symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/pxa2xx_timer.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  * Intel XScale PXA255/270 OS Timers.
       
     3  *
       
     4  * Copyright (c) 2006 Openedhand Ltd.
       
     5  * Copyright (c) 2006 Thorsten Zitterell
       
     6  *
       
     7  * This code is licenced under the GPL.
       
     8  */
       
     9 
       
    10 #include "hw.h"
       
    11 #include "qemu-timer.h"
       
    12 #include "sysemu.h"
       
    13 #include "pxa.h"
       
    14 
       
    15 #define OSMR0	0x00
       
    16 #define OSMR1	0x04
       
    17 #define OSMR2	0x08
       
    18 #define OSMR3	0x0c
       
    19 #define OSMR4	0x80
       
    20 #define OSMR5	0x84
       
    21 #define OSMR6	0x88
       
    22 #define OSMR7	0x8c
       
    23 #define OSMR8	0x90
       
    24 #define OSMR9	0x94
       
    25 #define OSMR10	0x98
       
    26 #define OSMR11	0x9c
       
    27 #define OSCR	0x10	/* OS Timer Count */
       
    28 #define OSCR4	0x40
       
    29 #define OSCR5	0x44
       
    30 #define OSCR6	0x48
       
    31 #define OSCR7	0x4c
       
    32 #define OSCR8	0x50
       
    33 #define OSCR9	0x54
       
    34 #define OSCR10	0x58
       
    35 #define OSCR11	0x5c
       
    36 #define OSSR	0x14	/* Timer status register */
       
    37 #define OWER	0x18
       
    38 #define OIER	0x1c	/* Interrupt enable register  3-0 to E3-E0 */
       
    39 #define OMCR4	0xc0	/* OS Match Control registers */
       
    40 #define OMCR5	0xc4
       
    41 #define OMCR6	0xc8
       
    42 #define OMCR7	0xcc
       
    43 #define OMCR8	0xd0
       
    44 #define OMCR9	0xd4
       
    45 #define OMCR10	0xd8
       
    46 #define OMCR11	0xdc
       
    47 #define OSNR	0x20
       
    48 
       
    49 #define PXA25X_FREQ	3686400	/* 3.6864 MHz */
       
    50 #define PXA27X_FREQ	3250000	/* 3.25 MHz */
       
    51 
       
    52 static int pxa2xx_timer4_freq[8] = {
       
    53     [0] = 0,
       
    54     [1] = 32768,
       
    55     [2] = 1000,
       
    56     [3] = 1,
       
    57     [4] = 1000000,
       
    58     /* [5] is the "Externally supplied clock".  Assign if necessary.  */
       
    59     [5 ... 7] = 0,
       
    60 };
       
    61 
       
    62 struct pxa2xx_timer0_s {
       
    63     uint32_t value;
       
    64     int level;
       
    65     qemu_irq irq;
       
    66     QEMUTimer *qtimer;
       
    67     int num;
       
    68     void *info;
       
    69 };
       
    70 
       
    71 struct pxa2xx_timer4_s {
       
    72     struct pxa2xx_timer0_s tm;
       
    73     int32_t oldclock;
       
    74     int32_t clock;
       
    75     uint64_t lastload;
       
    76     uint32_t freq;
       
    77     uint32_t control;
       
    78 };
       
    79 
       
    80 typedef struct {
       
    81     int32_t clock;
       
    82     int32_t oldclock;
       
    83     uint64_t lastload;
       
    84     uint32_t freq;
       
    85     struct pxa2xx_timer0_s timer[4];
       
    86     struct pxa2xx_timer4_s *tm4;
       
    87     uint32_t events;
       
    88     uint32_t irq_enabled;
       
    89     uint32_t reset3;
       
    90     uint32_t snapshot;
       
    91 } pxa2xx_timer_info;
       
    92 
       
    93 static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
       
    94 {
       
    95     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
    96     int i;
       
    97     uint32_t now_vm;
       
    98     uint64_t new_qemu;
       
    99 
       
   100     now_vm = s->clock +
       
   101             muldiv64(now_qemu - s->lastload, s->freq, ticks_per_sec);
       
