|
1 /* |
|
2 * QEMU KVM support |
|
3 * |
|
4 * Copyright IBM, Corp. 2008 |
|
5 * Red Hat, Inc. 2008 |
|
6 * |
|
7 * Authors: |
|
8 * Anthony Liguori <aliguori@us.ibm.com> |
|
9 * Glauber Costa <gcosta@redhat.com> |
|
10 * |
|
11 * This work is licensed under the terms of the GNU GPL, version 2 or later. |
|
12 * See the COPYING file in the top-level directory. |
|
13 * |
|
14 */ |
|
15 |
|
16 #include <sys/types.h> |
|
17 #include <sys/ioctl.h> |
|
18 #include <sys/mman.h> |
|
19 #include <stdarg.h> |
|
20 |
|
21 #include <linux/kvm.h> |
|
22 |
|
23 #include "qemu-common.h" |
|
24 #include "sysemu.h" |
|
25 #include "kvm.h" |
|
26 |
|
27 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ |
|
28 #define PAGE_SIZE TARGET_PAGE_SIZE |
|
29 |
|
30 //#define DEBUG_KVM |
|
31 |
|
32 #ifdef DEBUG_KVM |
|
33 #define dprintf(fmt, ...) \ |
|
34 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
|
35 #else |
|
36 #define dprintf(fmt, ...) \ |
|
37 do { } while (0) |
|
38 #endif |
|
39 |
|
40 typedef struct KVMSlot |
|
41 { |
|
42 target_phys_addr_t start_addr; |
|
43 ram_addr_t memory_size; |
|
44 ram_addr_t phys_offset; |
|
45 int slot; |
|
46 int flags; |
|
47 } KVMSlot; |
|
48 |
|
49 typedef struct kvm_dirty_log KVMDirtyLog; |
|
50 |
|
51 int kvm_allowed = 0; |
|
52 |
|
53 struct KVMState |
|
54 { |
|
55 KVMSlot slots[32]; |
|
56 int fd; |
|
57 int vmfd; |
|
58 int coalesced_mmio; |
|
59 }; |
|
60 |
|
61 static KVMState *kvm_state; |
|
62 |
|
63 static KVMSlot *kvm_alloc_slot(KVMState *s) |
|
64 { |
|
65 int i; |
|
66 |
|
67 for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
|
68 /* KVM private memory slots */ |
|
69 if (i >= 8 && i < 12) |
|
70 continue; |
|
71 if (s->slots[i].memory_size == 0) |
|
72 return &s->slots[i]; |
|
73 } |
|
74 |
|
75 return NULL; |
|
76 } |
|
77 |
|
78 static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr) |
|
79 { |
|
80 int i; |
|
81 |
|
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
|
83 KVMSlot *mem = &s->slots[i]; |
|
84 |
|
85 if (start_addr >= mem->start_addr && |
|
86 start_addr < (mem->start_addr + mem->memory_size)) |
|
87 return mem; |
|
88 } |
|
89 |
|
90 return NULL; |
|
91 } |
|
92 |
|
93 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
|
94 { |
|
95 struct kvm_userspace_memory_region mem; |
|
96 |
|
97 mem.slot = slot->slot; |
|
98 mem.guest_phys_addr = slot->start_addr; |
|
99 mem.memory_size = slot->memory_size; |
|
100 mem.userspace_addr = (unsigned long)phys_ram_base + slot->phys_offset; |
|
101 mem.flags = slot->flags; |
|
102 |
|
103 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
|
104 } |
|
105 |
|
106 |
|
107 int kvm_init_vcpu(CPUState *env) |
|
108 { |
|
109 KVMState *s = kvm_state; |
|
110 long mmap_size; |
|
111 int ret; |
|
112 |
|
113 dprintf("kvm_init_vcpu\n"); |
|
114 |
|
115 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); |
|
116 if (ret < 0) { |
|
117 dprintf("kvm_create_vcpu failed\n"); |
|
118 goto err; |
|
119 } |
|
120 |
|
121 env->kvm_fd = ret; |
|
122 env->kvm_state = s; |
|
123 |
|
124 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); |
|
125 if (mmap_size < 0) { |
|
126 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
|
127 goto err; |
|
128 } |
|
129 |
|
130 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
|
131 env->kvm_fd, 0); |
|
132 if (env->kvm_run == MAP_FAILED) { |
|
133 ret = -errno; |
|
134 dprintf("mmap'ing vcpu state failed\n"); |
|
135 goto err; |
|
136 } |
|
137 |
|
138 ret = kvm_arch_init_vcpu(env); |
|
139 |
|
