symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/slavio_timer.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  * QEMU Sparc SLAVIO timer controller emulation
       
     3  *
       
     4  * Copyright (c) 2003-2005 Fabrice Bellard
       
     5  *
       
     6  * Permission is hereby granted, free of charge, to any person obtaining a copy
       
     7  * of this software and associated documentation files (the "Software"), to deal
       
     8  * in the Software without restriction, including without limitation the rights
       
     9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
       
    10  * copies of the Software, and to permit persons to whom the Software is
       
    11  * furnished to do so, subject to the following conditions:
       
    12  *
       
    13  * The above copyright notice and this permission notice shall be included in
       
    14  * all copies or substantial portions of the Software.
       
    15  *
       
    16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
       
    17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
       
    18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
       
    19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
       
    20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
       
    21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
       
    22  * THE SOFTWARE.
       
    23  */
       
    24 #include "hw.h"
       
    25 #include "sun4m.h"
       
    26 #include "qemu-timer.h"
       
    27 
       
    28 //#define DEBUG_TIMER
       
    29 
       
    30 #ifdef DEBUG_TIMER
       
    31 #define DPRINTF(fmt, args...) \
       
    32 do { printf("TIMER: " fmt , ##args); } while (0)
       
    33 #else
       
    34 #define DPRINTF(fmt, args...) do {} while (0)
       
    35 #endif
       
    36 
       
    37 /*
       
    38  * Registers of hardware timer in sun4m.
       
    39  *
       
    40  * This is the timer/counter part of chip STP2001 (Slave I/O), also
       
    41  * produced as NCR89C105. See
       
    42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
       
    43  *
       
    44  * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
       
    45  * are zero. Bit 31 is 1 when count has been reached.
       
    46  *
       
    47  * Per-CPU timers interrupt local CPU, system timer uses normal
       
    48  * interrupt routing.
       
    49  *
       
    50  */
       
    51 
       
    52 #define MAX_CPUS 16
       
    53 
       
    54 typedef struct SLAVIO_TIMERState {
       
    55     qemu_irq irq;
       
    56     ptimer_state *timer;
       
    57     uint32_t count, counthigh, reached;
       
    58     uint64_t limit;
       
    59     // processor only
       
    60     uint32_t running;
       
    61     struct SLAVIO_TIMERState *master;
       
    62     uint32_t slave_index;
       
    63     // system only
       
    64     uint32_t num_slaves;
       
    65     struct SLAVIO_TIMERState *slave[MAX_CPUS];
       
    66     uint32_t slave_mode;
       
    67 } SLAVIO_TIMERState;
       
    68 
       
    69 #define SYS_TIMER_SIZE 0x14
       
    70 #define CPU_TIMER_SIZE 0x10
       
    71 
       
    72 #define SYS_TIMER_OFFSET      0x10000ULL
       
    73 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
       
    74 
       
    75 #define TIMER_LIMIT         0
       
    76 #define TIMER_COUNTER       1
       
    77 #define TIMER_COUNTER_NORST 2
       
    78 #define TIMER_STATUS        3
       
    79 #define TIMER_MODE          4
       
    80 
       
    81 #define TIMER_COUNT_MASK32 0xfffffe00
       
    82 #define TIMER_LIMIT_MASK32 0x7fffffff
       
    83 #define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
       
    84 #define TIMER_MAX_COUNT32  0x7ffffe00ULL
       
    85 #define TIMER_REACHED      0x80000000
       
    86 #define TIMER_PERIOD       500ULL // 500ns
       
    87 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
       
    88 #define PERIODS_TO_LIMIT(l) ((l) << 9)
       
    89 
       
    90 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
       
    91 {
       
    92     return s->master && (s->master->slave_mode & (1 << s->slave_index));
       
    93 }
       
    94 
       
    95 // Update count, set irq, update expire_time
       
    96 // Convert from ptimer countdown units
       
    97 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
       
    98 {
       
    99     uint64_t count, limit;
       