   102 
       
   103     for (i = 0; i < 4; i ++) {
       
   104         new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
       
   105                         ticks_per_sec, s->freq);
       
   106         qemu_mod_timer(s->timer[i].qtimer, new_qemu);
       
   107     }
       
   108 }
       
   109 
       
   110 static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
       
   111 {
       
   112     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
   113     uint32_t now_vm;
       
   114     uint64_t new_qemu;
       
   115     static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
       
   116     int counter;
       
   117 
       
   118     if (s->tm4[n].control & (1 << 7))
       
   119         counter = n;
       
   120     else
       
   121         counter = counters[n];
       
   122 
       
   123     if (!s->tm4[counter].freq) {
       
   124         qemu_del_timer(s->tm4[n].tm.qtimer);
       
   125         return;
       
   126     }
       
   127 
       
   128     now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
       
   129                     s->tm4[counter].lastload,
       
   130                     s->tm4[counter].freq, ticks_per_sec);
       
   131 
       
   132     new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
       
   133                     ticks_per_sec, s->tm4[counter].freq);
       
   134     qemu_mod_timer(s->tm4[n].tm.qtimer, new_qemu);
       
   135 }
       
   136 
       
   137 static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
       
   138 {
       
   139     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
   140     int tm = 0;
       
   141 
       
   142     switch (offset) {
       
   143     case OSMR3:  tm ++;
       
   144     case OSMR2:  tm ++;
       
   145     case OSMR1:  tm ++;
       
   146     case OSMR0:
       
   147         return s->timer[tm].value;
       
   148     case OSMR11: tm ++;
       
   149     case OSMR10: tm ++;
       
   150     case OSMR9:  tm ++;
       
   151     case OSMR8:  tm ++;
       
   152     case OSMR7:  tm ++;
       
   153     case OSMR6:  tm ++;
       
   154     case OSMR5:  tm ++;
       
   155     case OSMR4:
       
   156         if (!s->tm4)
       
   157             goto badreg;
       
   158         return s->tm4[tm].tm.value;
       
   159     case OSCR:
       
   160         return s->clock + muldiv64(qemu_get_clock(vm_clock) -
       
   161                         s->lastload, s->freq, ticks_per_sec);
       
   162     case OSCR11: tm ++;
       
   163     case OSCR10: tm ++;
       
   164     case OSCR9:  tm ++;
       
   165     case OSCR8:  tm ++;
       
   166     case OSCR7:  tm ++;
       
   167     case OSCR6:  tm ++;
       
   168     case OSCR5:  tm ++;
       
   169     case OSCR4:
       
   170         if (!s->tm4)
       
   171             goto badreg;
       
   172 
       
   173         if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
       
   174             if (s->tm4[tm - 1].freq)
       
   175                 s->snapshot = s->tm4[tm - 1].clock + muldiv64(
       
   176                                 qemu_get_clock(vm_clock) -
       
   177                                 s->tm4[tm - 1].lastload,
       
   178                                 s->tm4[tm - 1].freq, ticks_per_sec);
       
   179             else
       
   180                 s->snapshot = s->tm4[tm - 1].clock;
       
   181         }
       
   182 
       
   183         if (!s->tm4[tm].freq)
       
   184             return s->tm4[tm].clock;
       
   185         return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
       
   186                         s->tm4[tm].lastload, s->tm4[tm].freq, ticks_per_sec);
       
   187     case OIER:
       
   188         return s->irq_enabled;
       
   189     case OSSR:	/* Status register */
       
   190         return s->events;
       
   191     case OWER:
       
   192         return s->reset3;
       
   193     case OMCR11: tm ++;
       
   194     case OMCR10: tm ++;
       
   195     case OMCR9:  tm ++;
       
   196     case OMCR8:  tm ++;
       
   197     case OMCR7:  tm ++;
       
   198     case OMCR6:  tm ++;
       
   199     case OMCR5:  tm ++;
       
   200     case OMCR4:
       
   201         if (!s->tm4)
       
   202             goto badreg;
       
   203         return s->tm4[tm].control;
       
   204     case OSNR:
       
   205         return s->snapshot;
       
   206     default:
       
   207     badreg:
       
   208         cpu_abort(cpu_single_env, "pxa2xx_timer_read: Bad offset "
       
