|
1 /* Native implementation of soft float functions */ |
|
2 #include <math.h> |
|
3 |
|
4 #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) |
|
5 #include <ieeefp.h> |
|
6 #define fabsf(f) ((float)fabs(f)) |
|
7 #else |
|
8 #include <fenv.h> |
|
9 #endif |
|
10 |
|
11 #if defined(__OpenBSD__) || defined(__NetBSD__) |
|
12 #include <sys/param.h> |
|
13 #endif |
|
14 |
|
15 /* |
|
16 * Define some C99-7.12.3 classification macros and |
|
17 * some C99-.12.4 for Solaris systems OS less than 10, |
|
18 * or Solaris 10 systems running GCC 3.x or less. |
|
19 * Solaris 10 with GCC4 does not need these macros as they |
|
20 * are defined in <iso/math_c99.h> with a compiler directive |
|
21 */ |
|
22 #if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \ |
|
23 && (__GNUC__ <= 4))) \ |
|
24 || (defined(__OpenBSD__) && (OpenBSD < 200811)) |
|
25 /* |
|
26 * C99 7.12.3 classification macros |
|
27 * and |
|
28 * C99 7.12.14 comparison macros |
|
29 * |
|
30 * ... do not work on Solaris 10 using GNU CC 3.4.x. |
|
31 * Try to workaround the missing / broken C99 math macros. |
|
32 */ |
|
33 #if defined(__OpenBSD__) |
|
34 #define unordered(x, y) (isnan(x) || isnan(y)) |
|
35 #endif |
|
36 |
|
37 #ifdef __NetBSD__ |
|
38 #ifndef isgreater |
|
39 #define isgreater(x, y) __builtin_isgreater(x, y) |
|
40 #endif |
|
41 #ifndef isgreaterequal |
|
42 #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y) |
|
43 #endif |
|
44 #ifndef isless |
|
45 #define isless(x, y) __builtin_isless(x, y) |
|
46 #endif |
|
47 #ifndef islessequal |
|
48 #define islessequal(x, y) __builtin_islessequal(x, y) |
|
49 #endif |
|
50 #ifndef isunordered |
|
51 #define isunordered(x, y) __builtin_isunordered(x, y) |
|
52 #endif |
|
53 #endif |
|
54 |
|
55 |
|
56 #define isnormal(x) (fpclass(x) >= FP_NZERO) |
|
57 #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y))) |
|
58 #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y))) |
|
59 #define isless(x, y) ((!unordered(x, y)) && ((x) < (y))) |
|
60 #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y))) |
|
61 #define isunordered(x,y) unordered(x, y) |
|
62 #endif |
|
63 |
|
64 #if defined(__sun__) && !defined(NEED_LIBSUNMATH) |
|
65 |
|
66 #ifndef isnan |
|
67 # define isnan(x) \ |
|
68 (sizeof (x) == sizeof (long double) ? isnan_ld (x) \ |
|
69 : sizeof (x) == sizeof (double) ? isnan_d (x) \ |
|
70 : isnan_f (x)) |
|
71 static inline int isnan_f (float x) { return x != x; } |
|
72 static inline int isnan_d (double x) { return x != x; } |
|
73 static inline int isnan_ld (long double x) { return x != x; } |
|
74 #endif |
|
75 |
|
76 #ifndef isinf |
|
77 # define isinf(x) \ |
|
78 (sizeof (x) == sizeof (long double) ? isinf_ld (x) \ |
|
79 : sizeof (x) == sizeof (double) ? isinf_d (x) \ |
|
80 : isinf_f (x)) |
|
81 static inline int isinf_f (float x) { return isnan (x - x); } |
|
82 static inline int isinf_d (double x) { return isnan (x - x); } |
|
83 static inline int isinf_ld (long double x) { return isnan (x - x); } |
|
84 #endif |
|
85 #endif |
|
86 |
|
87 typedef float float32; |
|
88 typedef double float64; |
|
89 #ifdef FLOATX80 |
|
90 typedef long double floatx80; |
|
91 #endif |
|
92 |
|
93 typedef union { |
|
94 float32 f; |
|
95 uint32_t i; |
|
96 } float32u; |
|
97 typedef union { |
|
98 float64 f; |
|
99 uint64_t i; |
|
100 } float64u; |
|
101 #ifdef FLOATX80 |
|
102 typedef union { |
|
103 floatx80 f; |
|
104 struct { |
|
105 uint64_t low; |
|
106 uint16_t high; |
|
107 } i; |
|
108 } floatx80u; |
|
109 #endif |
|
110 |
|
111 /*---------------------------------------------------------------------------- |
|
112 | Software IEC/IEEE floating-point rounding mode. |
|
113 *----------------------------------------------------------------------------*/ |
|
114 #if (defined(_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS) |
|
115 #if defined(__OpenBSD__) |
|
116 #define FE_RM FP_RM |
|
117 #define FE_RP FP_RP |
|
118 #define FE_RZ FP_RZ |
|
119 #endif |
|
120 enum { |
|
121 float_round_nearest_even = FP_RN, |
|
122 float_round_down = FP_RM, |
|
123 float_round_up = FP_RP, |
|
124 float_round_to_zero = FP_RZ |