140 err: |
|
141 return ret; |
|
142 } |
|
143 |
|
144 int kvm_sync_vcpus(void) |
|
145 { |
|
146 CPUState *env; |
|
147 |
|
148 for (env = first_cpu; env != NULL; env = env->next_cpu) { |
|
149 int ret; |
|
150 |
|
151 ret = kvm_arch_put_registers(env); |
|
152 if (ret) |
|
153 return ret; |
|
154 } |
|
155 |
|
156 return 0; |
|
157 } |
|
158 |
|
159 /* |
|
160 * dirty pages logging control |
|
161 */ |
|
162 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, target_phys_addr_t end_addr, |
|
163 unsigned flags, |
|
164 unsigned mask) |
|
165 { |
|
166 KVMState *s = kvm_state; |
|
167 KVMSlot *mem = kvm_lookup_slot(s, phys_addr); |
|
168 if (mem == NULL) { |
|
169 dprintf("invalid parameters %llx-%llx\n", phys_addr, end_addr); |
|
170 return -EINVAL; |
|
171 } |
|
172 |
|
173 flags = (mem->flags & ~mask) | flags; |
|
174 /* Nothing changed, no need to issue ioctl */ |
|
175 if (flags == mem->flags) |
|
176 return 0; |
|
177 |
|
178 mem->flags = flags; |
|
179 |
|
180 return kvm_set_user_memory_region(s, mem); |
|
181 } |
|
182 |
|
183 int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) |
|
184 { |
|
185 return kvm_dirty_pages_log_change(phys_addr, end_addr, |
|
186 KVM_MEM_LOG_DIRTY_PAGES, |
|
187 KVM_MEM_LOG_DIRTY_PAGES); |
|
188 } |
|
189 |
|
190 int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t end_addr) |
|
191 { |
|
192 return kvm_dirty_pages_log_change(phys_addr, end_addr, |
|
193 0, |
|
194 KVM_MEM_LOG_DIRTY_PAGES); |
|
195 } |
|
196 |
|
197 /** |
|
198 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space |
|
199 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). |
|
200 * This means all bits are set to dirty. |
|
201 * |
|
202 * @start_add: start of logged region. This is what we use to search the memslot |
|
203 * @end_addr: end of logged region. |
|
204 */ |
|
205 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) |
|
206 { |
|
207 KVMState *s = kvm_state; |
|
208 KVMDirtyLog d; |
|
209 KVMSlot *mem = kvm_lookup_slot(s, start_addr); |
|
210 unsigned long alloc_size; |
|
211 ram_addr_t addr; |
|
212 target_phys_addr_t phys_addr = start_addr; |
|
213 |
|
214 dprintf("sync addr: %llx into %lx\n", start_addr, mem->phys_offset); |
|
215 if (mem == NULL) { |
|
216 fprintf(stderr, "BUG: %s: invalid parameters\n", __func__); |
|
217 return; |
|
218 } |
|
219 |
|
220 alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap); |
|
221 d.dirty_bitmap = qemu_mallocz(alloc_size); |
|
222 |
|
223 if (d.dirty_bitmap == NULL) { |
|
224 dprintf("Could not allocate dirty bitmap\n"); |
|
225 return; |
|
226 } |
|
227 |
|
228 d.slot = mem->slot; |
|
229 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n", |
|
230 d.slot, mem->start_addr, mem->phys_offset); |
|
231 |
|
232 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
|
233 dprintf("ioctl failed %d\n", errno); |
|
234 goto out; |
|
235 } |
|
236 |
|
237 phys_addr = start_addr; |
|
238 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { |
|
239 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap; |
|
240 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS; |
|
241 unsigned word = nr / (sizeof(*bitmap) * 8); |
|
242 unsigned bit = nr % (sizeof(*bitmap) * 8); |
|
243 if ((bitmap[word] >> bit) & 1) |
|
244 cpu_physical_memory_set_dirty(addr); |
|
245 } |
|
246 out: |
|
247 qemu_free(d.dirty_bitmap); |
|
248 } |
|
249 |
|
250 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
|
251 { |
|
252 int ret = -ENOSYS; |
|
253 #ifdef KVM_CAP_COALESCED_MMIO |
|
