|
1 /* |
|
2 * ARM Nested Vectored Interrupt Controller |
|
3 * |
|
4 * Copyright (c) 2006-2007 CodeSourcery. |
|
5 * Written by Paul Brook |
|
6 * |
|
7 * This code is licenced under the GPL. |
|
8 * |
|
9 * The ARMv7M System controller is fairly tightly tied in with the |
|
10 * NVIC. Much of that is also implemented here. |
|
11 */ |
|
12 |
|
13 #include "hw.h" |
|
14 #include "qemu-timer.h" |
|
15 #include "arm-misc.h" |
|
16 |
|
17 /* 32 internal lines (16 used for system exceptions) plus 64 external |
|
18 interrupt lines. */ |
|
19 #define GIC_NIRQ 96 |
|
20 #define NCPU 1 |
|
21 #define NVIC 1 |
|
22 |
|
23 /* Only a single "CPU" interface is present. */ |
|
24 static inline int |
|
25 gic_get_current_cpu(void) |
|
26 { |
|
27 return 0; |
|
28 } |
|
29 |
|
30 static uint32_t nvic_readl(void *opaque, uint32_t offset); |
|
31 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value); |
|
32 |
|
33 #include "arm_gic.c" |
|
34 |
|
35 typedef struct { |
|
36 struct { |
|
37 uint32_t control; |
|
38 uint32_t reload; |
|
39 int64_t tick; |
|
40 QEMUTimer *timer; |
|
41 } systick; |
|
42 gic_state *gic; |
|
43 } nvic_state; |
|
44 |
|
45 /* qemu timers run at 1GHz. We want something closer to 1MHz. */ |
|
46 #define SYSTICK_SCALE 1000ULL |
|
47 |
|
48 #define SYSTICK_ENABLE (1 << 0) |
|
49 #define SYSTICK_TICKINT (1 << 1) |
|
50 #define SYSTICK_CLKSOURCE (1 << 2) |
|
51 #define SYSTICK_COUNTFLAG (1 << 16) |
|
52 |
|
53 int system_clock_scale; |
|
54 |
|
55 /* Conversion factor from qemu timer to SysTick frequencies. */ |
|
56 static inline int64_t systick_scale(nvic_state *s) |
|
57 { |
|
58 if (s->systick.control & SYSTICK_CLKSOURCE) |
|
59 return system_clock_scale; |
|
60 else |
|
61 return 1000; |
|
62 } |
|
63 |
|
64 static void systick_reload(nvic_state *s, int reset) |
|
65 { |
|
66 if (reset) |
|
67 s->systick.tick = qemu_get_clock(vm_clock); |
|
68 s->systick.tick += (s->systick.reload + 1) * systick_scale(s); |
|
69 qemu_mod_timer(s->systick.timer, s->systick.tick); |
|
70 } |
|
71 |
|
72 static void systick_timer_tick(void * opaque) |
|
73 { |
|
74 nvic_state *s = (nvic_state *)opaque; |
|
75 s->systick.control |= SYSTICK_COUNTFLAG; |
|
76 if (s->systick.control & SYSTICK_TICKINT) { |
|
77 /* Trigger the interrupt. */ |
|
78 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
|
79 } |
|
80 if (s->systick.reload == 0) { |
|
81 s->systick.control &= ~SYSTICK_ENABLE; |
|
82 } else { |
|
83 systick_reload(s, 0); |
|
84 } |
|
85 } |
|
86 |
|
87 /* The external routines use the hardware vector numbering, ie. the first |
|
88 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */ |
|
89 void armv7m_nvic_set_pending(void *opaque, int irq) |
|
90 { |
|
91 nvic_state *s = (nvic_state *)opaque; |
|
92 if (irq >= 16) |
|
93 irq += 16; |
|
94 gic_set_pending_private(s->gic, 0, irq); |
|
95 } |
|
96 |
|
97 /* Make pending IRQ active. */ |
|
98 int armv7m_nvic_acknowledge_irq(void *opaque) |
|
99 { |
|
100 nvic_state *s = (nvic_state *)opaque; |
|
101 uint32_t irq; |
|
102 |
|
103 irq = gic_acknowledge_irq(s->gic, 0); |
|
104 if (irq == 1023) |
|
105 cpu_abort(cpu_single_env, "Interrupt but no vector\n"); |
|
106 if (irq >= 32) |
|
107 irq -= 16; |
|
108 return irq; |
|
109 } |
|
110 |
|
111 void armv7m_nvic_complete_irq(void *opaque, int irq) |
|
112 { |
|
113 nvic_state *s = (nvic_state *)opaque; |
|
114 if (irq >= 16) |
|
115 irq += 16; |
|
116 gic_complete_irq(s->gic, 0, irq); |
|
117 } |
|
118 |
|
119 static uint32_t nvic_readl(void *opaque, uint32_t offset) |
|
120 { |
|
121 nvic_state *s = (nvic_state *)opaque; |
