   112     return (float64)v;
       
   113 }
       
   114 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
       
   115 {
       
   116     return (float64)v;
       
   117 }
       
   118 #ifdef FLOATX80
       
   119 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
       
   120 {
       
   121     return (floatx80)v;
       
   122 }
       
   123 #endif
       
   124 
       
   125 /* XXX: this code implements the x86 behaviour, not the IEEE one.  */
       
   126 #if HOST_LONG_BITS == 32
       
   127 static inline int long_to_int32(long a)
       
   128 {
       
   129     return a;
       
   130 }
       
   131 #else
       
   132 static inline int long_to_int32(long a)
       
   133 {
       
   134     if (a != (int32_t)a)
       
   135         a = 0x80000000;
       
   136     return a;
       
   137 }
       
   138 #endif
       
   139 
       
   140 /*----------------------------------------------------------------------------
       
   141 | Software IEC/IEEE single-precision conversion routines.
       
   142 *----------------------------------------------------------------------------*/
       
   143 int float32_to_int32( float32 a STATUS_PARAM)
       
   144 {
       
   145     return long_to_int32(lrintf(a));
       
   146 }
       
   147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
       
   148 {
       
   149     return (int)a;
       
   150 }
       
   151 int64_t float32_to_int64( float32 a STATUS_PARAM)
       
   152 {
       
   153     return llrintf(a);
       
   154 }
       
   155 
       
   156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
       
   157 {
       
   158     return (int64_t)a;
       
   159 }
       
   160 
       
   161 float64 float32_to_float64( float32 a STATUS_PARAM)
       
   162 {
       
   163     return a;
       
   164 }
       
   165 #ifdef FLOATX80
       
   166 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
       
   167 {
       
   168     return a;
       
   169 }
       
   170 #endif
       
   171 
       
   172 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
       
   173 {
       
   174     int64_t v;
       
   175     unsigned int res;
       
   176 
       
   177     v = llrintf(a);
       
   178     if (v < 0) {
       
   179         res = 0;
       
   180     } else if (v > 0xffffffff) {
       
   181         res = 0xffffffff;
       
   182     } else {
       
   183         res = v;
       
   184     }
       
   185     return res;
       
   186 }
       
   187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
       
   188 {
       
   189     int64_t v;
       
   190     unsigned int res;
       
   191 
       
   192     v = (int64_t)a;
       
   193     if (v < 0) {
       
   194         res = 0;
       
   195     } else if (v > 0xffffffff) {
       
   196         res = 0xffffffff;
       
   197     } else {
       
   198         res = v;
       
   199     }
       
   200     return res;
       
   201 }
       
   202 
       
   203 /*----------------------------------------------------------------------------
       
   204 | Software IEC/IEEE single-precision operations.
       
   205 *----------------------------------------------------------------------------*/
       
   206 float32 float32_round_to_int( float32 a STATUS_PARAM)
       
   207 {
       
   208     return rintf(a);
       
   209 }
       
   210 
       
   211 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
       
   212 {
       
   213     return remainderf(a, b);
       
   214 }
       
   215 
       
   216 float32 float32_sqrt( float32 a STATUS_PARAM)
       
   217 {
       
   218     return sqrtf(a);
       
   219 }
       
   220 int float32_compare( float32 a, float32 b STATUS_PARAM )
       
   221 {
       
   222     if (a < b) {
       
   223         return float_relation_less;
       
   224     } else if (a == b) {
       
   225         return float_relation_equal;
       
   226     } else if (a > b) {
       
   227         return float_relation_greater;
       
   228     } else {
       
   229         return float_relation_unordered;
       
   230     }
       
   231 }
       
   232 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
       
   233 {
       
   234     if (isless(a, b)) {
       
   235         return float_relation_less;
       
   236     } else if (a == b) {
       
   237         return float_relation_equal;
       
   238     } else if (isgreater(a, b)) {
       
   239         return float_relation_greater;
       
   240     } else {
       
   241         return float_relation_unordered;
       
   242     }
       
   243 }
       
   244 int float32_is_signaling_nan( float32 a1)
       
   245 {
       
   246     float32u u;
       
   247     uint32_t a;
       
   248     u.f = a1;
       
   249     a = u.i;
       
   250     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
       
   251 }
       
   252 
       
   253 int float32_is_nan( float32 a1 )
       
   254 {
       
   255     float32u u;
       
   256     uint64_t a;
       
   257     u.f = a1;
       
   258     a = u.i;
       
   259     return ( 0xFF800000 < ( a<<1 ) );
       
   260 }
       
   261 
       
   262 /*----------------------------------------------------------------------------
       
   263 | Software IEC/IEEE double-precision conversion routines.
       