254 KVMState *s = kvm_state; |
|
255 |
|
256 if (s->coalesced_mmio) { |
|
257 struct kvm_coalesced_mmio_zone zone; |
|
258 |
|
259 zone.addr = start; |
|
260 zone.size = size; |
|
261 |
|
262 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
|
263 } |
|
264 #endif |
|
265 |
|
266 return ret; |
|
267 } |
|
268 |
|
269 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) |
|
270 { |
|
271 int ret = -ENOSYS; |
|
272 #ifdef KVM_CAP_COALESCED_MMIO |
|
273 KVMState *s = kvm_state; |
|
274 |
|
275 if (s->coalesced_mmio) { |
|
276 struct kvm_coalesced_mmio_zone zone; |
|
277 |
|
278 zone.addr = start; |
|
279 zone.size = size; |
|
280 |
|
281 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
|
282 } |
|
283 #endif |
|
284 |
|
285 return ret; |
|
286 } |
|
287 |
|
288 int kvm_init(int smp_cpus) |
|
289 { |
|
290 KVMState *s; |
|
291 int ret; |
|
292 int i; |
|
293 |
|
294 if (smp_cpus > 1) |
|
295 return -EINVAL; |
|
296 |
|
297 s = qemu_mallocz(sizeof(KVMState)); |
|
298 if (s == NULL) |
|
299 return -ENOMEM; |
|
300 |
|
301 for (i = 0; i < ARRAY_SIZE(s->slots); i++) |
|
302 s->slots[i].slot = i; |
|
303 |
|
304 s->vmfd = -1; |
|
305 s->fd = open("/dev/kvm", O_RDWR); |
|
306 if (s->fd == -1) { |
|
307 fprintf(stderr, "Could not access KVM kernel module: %m\n"); |
|
308 ret = -errno; |
|
309 goto err; |
|
310 } |
|
311 |
|
312 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); |
|
313 if (ret < KVM_API_VERSION) { |
|
314 if (ret > 0) |
|
315 ret = -EINVAL; |
|
316 fprintf(stderr, "kvm version too old\n"); |
|
317 goto err; |
|
318 } |
|
319 |
|
320 if (ret > KVM_API_VERSION) { |
|
321 ret = -EINVAL; |
|
322 fprintf(stderr, "kvm version not supported\n"); |
|
323 goto err; |
|
324 } |
|
325 |
|
326 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
|
327 if (s->vmfd < 0) |
|
328 goto err; |
|
329 |
|
330 /* initially, KVM allocated its own memory and we had to jump through |
|
331 * hooks to make phys_ram_base point to this. Modern versions of KVM |
|
332 * just use a user allocated buffer so we can use phys_ram_base |
|
333 * unmodified. Make sure we have a sufficiently modern version of KVM. |
|
334 */ |
|
335 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY); |
|
336 if (ret <= 0) { |
|
337 if (ret == 0) |
|
338 ret = -EINVAL; |
|
339 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n"); |
|
340 goto err; |
|
341 } |
|
342 |
|
343 /* There was a nasty bug in < kvm-80 that prevents memory slots from being |
|
344 * destroyed properly. Since we rely on this capability, refuse to work |
|
345 * with any kernel without this capability. */ |
|
346 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, |
|
347 KVM_CAP_DESTROY_MEMORY_REGION_WORKS); |
|
348 if (ret <= 0) { |
|
349 if (ret == 0) |
|
350 ret = -EINVAL; |
|
351 |
|
352 fprintf(stderr, |
|
353 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n" |
|
354 "Please upgrade to at least kvm-81.\n"); |
|
355 goto err; |
|
356 } |
|
357 |
|
358 s->coalesced_mmio = 0; |
|
359 #ifdef KVM_CAP_COALESCED_MMIO |
|
360 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO); |
|
361 if (ret > 0) |
|
362 s->coalesced_mmio = ret; |
|
363 #endif |
|
364 |
|
365 ret = kvm_arch_init(s, smp_cpus); |
|
366 if (ret < 0) |
|
367 goto err; |
|
368 |
|
369 kvm_state = s; |
|
370 |
|
371 return 0; |
|
372 |
|
373 err: |
|
374 if (s) { |
|
375 if (s->vmfd != -1) |
|
376 close(s->vmfd); |
|
377 if (s->fd != -1) |
|
378 close(s->fd); |
|
379 } |
|
380 qemu_free(s); |
|
381 |
|
382 return ret; |
|
383 } |
|
384 |