|
122 uint32_t val; |
|
123 int irq; |
|
124 |
|
125 switch (offset) { |
|
126 case 4: /* Interrupt Control Type. */ |
|
127 return (GIC_NIRQ / 32) - 1; |
|
128 case 0x10: /* SysTick Control and Status. */ |
|
129 val = s->systick.control; |
|
130 s->systick.control &= ~SYSTICK_COUNTFLAG; |
|
131 return val; |
|
132 case 0x14: /* SysTick Reload Value. */ |
|
133 return s->systick.reload; |
|
134 case 0x18: /* SysTick Current Value. */ |
|
135 { |
|
136 int64_t t; |
|
137 if ((s->systick.control & SYSTICK_ENABLE) == 0) |
|
138 return 0; |
|
139 t = qemu_get_clock(vm_clock); |
|
140 if (t >= s->systick.tick) |
|
141 return 0; |
|
142 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1; |
|
143 /* The interrupt in triggered when the timer reaches zero. |
|
144 However the counter is not reloaded until the next clock |
|
145 tick. This is a hack to return zero during the first tick. */ |
|
146 if (val > s->systick.reload) |
|
147 val = 0; |
|
148 return val; |
|
149 } |
|
150 case 0x1c: /* SysTick Calibration Value. */ |
|
151 return 10000; |
|
152 case 0xd00: /* CPUID Base. */ |
|
153 return cpu_single_env->cp15.c0_cpuid; |
|
154 case 0xd04: /* Interrypt Control State. */ |
|
155 /* VECTACTIVE */ |
|
156 val = s->gic->running_irq[0]; |
|
157 if (val == 1023) { |
|
158 val = 0; |
|
159 } else if (val >= 32) { |
|
160 val -= 16; |
|
161 } |
|
162 /* RETTOBASE */ |
|
163 if (s->gic->running_irq[0] == 1023 |
|
164 || s->gic->last_active[s->gic->running_irq[0]][0] == 1023) { |
|
165 val |= (1 << 11); |
|
166 } |
|
167 /* VECTPENDING */ |
|
168 if (s->gic->current_pending[0] != 1023) |
|
169 val |= (s->gic->current_pending[0] << 12); |
|
170 /* ISRPENDING */ |
|
171 for (irq = 32; irq < GIC_NIRQ; irq++) { |
|
172 if (s->gic->irq_state[irq].pending) { |
|
173 val |= (1 << 22); |
|
174 break; |
|
175 } |
|
176 } |
|
177 /* PENDSTSET */ |
|
178 if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending) |
|
179 val |= (1 << 26); |
|
180 /* PENDSVSET */ |
|
181 if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending) |
|
182 val |= (1 << 28); |
|
183 /* NMIPENDSET */ |
|
184 if (s->gic->irq_state[ARMV7M_EXCP_NMI].pending) |
|
185 val |= (1 << 31); |
|
186 return val; |
|
187 case 0xd08: /* Vector Table Offset. */ |
|
188 return cpu_single_env->v7m.vecbase; |
|
189 case 0xd0c: /* Application Interrupt/Reset Control. */ |
|
190 return 0xfa05000; |
|
191 case 0xd10: /* System Control. */ |
|
192 /* TODO: Implement SLEEPONEXIT. */ |
|
193 return 0; |
|
194 case 0xd14: /* Configuration Control. */ |
|
195 /* TODO: Implement Configuration Control bits. */ |
|
196 return 0; |
|
197 case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ |
|
198 irq = offset - 0xd14; |
|
199 val = 0; |
|
200 val = s->gic->priority1[irq++][0]; |
|
201 val = s->gic->priority1[irq++][0] << 8; |
|
202 val = s->gic->priority1[irq++][0] << 16; |
|
203 val = s->gic->priority1[irq][0] << 24; |
|
204 return val; |
|
205 case 0xd24: /* System Handler Status. */ |
|
206 val = 0; |
|
207 if (s->gic->irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0); |
|
208 if (s->gic->irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1); |
|
209 if (s->gic->irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3); |
|
210 if (s->gic->irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7); |
|
211 if (s->gic->irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8); |
|
212 if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10); |
|
213 if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11); |
|
214 if (s->gic->irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12); |