   100 
       
   101     if (s->limit == 0) /* free-run processor or system counter */
       
   102         limit = TIMER_MAX_COUNT32;
       
   103     else
       
   104         limit = s->limit;
       
   105 
       
   106     if (s->timer)
       
   107         count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
       
   108     else
       
   109         count = 0;
       
   110 
       
   111     DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
       
   112             s->counthigh, s->count);
       
   113     s->count = count & TIMER_COUNT_MASK32;
       
   114     s->counthigh = count >> 32;
       
   115 }
       
   116 
       
   117 // timer callback
       
   118 static void slavio_timer_irq(void *opaque)
       
   119 {
       
   120     SLAVIO_TIMERState *s = opaque;
       
   121 
       
   122     slavio_timer_get_out(s);
       
   123     DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
       
   124     s->reached = TIMER_REACHED;
       
   125     if (!slavio_timer_is_user(s))
       
   126         qemu_irq_raise(s->irq);
       
   127 }
       
   128 
       
   129 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
       
   130 {
       
   131     SLAVIO_TIMERState *s = opaque;
       
   132     uint32_t saddr, ret;
       
   133 
       
   134     saddr = addr >> 2;
       
   135     switch (saddr) {
       
   136     case TIMER_LIMIT:
       
   137         // read limit (system counter mode) or read most signifying
       
   138         // part of counter (user mode)
       
   139         if (slavio_timer_is_user(s)) {
       
   140             // read user timer MSW
       
   141             slavio_timer_get_out(s);
       
   142             ret = s->counthigh | s->reached;
       
   143         } else {
       
   144             // read limit
       
   145             // clear irq
       
   146             qemu_irq_lower(s->irq);
       
   147             s->reached = 0;
       
   148             ret = s->limit & TIMER_LIMIT_MASK32;
       
   149         }
       
   150         break;
       
   151     case TIMER_COUNTER:
       
   152         // read counter and reached bit (system mode) or read lsbits
       
   153         // of counter (user mode)
       
   154         slavio_timer_get_out(s);
       
   155         if (slavio_timer_is_user(s)) // read user timer LSW
       
   156             ret = s->count & TIMER_MAX_COUNT64;
       
   157         else // read limit
       
   158             ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
       
   159         break;
       
   160     case TIMER_STATUS:
       
   161         // only available in processor counter/timer
       
   162         // read start/stop status
       
   163         ret = s->running;
       
   164         break;
       
   165     case TIMER_MODE:
       
   166         // only available in system counter
       
   167         // read user/system mode
       
   168         ret = s->slave_mode;
       
   169         break;
       
   170     default:
       
   171         DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
       
   172         ret = 0;
       
   173         break;
       
   174     }
       
   175     DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
       
   176 
       
   177     return ret;
       
   178 }
       
   179 
       
   180 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
       
   181                                     uint32_t val)
       
   182 {
       
   183     SLAVIO_TIMERState *s = opaque;
       
   184     uint32_t saddr;
       
   185 
       
   186     DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
       
   187     saddr = addr >> 2;
       
   188     switch (saddr) {
       
   189     case TIMER_LIMIT:
       
   190         if (slavio_timer_is_user(s)) {
       
   191             uint64_t count;
       
   192 
       
   193             // set user counter MSW, reset counter
       
   194             s->limit = TIMER_MAX_COUNT64;
       
   195             s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
       
   196             s->reached = 0;
       
   197             count = ((uint64_t)s->counthigh << 32) | s->count;
       
   198             DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
       
   199                     count);
       
   200             if (s->timer)
       
   201                 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
       
   202         } else {
       
   203             // set limit, reset counter
       
   204             qemu_irq_lower(s->irq);
       
   205             s->limit = val & TIMER_MAX_COUNT32;
       
   206             if (s->timer) {
       
   207                 if (s->limit == 0) /* free-run */
       
   208                     ptimer_set_limit(s->timer,
       
   209                                      LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
       
   210                 else
       
   211                     ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
       
   212             }
       
   213         }
       
   214         break;
       