|
385 static int kvm_handle_io(CPUState *env, uint16_t port, void *data, |
|
386 int direction, int size, uint32_t count) |
|
387 { |
|
388 int i; |
|
389 uint8_t *ptr = data; |
|
390 |
|
391 for (i = 0; i < count; i++) { |
|
392 if (direction == KVM_EXIT_IO_IN) { |
|
393 switch (size) { |
|
394 case 1: |
|
395 stb_p(ptr, cpu_inb(env, port)); |
|
396 break; |
|
397 case 2: |
|
398 stw_p(ptr, cpu_inw(env, port)); |
|
399 break; |
|
400 case 4: |
|
401 stl_p(ptr, cpu_inl(env, port)); |
|
402 break; |
|
403 } |
|
404 } else { |
|
405 switch (size) { |
|
406 case 1: |
|
407 cpu_outb(env, port, ldub_p(ptr)); |
|
408 break; |
|
409 case 2: |
|
410 cpu_outw(env, port, lduw_p(ptr)); |
|
411 break; |
|
412 case 4: |
|
413 cpu_outl(env, port, ldl_p(ptr)); |
|
414 break; |
|
415 } |
|
416 } |
|
417 |
|
418 ptr += size; |
|
419 } |
|
420 |
|
421 return 1; |
|
422 } |
|
423 |
|
424 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) |
|
425 { |
|
426 #ifdef KVM_CAP_COALESCED_MMIO |
|
427 KVMState *s = kvm_state; |
|
428 if (s->coalesced_mmio) { |
|
429 struct kvm_coalesced_mmio_ring *ring; |
|
430 |
|
431 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); |
|
432 while (ring->first != ring->last) { |
|
433 struct kvm_coalesced_mmio *ent; |
|
434 |
|
435 ent = &ring->coalesced_mmio[ring->first]; |
|
436 |
|
437 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); |
|
438 /* FIXME smp_wmb() */ |
|
439 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
|
440 } |
|
441 } |
|
442 #endif |
|
443 } |
|
444 |
|
445 int kvm_cpu_exec(CPUState *env) |
|
446 { |
|
447 struct kvm_run *run = env->kvm_run; |
|
448 int ret; |
|
449 |
|
450 dprintf("kvm_cpu_exec()\n"); |
|
451 |
|
452 do { |
|
453 kvm_arch_pre_run(env, run); |
|
454 |
|
455 if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
|
456 dprintf("interrupt exit requested\n"); |
|
457 ret = 0; |
|
458 break; |
|
459 } |
|
460 |
|
461 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); |
|
462 kvm_arch_post_run(env, run); |
|
463 |
|
464 if (ret == -EINTR || ret == -EAGAIN) { |
|
465 dprintf("io window exit\n"); |
|
466 ret = 0; |
|
467 break; |
|
468 } |
|
469 |
|
470 if (ret < 0) { |
|
471 dprintf("kvm run failed %s\n", strerror(-ret)); |
|
472 abort(); |
|
473 } |
|
474 |
|
475 kvm_run_coalesced_mmio(env, run); |
|
476 |
|
477 ret = 0; /* exit loop */ |
|
478 switch (run->exit_reason) { |
|
479 case KVM_EXIT_IO: |
|
480 dprintf("handle_io\n"); |
|
481 ret = kvm_handle_io(env, run->io.port, |
|
482 (uint8_t *)run + run->io.data_offset, |
|
483 run->io.direction, |
|
484 run->io.size, |
|
485 run->io.count); |
|
486 break; |
|
487 case KVM_EXIT_MMIO: |
|
488 dprintf("handle_mmio\n"); |
|
489 cpu_physical_memory_rw(run->mmio.phys_addr, |
|
490 run->mmio.data, |
|
491 run->mmio.len, |
|
492 run->mmio.is_write); |
|
493 ret = 1; |
|
494 break; |
|
495 case KVM_EXIT_IRQ_WINDOW_OPEN: |
|
496 dprintf("irq_window_open\n"); |
|
497 break; |
|
498 case KVM_EXIT_SHUTDOWN: |
|
499 dprintf("shutdown\n"); |
|
500 qemu_system_reset_request(); |
|
501 ret = 1; |
|
502 break; |
|
503 case KVM_EXIT_UNKNOWN: |
|
504 dprintf("kvm_exit_unknown\n"); |
|
505 break; |
|
506 case KVM_EXIT_FAIL_ENTRY: |
|
507 dprintf("kvm_exit_fail_entry\n"); |
|
508 break; |
|
509 case KVM_EXIT_EXCEPTION: |
|
510 dprintf("kvm_exit_exception\n"); |
|
511 break; |
|
512 case KVM_EXIT_DEBUG: |
|
513 dprintf("kvm_exit_debug\n"); |
|
514 break; |
|
515 default: |
|
516 dprintf("kvm_arch_handle_exit\n"); |
|
517 ret = kvm_arch_handle_exit(env, run); |