|
125 }; |
|
126 #elif defined(__arm__) |
|
127 enum { |
|
128 float_round_nearest_even = 0, |
|
129 float_round_down = 1, |
|
130 float_round_up = 2, |
|
131 float_round_to_zero = 3 |
|
132 }; |
|
133 #else |
|
134 enum { |
|
135 float_round_nearest_even = FE_TONEAREST, |
|
136 float_round_down = FE_DOWNWARD, |
|
137 float_round_up = FE_UPWARD, |
|
138 float_round_to_zero = FE_TOWARDZERO |
|
139 }; |
|
140 #endif |
|
141 |
|
142 typedef struct float_status { |
|
143 int float_rounding_mode; |
|
144 #ifdef FLOATX80 |
|
145 int floatx80_rounding_precision; |
|
146 #endif |
|
147 } float_status; |
|
148 |
|
149 void set_float_rounding_mode(int val STATUS_PARAM); |
|
150 #ifdef FLOATX80 |
|
151 void set_floatx80_rounding_precision(int val STATUS_PARAM); |
|
152 #endif |
|
153 |
|
154 /*---------------------------------------------------------------------------- |
|
155 | Software IEC/IEEE integer-to-floating-point conversion routines. |
|
156 *----------------------------------------------------------------------------*/ |
|
157 float32 int32_to_float32( int STATUS_PARAM); |
|
158 float32 uint32_to_float32( unsigned int STATUS_PARAM); |
|
159 float64 int32_to_float64( int STATUS_PARAM); |
|
160 float64 uint32_to_float64( unsigned int STATUS_PARAM); |
|
161 #ifdef FLOATX80 |
|
162 floatx80 int32_to_floatx80( int STATUS_PARAM); |
|
163 #endif |
|
164 #ifdef FLOAT128 |
|
165 float128 int32_to_float128( int STATUS_PARAM); |
|
166 #endif |
|
167 float32 int64_to_float32( int64_t STATUS_PARAM); |
|
168 float32 uint64_to_float32( uint64_t STATUS_PARAM); |
|
169 float64 int64_to_float64( int64_t STATUS_PARAM); |
|
170 float64 uint64_to_float64( uint64_t v STATUS_PARAM); |
|
171 #ifdef FLOATX80 |
|
172 floatx80 int64_to_floatx80( int64_t STATUS_PARAM); |
|
173 #endif |
|
174 #ifdef FLOAT128 |
|
175 float128 int64_to_float128( int64_t STATUS_PARAM); |
|
176 #endif |
|
177 |
|
178 /*---------------------------------------------------------------------------- |
|
179 | Software IEC/IEEE single-precision conversion routines. |
|
180 *----------------------------------------------------------------------------*/ |
|
181 int float32_to_int32( float32 STATUS_PARAM); |
|
182 int float32_to_int32_round_to_zero( float32 STATUS_PARAM); |
|
183 unsigned int float32_to_uint32( float32 a STATUS_PARAM); |
|
184 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM); |
|
185 int64_t float32_to_int64( float32 STATUS_PARAM); |
|
186 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM); |
|
187 float64 float32_to_float64( float32 STATUS_PARAM); |
|
188 #ifdef FLOATX80 |
|
189 floatx80 float32_to_floatx80( float32 STATUS_PARAM); |
|
190 #endif |
|
191 #ifdef FLOAT128 |
|
192 float128 float32_to_float128( float32 STATUS_PARAM); |
|
193 #endif |
|
194 |
|
195 /*---------------------------------------------------------------------------- |
|
196 | Software IEC/IEEE single-precision operations. |
|
197 *----------------------------------------------------------------------------*/ |
|
198 float32 float32_round_to_int( float32 STATUS_PARAM); |
|
199 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM) |
|
200 { |
|
201 return a + b; |
|
202 } |
|
203 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM) |
|
204 { |
|
205 return a - b; |
|
206 } |
|
207 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM) |
|
208 { |
|
209 return a * b; |
|
210 } |
|
211 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM) |
|
212 { |
|
213 return a / b; |
|
214 } |
|
215 float32 float32_rem( float32, float32 STATUS_PARAM); |
|
216 float32 float32_sqrt( float32 STATUS_PARAM); |
|
217 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM) |
|
218 { |
|
219 return a == b; |
|
220 } |
|
221 INLINE int float32_le( float32 a, float32 b STATUS_PARAM) |
|
222 { |
|
223 return a <= b; |
|
224 } |
|
225 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM) |
|
226 { |
|
227 return a < b; |
|
228 } |
|
229 INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM) |
|
230 { |
|
231 return a <= b && a >= b; |
|
232 } |
|
233 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM) |