   209                         REG_FMT "\n", offset);
       
   210     }
       
   211 
       
   212     return 0;
       
   213 }
       
   214 
       
   215 static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
       
   216                 uint32_t value)
       
   217 {
       
   218     int i, tm = 0;
       
   219     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
   220 
       
   221     switch (offset) {
       
   222     case OSMR3:  tm ++;
       
   223     case OSMR2:  tm ++;
       
   224     case OSMR1:  tm ++;
       
   225     case OSMR0:
       
   226         s->timer[tm].value = value;
       
   227         pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
       
   228         break;
       
   229     case OSMR11: tm ++;
       
   230     case OSMR10: tm ++;
       
   231     case OSMR9:  tm ++;
       
   232     case OSMR8:  tm ++;
       
   233     case OSMR7:  tm ++;
       
   234     case OSMR6:  tm ++;
       
   235     case OSMR5:  tm ++;
       
   236     case OSMR4:
       
   237         if (!s->tm4)
       
   238             goto badreg;
       
   239         s->tm4[tm].tm.value = value;
       
   240         pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
       
   241         break;
       
   242     case OSCR:
       
   243         s->oldclock = s->clock;
       
   244         s->lastload = qemu_get_clock(vm_clock);
       
   245         s->clock = value;
       
   246         pxa2xx_timer_update(s, s->lastload);
       
   247         break;
       
   248     case OSCR11: tm ++;
       
   249     case OSCR10: tm ++;
       
   250     case OSCR9:  tm ++;
       
   251     case OSCR8:  tm ++;
       
   252     case OSCR7:  tm ++;
       
   253     case OSCR6:  tm ++;
       
   254     case OSCR5:  tm ++;
       
   255     case OSCR4:
       
   256         if (!s->tm4)
       
   257             goto badreg;
       
   258         s->tm4[tm].oldclock = s->tm4[tm].clock;
       
   259         s->tm4[tm].lastload = qemu_get_clock(vm_clock);
       
   260         s->tm4[tm].clock = value;
       
   261         pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
       
   262         break;
       
   263     case OIER:
       
   264         s->irq_enabled = value & 0xfff;
       
   265         break;
       
   266     case OSSR:	/* Status register */
       
   267         s->events &= ~value;
       
   268         for (i = 0; i < 4; i ++, value >>= 1) {
       
   269             if (s->timer[i].level && (value & 1)) {
       
   270                 s->timer[i].level = 0;
       
   271                 qemu_irq_lower(s->timer[i].irq);
       
   272             }
       
   273         }
       
   274         if (s->tm4) {
       
   275             for (i = 0; i < 8; i ++, value >>= 1)
       
   276                 if (s->tm4[i].tm.level && (value & 1))
       
   277                     s->tm4[i].tm.level = 0;
       
   278             if (!(s->events & 0xff0))
       
   279                 qemu_irq_lower(s->tm4->tm.irq);
       
   280         }
       
   281         break;
       
   282     case OWER:	/* XXX: Reset on OSMR3 match? */
       
   283         s->reset3 = value;
       
   284         break;
       
   285     case OMCR7:  tm ++;
       
   286     case OMCR6:  tm ++;
       
   287     case OMCR5:  tm ++;
       
   288     case OMCR4:
       
   289         if (!s->tm4)
       
   290             goto badreg;
       
   291         s->tm4[tm].control = value & 0x0ff;
       
   292         /* XXX Stop if running (shouldn't happen) */
       
   293         if ((value & (1 << 7)) || tm == 0)
       
   294             s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
       
   295         else {
       
   296             s->tm4[tm].freq = 0;
       
   297             pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
       
   298         }
       
   299         break;
       
   300     case OMCR11: tm ++;
       
   301     case OMCR10: tm ++;
       
   302     case OMCR9:  tm ++;
       
   303     case OMCR8:  tm += 4;
       
   304         if (!s->tm4)
       
   305             goto badreg;
       
   306         s->tm4[tm].control = value & 0x3ff;
       
   307         /* XXX Stop if running (shouldn't happen) */
       
   308         if ((value & (1 << 7)) || !(tm & 1))
       