   215     case TIMER_COUNTER:
       
   216         if (slavio_timer_is_user(s)) {
       
   217             uint64_t count;
       
   218 
       
   219             // set user counter LSW, reset counter
       
   220             s->limit = TIMER_MAX_COUNT64;
       
   221             s->count = val & TIMER_MAX_COUNT64;
       
   222             s->reached = 0;
       
   223             count = ((uint64_t)s->counthigh) << 32 | s->count;
       
   224             DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
       
   225                     count);
       
   226             if (s->timer)
       
   227                 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
       
   228         } else
       
   229             DPRINTF("not user timer\n");
       
   230         break;
       
   231     case TIMER_COUNTER_NORST:
       
   232         // set limit without resetting counter
       
   233         s->limit = val & TIMER_MAX_COUNT32;
       
   234         if (s->timer) {
       
   235             if (s->limit == 0)	/* free-run */
       
   236                 ptimer_set_limit(s->timer,
       
   237                                  LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
       
   238             else
       
   239                 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
       
   240         }
       
   241         break;
       
   242     case TIMER_STATUS:
       
   243         if (slavio_timer_is_user(s)) {
       
   244             // start/stop user counter
       
   245             if ((val & 1) && !s->running) {
       
   246                 DPRINTF("processor %d user timer started\n", s->slave_index);
       
   247                 if (s->timer)
       
   248                     ptimer_run(s->timer, 0);
       
   249                 s->running = 1;
       
   250             } else if (!(val & 1) && s->running) {
       
   251                 DPRINTF("processor %d user timer stopped\n", s->slave_index);
       
   252                 if (s->timer)
       
   253                     ptimer_stop(s->timer);
       
   254                 s->running = 0;
       
   255             }
       
   256         }
       
   257         break;
       
   258     case TIMER_MODE:
       
   259         if (s->master == NULL) {
       
   260             unsigned int i;
       
   261 
       
   262             for (i = 0; i < s->num_slaves; i++) {
       
   263                 unsigned int processor = 1 << i;
       
   264 
       
   265                 // check for a change in timer mode for this processor
       
   266                 if ((val & processor) != (s->slave_mode & processor)) {
       
   267                     if (val & processor) { // counter -> user timer
       
   268                         qemu_irq_lower(s->slave[i]->irq);
       
   269                         // counters are always running
       
   270                         ptimer_stop(s->slave[i]->timer);
       
   271                         s->slave[i]->running = 0;
       
   272                         // user timer limit is always the same
       
   273                         s->slave[i]->limit = TIMER_MAX_COUNT64;
       
   274                         ptimer_set_limit(s->slave[i]->timer,
       
   275                                          LIMIT_TO_PERIODS(s->slave[i]->limit),
       
   276                                          1);
       
   277                         // set this processors user timer bit in config
       
   278                         // register
       
   279                         s->slave_mode |= processor;
       
   280                         DPRINTF("processor %d changed from counter to user "
       
   281                                 "timer\n", s->slave[i]->slave_index);
       
   282                     } else { // user timer -> counter
       
   283                         // stop the user timer if it is running
       
   284                         if (s->slave[i]->running)
       
   285                             ptimer_stop(s->slave[i]->timer);
       
   286                         // start the counter
       
   287                         ptimer_run(s->slave[i]->timer, 0);
       
   288                         s->slave[i]->running = 1;
       
   289                         // clear this processors user timer bit in config
       
   290                         // register
       
   291                         s->slave_mode &= ~processor;
       
   292                         DPRINTF("processor %d changed from user timer to "
       
   293                                 "counter\n", s->slave[i]->slave_index);
       
   294                     }
       
   295                 }
       
   296             }
       
   297         } else
       
   298             DPRINTF("not system timer\n");
       
   299         break;
       
   300     default:
       
   301         DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
       
   302         break;
       
   303     }
       
   304 }
       
   305 
       
   306 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
       
   307     NULL,
       
   308     NULL,
       
   309     slavio_timer_mem_readl,
       
   310 };
       