|
215 if (s->gic->irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13); |
|
216 if (s->gic->irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14); |
|
217 if (s->gic->irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15); |
|
218 if (s->gic->irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16); |
|
219 if (s->gic->irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17); |
|
220 if (s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18); |
|
221 return val; |
|
222 case 0xd28: /* Configurable Fault Status. */ |
|
223 /* TODO: Implement Fault Status. */ |
|
224 cpu_abort(cpu_single_env, |
|
225 "Not implemented: Configurable Fault Status."); |
|
226 return 0; |
|
227 case 0xd2c: /* Hard Fault Status. */ |
|
228 case 0xd30: /* Debug Fault Status. */ |
|
229 case 0xd34: /* Mem Manage Address. */ |
|
230 case 0xd38: /* Bus Fault Address. */ |
|
231 case 0xd3c: /* Aux Fault Status. */ |
|
232 /* TODO: Implement fault status registers. */ |
|
233 goto bad_reg; |
|
234 case 0xd40: /* PFR0. */ |
|
235 return 0x00000030; |
|
236 case 0xd44: /* PRF1. */ |
|
237 return 0x00000200; |
|
238 case 0xd48: /* DFR0. */ |
|
239 return 0x00100000; |
|
240 case 0xd4c: /* AFR0. */ |
|
241 return 0x00000000; |
|
242 case 0xd50: /* MMFR0. */ |
|
243 return 0x00000030; |
|
244 case 0xd54: /* MMFR1. */ |
|
245 return 0x00000000; |
|
246 case 0xd58: /* MMFR2. */ |
|
247 return 0x00000000; |
|
248 case 0xd5c: /* MMFR3. */ |
|
249 return 0x00000000; |
|
250 case 0xd60: /* ISAR0. */ |
|
251 return 0x01141110; |
|
252 case 0xd64: /* ISAR1. */ |
|
253 return 0x02111000; |
|
254 case 0xd68: /* ISAR2. */ |
|
255 return 0x21112231; |
|
256 case 0xd6c: /* ISAR3. */ |
|
257 return 0x01111110; |
|
258 case 0xd70: /* ISAR4. */ |
|
259 return 0x01310102; |
|
260 /* TODO: Implement debug registers. */ |
|
261 default: |
|
262 bad_reg: |
|
263 cpu_abort(cpu_single_env, "NVIC: Bad read offset 0x%x\n", offset); |
|
264 } |
|
265 } |
|
266 |
|
267 static void nvic_writel(void *opaque, uint32_t offset, uint32_t value) |
|
268 { |
|
269 nvic_state *s = (nvic_state *)opaque; |
|
270 uint32_t oldval; |
|
271 switch (offset) { |
|
272 case 0x10: /* SysTick Control and Status. */ |
|
273 oldval = s->systick.control; |
|
274 s->systick.control &= 0xfffffff8; |
|
275 s->systick.control |= value & 7; |
|
276 if ((oldval ^ value) & SYSTICK_ENABLE) { |
|
277 int64_t now = qemu_get_clock(vm_clock); |
|
278 if (value & SYSTICK_ENABLE) { |
|
279 if (s->systick.tick) { |
|
280 s->systick.tick += now; |
|
281 qemu_mod_timer(s->systick.timer, s->systick.tick); |
|
282 } else { |
|
283 systick_reload(s, 1); |
|
284 } |
|
285 } else { |
|
286 qemu_del_timer(s->systick.timer); |
|
287 s->systick.tick -= now; |
|
288 if (s->systick.tick < 0) |
|
289 s->systick.tick = 0; |
|
290 } |
|
291 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) { |
|
292 /* This is a hack. Force the timer to be reloaded |
|
293 when the reference clock is changed. */ |
|
294 systick_reload(s, 1); |
|
295 } |
|
296 break; |
|
297 case 0x14: /* SysTick Reload Value. */ |
|
298 s->systick.reload = value; |
|
299 break; |
|
300 case 0x18: /* SysTick Current Value. Writes reload the timer. */ |
|
301 systick_reload(s, 1); |
|
302 s->systick.control &= ~SYSTICK_COUNTFLAG; |
|
303 break; |
|
304 case 0xd04: /* Interrupt Control State. */ |
|
305 if (value & (1 << 31)) { |
|
306 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); |
|
307 } |
|
308 if (value & (1 << 28)) { |
|
309 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); |
|