   309             s->tm4[tm].freq =
       
   310                     pxa2xx_timer4_freq[(value & (1 << 8)) ?  0 : (value & 7)];
       
   311         else {
       
   312             s->tm4[tm].freq = 0;
       
   313             pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
       
   314         }
       
   315         break;
       
   316     default:
       
   317     badreg:
       
   318         cpu_abort(cpu_single_env, "pxa2xx_timer_write: Bad offset "
       
   319                         REG_FMT "\n", offset);
       
   320     }
       
   321 }
       
   322 
       
   323 static CPUReadMemoryFunc *pxa2xx_timer_readfn[] = {
       
   324     pxa2xx_timer_read,
       
   325     pxa2xx_timer_read,
       
   326     pxa2xx_timer_read,
       
   327 };
       
   328 
       
   329 static CPUWriteMemoryFunc *pxa2xx_timer_writefn[] = {
       
   330     pxa2xx_timer_write,
       
   331     pxa2xx_timer_write,
       
   332     pxa2xx_timer_write,
       
   333 };
       
   334 
       
   335 static void pxa2xx_timer_tick(void *opaque)
       
   336 {
       
   337     struct pxa2xx_timer0_s *t = (struct pxa2xx_timer0_s *) opaque;
       
   338     pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
       
   339 
       
   340     if (i->irq_enabled & (1 << t->num)) {
       
   341         t->level = 1;
       
   342         i->events |= 1 << t->num;
       
   343         qemu_irq_raise(t->irq);
       
   344     }
       
   345 
       
   346     if (t->num == 3)
       
   347         if (i->reset3 & 1) {
       
   348             i->reset3 = 0;
       
   349             qemu_system_reset_request();
       
   350         }
       
   351 }
       
   352 
       
   353 static void pxa2xx_timer_tick4(void *opaque)
       
   354 {
       
   355     struct pxa2xx_timer4_s *t = (struct pxa2xx_timer4_s *) opaque;
       
   356     pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
       
   357 
       
   358     pxa2xx_timer_tick(&t->tm);
       
   359     if (t->control & (1 << 3))
       
   360         t->clock = 0;
       
   361     if (t->control & (1 << 6))
       
   362         pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
       
   363 }
       
   364 
       
   365 static void pxa2xx_timer_save(QEMUFile *f, void *opaque)
       
   366 {
       
   367     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
   368     int i;
       
   369 
       
   370     qemu_put_be32s(f, (uint32_t *) &s->clock);
       
   371     qemu_put_be32s(f, (uint32_t *) &s->oldclock);
       
   372     qemu_put_be64s(f, &s->lastload);
       
   373 
       
   374     for (i = 0; i < 4; i ++) {
       
   375         qemu_put_be32s(f, &s->timer[i].value);
       
   376         qemu_put_be32(f, s->timer[i].level);
       
   377     }
       
   378     if (s->tm4)
       
   379         for (i = 0; i < 8; i ++) {
       
   380             qemu_put_be32s(f, &s->tm4[i].tm.value);
       
   381             qemu_put_be32(f, s->tm4[i].tm.level);
       
   382             qemu_put_sbe32s(f, &s->tm4[i].oldclock);
       
   383             qemu_put_sbe32s(f, &s->tm4[i].clock);
       
   384             qemu_put_be64s(f, &s->tm4[i].lastload);
       
   385             qemu_put_be32s(f, &s->tm4[i].freq);
       
   386             qemu_put_be32s(f, &s->tm4[i].control);
       
   387         }
       
   388 
       
   389     qemu_put_be32s(f, &s->events);
       
   390     qemu_put_be32s(f, &s->irq_enabled);
       
   391     qemu_put_be32s(f, &s->reset3);
       
   392     qemu_put_be32s(f, &s->snapshot);
       
   393 }
       
   394 
       
   395 static int pxa2xx_timer_load(QEMUFile *f, void *opaque, int version_id)
       
   396 {
       
   397     pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
       
   398     int64_t now;
       
   399     int i;
       
   400 
       
   401     qemu_get_be32s(f, (uint32_t *) &s->clock);
       
   402     qemu_get_be32s(f, (uint32_t *) &s->oldclock);
       