   264 *----------------------------------------------------------------------------*/
       
   265 int float64_to_int32( float64 a STATUS_PARAM)
       
   266 {
       
   267     return long_to_int32(lrint(a));
       
   268 }
       
   269 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
       
   270 {
       
   271     return (int)a;
       
   272 }
       
   273 int64_t float64_to_int64( float64 a STATUS_PARAM)
       
   274 {
       
   275     return llrint(a);
       
   276 }
       
   277 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
       
   278 {
       
   279     return (int64_t)a;
       
   280 }
       
   281 float32 float64_to_float32( float64 a STATUS_PARAM)
       
   282 {
       
   283     return a;
       
   284 }
       
   285 #ifdef FLOATX80
       
   286 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
       
   287 {
       
   288     return a;
       
   289 }
       
   290 #endif
       
   291 #ifdef FLOAT128
       
   292 float128 float64_to_float128( float64 a STATUS_PARAM)
       
   293 {
       
   294     return a;
       
   295 }
       
   296 #endif
       
   297 
       
   298 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
       
   299 {
       
   300     int64_t v;
       
   301     unsigned int res;
       
   302 
       
   303     v = llrint(a);
       
   304     if (v < 0) {
       
   305         res = 0;
       
   306     } else if (v > 0xffffffff) {
       
   307         res = 0xffffffff;
       
   308     } else {
       
   309         res = v;
       
   310     }
       
   311     return res;
       
   312 }
       
   313 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
       
   314 {
       
   315     int64_t v;
       
   316     unsigned int res;
       
   317 
       
   318     v = (int64_t)a;
       
   319     if (v < 0) {
       
   320         res = 0;
       
   321     } else if (v > 0xffffffff) {
       
   322         res = 0xffffffff;
       
   323     } else {
       
   324         res = v;
       
   325     }
       
   326     return res;
       
   327 }
       
   328 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
       
   329 {
       
   330     int64_t v;
       
   331 
       
   332     v = llrint(a + (float64)INT64_MIN);
       
   333 
       
   334     return v - INT64_MIN;
       
   335 }
       
   336 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
       
   337 {
       
   338     int64_t v;
       
   339 
       
   340     v = (int64_t)(a + (float64)INT64_MIN);
       
   341 
       
   342     return v - INT64_MIN;
       
   343 }
       
   344 
       
   345 /*----------------------------------------------------------------------------
       
   346 | Software IEC/IEEE double-precision operations.
       
   347 *----------------------------------------------------------------------------*/
       
   348 #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
       
   349 static inline float64 trunc(float64 x)
       
   350 {
       
   351     return x < 0 ? -floor(-x) : floor(x);
       
   352 }
       
   353 #endif
       
   354 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
       
   355 {
       
   356     return trunc(a);
       
   357 }
       
   358 
       
   359 float64 float64_round_to_int( float64 a STATUS_PARAM )
       
   360 {
       
   361 #if defined(__arm__)
       
   362     switch(STATUS(float_rounding_mode)) {
       
   363     default:
       
   364     case float_round_nearest_even:
       
   365         asm("rndd %0, %1" : "=f" (a) : "f"(a));
       
   366         break;
       
   367     case float_round_down:
       
   368         asm("rnddm %0, %1" : "=f" (a) : "f"(a));
       
   369         break;
       
   370     case float_round_up:
       
   371         asm("rnddp %0, %1" : "=f" (a) : "f"(a));
       
   372         break;
       
   373     case float_round_to_zero:
       
   374         asm("rnddz %0, %1" : "=f" (a) : "f"(a));
       
   375         break;
       
   376     }
       
   377 #else
       
   378     return rint(a);
       
   379 #endif
       
   380 }
       
   381 
       
   382 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
       
   383 {
       
   384     return remainder(a, b);
       