310 } else if (value & (1 << 27)) { |
|
311 s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending = 0; |
|
312 gic_update(s->gic); |
|
313 } |
|
314 if (value & (1 << 26)) { |
|
315 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
|
316 } else if (value & (1 << 25)) { |
|
317 s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending = 0; |
|
318 gic_update(s->gic); |
|
319 } |
|
320 break; |
|
321 case 0xd08: /* Vector Table Offset. */ |
|
322 cpu_single_env->v7m.vecbase = value & 0xffffff80; |
|
323 break; |
|
324 case 0xd0c: /* Application Interrupt/Reset Control. */ |
|
325 if ((value >> 16) == 0x05fa) { |
|
326 if (value & 2) { |
|
327 cpu_abort(cpu_single_env, "VECTCLRACTIVE not implemented"); |
|
328 } |
|
329 if (value & 5) { |
|
330 cpu_abort(cpu_single_env, "System reset"); |
|
331 } |
|
332 } |
|
333 break; |
|
334 case 0xd10: /* System Control. */ |
|
335 case 0xd14: /* Configuration Control. */ |
|
336 /* TODO: Implement control registers. */ |
|
337 goto bad_reg; |
|
338 case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ |
|
339 { |
|
340 int irq; |
|
341 irq = offset - 0xd14; |
|
342 s->gic->priority1[irq++][0] = value & 0xff; |
|
343 s->gic->priority1[irq++][0] = (value >> 8) & 0xff; |
|
344 s->gic->priority1[irq++][0] = (value >> 16) & 0xff; |
|
345 s->gic->priority1[irq][0] = (value >> 24) & 0xff; |
|
346 gic_update(s->gic); |
|
347 } |
|
348 break; |
|
349 case 0xd24: /* System Handler Control. */ |
|
350 /* TODO: Real hardware allows you to set/clear the active bits |
|
351 under some circumstances. We don't implement this. */ |
|
352 s->gic->irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
|
353 s->gic->irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
|
354 s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; |
|
355 break; |
|
356 case 0xd28: /* Configurable Fault Status. */ |
|
357 case 0xd2c: /* Hard Fault Status. */ |
|
358 case 0xd30: /* Debug Fault Status. */ |
|
359 case 0xd34: /* Mem Manage Address. */ |
|
360 case 0xd38: /* Bus Fault Address. */ |
|
361 case 0xd3c: /* Aux Fault Status. */ |
|
362 goto bad_reg; |
|
363 default: |
|
364 bad_reg: |
|
365 cpu_abort(cpu_single_env, "NVIC: Bad write offset 0x%x\n", offset); |
|
366 } |
|
367 } |
|
368 |
|
369 static void nvic_save(QEMUFile *f, void *opaque) |
|
370 { |
|
371 nvic_state *s = (nvic_state *)opaque; |
|
372 |
|
373 qemu_put_be32(f, s->systick.control); |
|
374 qemu_put_be32(f, s->systick.reload); |
|
375 qemu_put_be64(f, s->systick.tick); |
|
376 qemu_put_timer(f, s->systick.timer); |
|
377 } |
|
378 |
|
379 static int nvic_load(QEMUFile *f, void *opaque, int version_id) |
|
380 { |
|
381 nvic_state *s = (nvic_state *)opaque; |
|
382 |
|
383 if (version_id != 1) |
|
384 return -EINVAL; |
|
385 |
|
386 s->systick.control = qemu_get_be32(f); |
|
387 s->systick.reload = qemu_get_be32(f); |
|
388 s->systick.tick = qemu_get_be64(f); |
|
389 qemu_get_timer(f, s->systick.timer); |
|
390 |
|
391 return 0; |
|
392 } |
|
393 |
|
394 qemu_irq *armv7m_nvic_init(CPUState *env) |
|
395 { |
|
396 nvic_state *s; |
|
397 qemu_irq *parent; |
|
398 |
|
399 parent = arm_pic_init_cpu(env); |
|
400 s = (nvic_state *)qemu_mallocz(sizeof(nvic_state)); |
|
401 s->gic = gic_init(0xe000e000, &parent[ARM_PIC_CPU_IRQ]); |
|
402 s->gic->nvic = s; |
|
403 s->systick.timer = qemu_new_timer(vm_clock, systick_timer_tick, s); |
|
404 if (env->v7m.nvic) |
|
405 cpu_abort(env, "CPU can only have one NVIC\n"); |
|
406 env->v7m.nvic = s; |
|
407 register_savevm("armv7m_nvic", -1, 1, nvic_save, nvic_load, s); |
|
408 return s->gic->in; |
|
409 } |