   403     qemu_get_be64s(f, &s->lastload);
       
   404 
       
   405     now = qemu_get_clock(vm_clock);
       
   406     for (i = 0; i < 4; i ++) {
       
   407         qemu_get_be32s(f, &s->timer[i].value);
       
   408         s->timer[i].level = qemu_get_be32(f);
       
   409     }
       
   410     pxa2xx_timer_update(s, now);
       
   411 
       
   412     if (s->tm4)
       
   413         for (i = 0; i < 8; i ++) {
       
   414             qemu_get_be32s(f, &s->tm4[i].tm.value);
       
   415             s->tm4[i].tm.level = qemu_get_be32(f);
       
   416             qemu_get_sbe32s(f, &s->tm4[i].oldclock);
       
   417             qemu_get_sbe32s(f, &s->tm4[i].clock);
       
   418             qemu_get_be64s(f, &s->tm4[i].lastload);
       
   419             qemu_get_be32s(f, &s->tm4[i].freq);
       
   420             qemu_get_be32s(f, &s->tm4[i].control);
       
   421             pxa2xx_timer_update4(s, now, i);
       
   422         }
       
   423 
       
   424     qemu_get_be32s(f, &s->events);
       
   425     qemu_get_be32s(f, &s->irq_enabled);
       
   426     qemu_get_be32s(f, &s->reset3);
       
   427     qemu_get_be32s(f, &s->snapshot);
       
   428 
       
   429     return 0;
       
   430 }
       
   431 
       
   432 static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
       
   433                 qemu_irq *irqs)
       
   434 {
       
   435     int i;
       
   436     int iomemtype;
       
   437     pxa2xx_timer_info *s;
       
   438 
       
   439     s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
       
   440     s->irq_enabled = 0;
       
   441     s->oldclock = 0;
       
   442     s->clock = 0;
       
   443     s->lastload = qemu_get_clock(vm_clock);
       
   444     s->reset3 = 0;
       
   445 
       
   446     for (i = 0; i < 4; i ++) {
       
   447         s->timer[i].value = 0;
       
   448         s->timer[i].irq = irqs[i];
       
   449         s->timer[i].info = s;
       
   450         s->timer[i].num = i;
       
   451         s->timer[i].level = 0;
       
   452         s->timer[i].qtimer = qemu_new_timer(vm_clock,
       
   453                         pxa2xx_timer_tick, &s->timer[i]);
       
   454     }
       
   455 
       
   456     iomemtype = cpu_register_io_memory(0, pxa2xx_timer_readfn,
       
   457                     pxa2xx_timer_writefn, s);
       
   458     cpu_register_physical_memory(base, 0x00001000, iomemtype);
       
   459 
       
   460     register_savevm("pxa2xx_timer", 0, 0,
       
   461                     pxa2xx_timer_save, pxa2xx_timer_load, s);
       
   462 
       
   463     return s;
       
   464 }
       
   465 
       
   466 void pxa25x_timer_init(target_phys_addr_t base, qemu_irq *irqs)
       
   467 {
       
   468     pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
       
   469     s->freq = PXA25X_FREQ;
       
   470     s->tm4 = 0;
       
   471 }
       
   472 
       
   473 void pxa27x_timer_init(target_phys_addr_t base,
       
   474                 qemu_irq *irqs, qemu_irq irq4)
       
   475 {
       
   476     pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
       
   477     int i;
       
   478     s->freq = PXA27X_FREQ;
       
   479     s->tm4 = (struct pxa2xx_timer4_s *) qemu_mallocz(8 *
       
   480                     sizeof(struct pxa2xx_timer4_s));
       
   481     for (i = 0; i < 8; i ++) {
       
   482         s->tm4[i].tm.value = 0;
       
   483         s->tm4[i].tm.irq = irq4;
       
   484         s->tm4[i].tm.info = s;
       
   485         s->tm4[i].tm.num = i + 4;
       
   486         s->tm4[i].tm.level = 0;
       
   487         s->tm4[i].freq = 0;
       
   488         s->tm4[i].control = 0x0;
       
   489         s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
       
   490                         pxa2xx_timer_tick4, &s->tm4[i]);
       
   491     }
       
   492 }