   385 }
       
   386 
       
   387 float64 float64_sqrt( float64 a STATUS_PARAM)
       
   388 {
       
   389     return sqrt(a);
       
   390 }
       
   391 int float64_compare( float64 a, float64 b STATUS_PARAM )
       
   392 {
       
   393     if (a < b) {
       
   394         return float_relation_less;
       
   395     } else if (a == b) {
       
   396         return float_relation_equal;
       
   397     } else if (a > b) {
       
   398         return float_relation_greater;
       
   399     } else {
       
   400         return float_relation_unordered;
       
   401     }
       
   402 }
       
   403 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
       
   404 {
       
   405     if (isless(a, b)) {
       
   406         return float_relation_less;
       
   407     } else if (a == b) {
       
   408         return float_relation_equal;
       
   409     } else if (isgreater(a, b)) {
       
   410         return float_relation_greater;
       
   411     } else {
       
   412         return float_relation_unordered;
       
   413     }
       
   414 }
       
   415 int float64_is_signaling_nan( float64 a1)
       
   416 {
       
   417     float64u u;
       
   418     uint64_t a;
       
   419     u.f = a1;
       
   420     a = u.i;
       
   421     return
       
   422            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
       
   423         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
       
   424 
       
   425 }
       
   426 
       
   427 int float64_is_nan( float64 a1 )
       
   428 {
       
   429     float64u u;
       
   430     uint64_t a;
       
   431     u.f = a1;
       
   432     a = u.i;
       
   433 
       
   434     return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
       
   435 
       
   436 }
       
   437 
       
   438 #ifdef FLOATX80
       
   439 
       
   440 /*----------------------------------------------------------------------------
       
   441 | Software IEC/IEEE extended double-precision conversion routines.
       
   442 *----------------------------------------------------------------------------*/
       
   443 int floatx80_to_int32( floatx80 a STATUS_PARAM)
       
   444 {
       
   445     return long_to_int32(lrintl(a));
       
   446 }
       
   447 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
       
   448 {
       
   449     return (int)a;
       
   450 }
       
   451 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
       
   452 {
       
   453     return llrintl(a);
       
   454 }
       
   455 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
       
   456 {
       
   457     return (int64_t)a;
       
   458 }
       
   459 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
       
   460 {
       
   461     return a;
       
   462 }
       
   463 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
       
   464 {
       
   465     return a;
       
   466 }
       
   467 
       
   468 /*----------------------------------------------------------------------------
       
   469 | Software IEC/IEEE extended double-precision operations.
       
   470 *----------------------------------------------------------------------------*/
       
   471 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
       
   472 {
       
   473     return rintl(a);
       
   474 }
       
   475 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
       
   476 {
       
   477     return remainderl(a, b);
       
   478 }
       
   479 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
       
   480 {
       
   481     return sqrtl(a);
       
   482 }
       
   483 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
       
   484 {
       
   485     if (a < b) {
       
   486         return float_relation_less;
       
   487     } else if (a == b) {
       
   488         return float_relation_equal;
       
   489     } else if (a > b) {
       
   490         return float_relation_greater;
       
   491     } else {
       
   492         return float_relation_unordered;
       
   493     }
       
   494 }
       
   495 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
       
   496 {
       
   497     if (isless(a, b)) {
       
   498         return float_relation_less;
       
   499     } else if (a == b) {
       
   500         return float_relation_equal;
       
   501     } else if (isgreater(a, b)) {
       
   502         return float_relation_greater;
       
   503     } else {
       
   504         return float_relation_unordered;
       
   505     }
       
   506 }
       
   507 int floatx80_is_signaling_nan( floatx80 a1)
       
   508 {
       
   509     floatx80u u;
       
   510     uint64_t aLow;
       
   511     u.f = a1;
       
   512 
       
   513     aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
       
   514     return
       
   515            ( ( u.i.high & 0x7FFF ) == 0x7FFF )
       
   516         && (bits64) ( aLow<<1 )
       
   517         && ( u.i.low == aLow );
       
   518 }
       
   519 
       
   520 int floatx80_is_nan( floatx80 a1 )
       
   521 {
       
   522     floatx80u u;
       
   523     u.f = a1;
       
   524     return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
       
   525 }
       
   526 
       
   527 #endif