|
234 { |
|
235 return islessequal(a, b); |
|
236 } |
|
237 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM) |
|
238 { |
|
239 return isless(a, b); |
|
240 } |
|
241 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM) |
|
242 { |
|
243 return isunordered(a, b); |
|
244 |
|
245 } |
|
246 int float32_compare( float32, float32 STATUS_PARAM ); |
|
247 int float32_compare_quiet( float32, float32 STATUS_PARAM ); |
|
248 int float32_is_signaling_nan( float32 ); |
|
249 int float32_is_nan( float32 ); |
|
250 |
|
251 INLINE float32 float32_abs(float32 a) |
|
252 { |
|
253 return fabsf(a); |
|
254 } |
|
255 |
|
256 INLINE float32 float32_chs(float32 a) |
|
257 { |
|
258 return -a; |
|
259 } |
|
260 |
|
261 INLINE float32 float32_is_infinity(float32 a) |
|
262 { |
|
263 return fpclassify(a) == FP_INFINITE; |
|
264 } |
|
265 |
|
266 INLINE float32 float32_is_neg(float32 a) |
|
267 { |
|
268 float32u u; |
|
269 u.f = a; |
|
270 return u.i >> 31; |
|
271 } |
|
272 |
|
273 INLINE float32 float32_is_zero(float32 a) |
|
274 { |
|
275 return fpclassify(a) == FP_ZERO; |
|
276 } |
|
277 |
|
278 INLINE float32 float32_scalbn(float32 a, int n) |
|
279 { |
|
280 return scalbnf(a, n); |
|
281 } |
|
282 |
|
283 /*---------------------------------------------------------------------------- |
|
284 | Software IEC/IEEE double-precision conversion routines. |
|
285 *----------------------------------------------------------------------------*/ |
|
286 int float64_to_int32( float64 STATUS_PARAM ); |
|
287 int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); |
|
288 unsigned int float64_to_uint32( float64 STATUS_PARAM ); |
|
289 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); |
|
290 int64_t float64_to_int64( float64 STATUS_PARAM ); |
|
291 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); |
|
292 uint64_t float64_to_uint64( float64 STATUS_PARAM ); |
|
293 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM ); |
|
294 float32 float64_to_float32( float64 STATUS_PARAM ); |
|
295 #ifdef FLOATX80 |
|
296 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); |
|
297 #endif |
|
298 #ifdef FLOAT128 |
|
299 float128 float64_to_float128( float64 STATUS_PARAM ); |
|
300 #endif |
|
301 |
|
302 /*---------------------------------------------------------------------------- |
|
303 | Software IEC/IEEE double-precision operations. |
|
304 *----------------------------------------------------------------------------*/ |
|
305 float64 float64_round_to_int( float64 STATUS_PARAM ); |
|
306 float64 float64_trunc_to_int( float64 STATUS_PARAM ); |
|
307 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM) |
|
308 { |
|
309 return a + b; |
|
310 } |
|
311 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM) |
|
312 { |
|
313 return a - b; |
|
314 } |
|
315 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM) |
|
316 { |
|
317 return a * b; |
|
318 } |
|
319 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM) |
|
320 { |
|
321 return a / b; |
|
322 } |
|
323 float64 float64_rem( float64, float64 STATUS_PARAM ); |
|
324 float64 float64_sqrt( float64 STATUS_PARAM ); |
|
325 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM) |
|
326 { |
|
327 return a == b; |
|
328 } |
|
329 INLINE int float64_le( float64 a, float64 b STATUS_PARAM) |
|
330 { |
|
331 return a <= b; |
|
332 } |
|
333 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM) |
|
334 { |
|
335 return a < b; |
|
336 } |
|
337 INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM) |
|
338 { |
|
339 return a <= b && a >= b; |
|
340 } |
|
341 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM) |
|
342 { |
|
343 return islessequal(a, b); |
|
344 } |
|
345 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM) |
|
346 { |
|
347 return isless(a, b); |
|
348 |
|
349 } |
|
350 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM) |
|
351 { |
|
352 return isunordered(a, b); |
|
353 |
|
354 } |
|
355 int float64_compare( float64, float64 STATUS_PARAM ); |
|
356 int float64_compare_quiet( float64, float64 STATUS_PARAM ); |
|
357 int float64_is_signaling_nan( float64 ); |
|