   311 
       
   312 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
       
   313     NULL,
       
   314     NULL,
       
   315     slavio_timer_mem_writel,
       
   316 };
       
   317 
       
   318 static void slavio_timer_save(QEMUFile *f, void *opaque)
       
   319 {
       
   320     SLAVIO_TIMERState *s = opaque;
       
   321 
       
   322     qemu_put_be64s(f, &s->limit);
       
   323     qemu_put_be32s(f, &s->count);
       
   324     qemu_put_be32s(f, &s->counthigh);
       
   325     qemu_put_be32s(f, &s->reached);
       
   326     qemu_put_be32s(f, &s->running);
       
   327     if (s->timer)
       
   328         qemu_put_ptimer(f, s->timer);
       
   329 }
       
   330 
       
   331 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
       
   332 {
       
   333     SLAVIO_TIMERState *s = opaque;
       
   334 
       
   335     if (version_id != 3)
       
   336         return -EINVAL;
       
   337 
       
   338     qemu_get_be64s(f, &s->limit);
       
   339     qemu_get_be32s(f, &s->count);
       
   340     qemu_get_be32s(f, &s->counthigh);
       
   341     qemu_get_be32s(f, &s->reached);
       
   342     qemu_get_be32s(f, &s->running);
       
   343     if (s->timer)
       
   344         qemu_get_ptimer(f, s->timer);
       
   345 
       
   346     return 0;
       
   347 }
       
   348 
       
   349 static void slavio_timer_reset(void *opaque)
       
   350 {
       
   351     SLAVIO_TIMERState *s = opaque;
       
   352 
       
   353     s->limit = 0;
       
   354     s->count = 0;
       
   355     s->reached = 0;
       
   356     s->slave_mode = 0;
       
   357     if (!s->master || s->slave_index < s->master->num_slaves) {
       
   358         ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
       
   359         ptimer_run(s->timer, 0);
       
   360     }
       
   361     s->running = 1;
       
   362     qemu_irq_lower(s->irq);
       
   363 }
       
   364 
       
   365 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
       
   366                                             qemu_irq irq,
       
   367                                             SLAVIO_TIMERState *master,
       
   368                                             uint32_t slave_index)
       
   369 {
       
   370     int slavio_timer_io_memory;
       
   371     SLAVIO_TIMERState *s;
       
   372     QEMUBH *bh;
       
   373 
       
   374     s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
       
   375     if (!s)
       
   376         return s;
       
   377     s->irq = irq;
       
   378     s->master = master;
       
   379     s->slave_index = slave_index;
       
   380     if (!master || slave_index < master->num_slaves) {
       
   381         bh = qemu_bh_new(slavio_timer_irq, s);
       
   382         s->timer = ptimer_init(bh);
       
   383         ptimer_set_period(s->timer, TIMER_PERIOD);
       
   384     }
       
   385 
       
   386     slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
       
   387                                                     slavio_timer_mem_write, s);
       
   388     if (master)
       
   389         cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
       
   390                                      slavio_timer_io_memory);
       
   391     else
       
   392         cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
       
   393                                      slavio_timer_io_memory);
       
   394     register_savevm("slavio_timer", addr, 3, slavio_timer_save,
       
   395                     slavio_timer_load, s);
       
   396     qemu_register_reset(slavio_timer_reset, s);
       
   397     slavio_timer_reset(s);
       
   398 
       
   399     return s;
       
   400 }
       
   401 
       
   402 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
       
   403                            qemu_irq *cpu_irqs, unsigned int num_cpus)
       
   404 {
       
   405     SLAVIO_TIMERState *master;
       
   406     unsigned int i;
       
   407 
       
   408     master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
       
   409 
       
   410     master->num_slaves = num_cpus;
       
   411 
       
   412     for (i = 0; i < MAX_CPUS; i++) {
       
   413         master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
       
   414                                              CPU_TIMER_OFFSET(i),
       
   415                                              cpu_irqs[i], master, i);
       
   416     }
       
   417 }