358 int float64_is_nan( float64 ); |
|
359 |
|
360 INLINE float64 float64_abs(float64 a) |
|
361 { |
|
362 return fabs(a); |
|
363 } |
|
364 |
|
365 INLINE float64 float64_chs(float64 a) |
|
366 { |
|
367 return -a; |
|
368 } |
|
369 |
|
370 INLINE float64 float64_is_infinity(float64 a) |
|
371 { |
|
372 return fpclassify(a) == FP_INFINITE; |
|
373 } |
|
374 |
|
375 INLINE float64 float64_is_neg(float64 a) |
|
376 { |
|
377 float64u u; |
|
378 u.f = a; |
|
379 return u.i >> 63; |
|
380 } |
|
381 |
|
382 INLINE float64 float64_is_zero(float64 a) |
|
383 { |
|
384 return fpclassify(a) == FP_ZERO; |
|
385 } |
|
386 |
|
387 INLINE float64 float64_scalbn(float64 a, int n) |
|
388 { |
|
389 return scalbn(a, n); |
|
390 } |
|
391 |
|
392 #ifdef FLOATX80 |
|
393 |
|
394 /*---------------------------------------------------------------------------- |
|
395 | Software IEC/IEEE extended double-precision conversion routines. |
|
396 *----------------------------------------------------------------------------*/ |
|
397 int floatx80_to_int32( floatx80 STATUS_PARAM ); |
|
398 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); |
|
399 int64_t floatx80_to_int64( floatx80 STATUS_PARAM); |
|
400 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM); |
|
401 float32 floatx80_to_float32( floatx80 STATUS_PARAM ); |
|
402 float64 floatx80_to_float64( floatx80 STATUS_PARAM ); |
|
403 #ifdef FLOAT128 |
|
404 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); |
|
405 #endif |
|
406 |
|
407 /*---------------------------------------------------------------------------- |
|
408 | Software IEC/IEEE extended double-precision operations. |
|
409 *----------------------------------------------------------------------------*/ |
|
410 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); |
|
411 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM) |
|
412 { |
|
413 return a + b; |
|
414 } |
|
415 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM) |
|
416 { |
|
417 return a - b; |
|
418 } |
|
419 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM) |
|
420 { |
|
421 return a * b; |
|
422 } |
|
423 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM) |
|
424 { |
|
425 return a / b; |
|
426 } |
|
427 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); |
|
428 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); |
|
429 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM) |
|
430 { |
|
431 return a == b; |
|
432 } |
|
433 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM) |
|
434 { |
|
435 return a <= b; |
|
436 } |
|
437 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM) |
|
438 { |
|
439 return a < b; |
|
440 } |
|
441 INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM) |
|
442 { |
|
443 return a <= b && a >= b; |
|
444 } |
|
445 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM) |
|
446 { |
|
447 return islessequal(a, b); |
|
448 } |
|
449 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM) |
|
450 { |
|
451 return isless(a, b); |
|
452 |
|
453 } |
|
454 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM) |
|
455 { |
|
456 return isunordered(a, b); |
|
457 |
|
458 } |
|
459 int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); |
|
460 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); |
|
461 int floatx80_is_signaling_nan( floatx80 ); |
|
462 int floatx80_is_nan( floatx80 ); |
|
463 |
|
464 INLINE floatx80 floatx80_abs(floatx80 a) |
|
465 { |
|
466 return fabsl(a); |
|
467 } |
|
468 |
|
469 INLINE floatx80 floatx80_chs(floatx80 a) |
|
470 { |
|
471 return -a; |
|
472 } |
|
473 |
|
474 INLINE floatx80 floatx80_is_infinity(floatx80 a) |
|
475 { |
|
476 return fpclassify(a) == FP_INFINITE; |
|
477 } |
|
478 |
|
479 INLINE floatx80 floatx80_is_neg(floatx80 a) |
|
480 { |
|
481 floatx80u u; |
|
482 u.f = a; |
|
483 return u.i.high >> 15; |
|
484 } |
|
485 |
|
486 INLINE floatx80 floatx80_is_zero(floatx80 a) |
|
487 { |
|
488 return fpclassify(a) == FP_ZERO; |
|
489 } |
|
490 |
|
491 INLINE floatx80 floatx80_scalbn(floatx80 a, int n) |
|
492 { |
|
493 return scalbnl(a, n); |
|
494 } |
|
495 |
|
496 #endif |