|
518 break; |
|
519 } |
|
520 } while (ret > 0); |
|
521 |
|
522 if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
|
523 env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
|
524 env->exception_index = EXCP_INTERRUPT; |
|
525 } |
|
526 |
|
527 return ret; |
|
528 } |
|
529 |
|
530 void kvm_set_phys_mem(target_phys_addr_t start_addr, |
|
531 ram_addr_t size, |
|
532 ram_addr_t phys_offset) |
|
533 { |
|
534 KVMState *s = kvm_state; |
|
535 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; |
|
536 KVMSlot *mem; |
|
537 |
|
538 /* KVM does not support read-only slots */ |
|
539 phys_offset &= ~IO_MEM_ROM; |
|
540 |
|
541 mem = kvm_lookup_slot(s, start_addr); |
|
542 if (mem) { |
|
543 if ((flags == IO_MEM_UNASSIGNED) || (flags >= TLB_MMIO)) { |
|
544 mem->memory_size = 0; |
|
545 mem->start_addr = start_addr; |
|
546 mem->phys_offset = 0; |
|
547 mem->flags = 0; |
|
548 |
|
549 kvm_set_user_memory_region(s, mem); |
|
550 } else if (start_addr >= mem->start_addr && |
|
551 (start_addr + size) <= (mem->start_addr + |
|
552 mem->memory_size)) { |
|
553 KVMSlot slot; |
|
554 target_phys_addr_t mem_start; |
|
555 ram_addr_t mem_size, mem_offset; |
|
556 |
|
557 /* Not splitting */ |
|
558 if ((phys_offset - (start_addr - mem->start_addr)) == |
|
559 mem->phys_offset) |
|
560 return; |
|
561 |
|
562 /* unregister whole slot */ |
|
563 memcpy(&slot, mem, sizeof(slot)); |
|
564 mem->memory_size = 0; |
|
565 kvm_set_user_memory_region(s, mem); |
|
566 |
|
567 /* register prefix slot */ |
|
568 mem_start = slot.start_addr; |
|
569 mem_size = start_addr - slot.start_addr; |
|
570 mem_offset = slot.phys_offset; |
|
571 if (mem_size) |
|
572 kvm_set_phys_mem(mem_start, mem_size, mem_offset); |
|
573 |
|
574 /* register new slot */ |
|
575 kvm_set_phys_mem(start_addr, size, phys_offset); |
|
576 |
|
577 /* register suffix slot */ |
|
578 mem_start = start_addr + size; |
|
579 mem_offset += mem_size + size; |
|
580 mem_size = slot.memory_size - mem_size - size; |
|
581 if (mem_size) |
|
582 kvm_set_phys_mem(mem_start, mem_size, mem_offset); |
|
583 |
|
584 return; |
|
585 } else { |
|
586 printf("Registering overlapping slot\n"); |
|
587 abort(); |
|
588 } |
|
589 } |
|
590 /* KVM does not need to know about this memory */ |
|
591 if (flags >= IO_MEM_UNASSIGNED) |
|
592 return; |
|
593 |
|
594 mem = kvm_alloc_slot(s); |
|
595 mem->memory_size = size; |
|
596 mem->start_addr = start_addr; |
|
597 mem->phys_offset = phys_offset; |
|
598 mem->flags = 0; |
|
599 |
|
600 kvm_set_user_memory_region(s, mem); |
|
601 /* FIXME deal with errors */ |
|
602 } |
|
603 |
|
604 int kvm_ioctl(KVMState *s, int type, ...) |
|
605 { |
|
606 int ret; |
|
607 void *arg; |
|
608 va_list ap; |
|
609 |
|
610 va_start(ap, type); |
|
611 arg = va_arg(ap, void *); |
|
612 va_end(ap); |
|
613 |
|
614 ret = ioctl(s->fd, type, arg); |
|
615 if (ret == -1) |
|
616 ret = -errno; |
|
617 |
|
618 return ret; |
|
619 } |
|
620 |
|
621 int kvm_vm_ioctl(KVMState *s, int type, ...) |
|
622 { |
|
623 int ret; |
|
624 void *arg; |
|
625 va_list ap; |
|
626 |
|
627 va_start(ap, type); |
|
628 arg = va_arg(ap, void *); |
|
629 va_end(ap); |
|
630 |
|
631 ret = ioctl(s->vmfd, type, arg); |
|
632 if (ret == -1) |
|
633 ret = -errno; |
|
634 |
|
635 return ret; |
|
636 } |
|
637 |
|
638 int kvm_vcpu_ioctl(CPUState *env, int type, ...) |
|
639 { |
|
640 int ret; |
|
641 void *arg; |
|
642 va_list ap; |
|
643 |
|
644 va_start(ap, type); |
|
645 arg = va_arg(ap, void *); |
|
646 va_end(ap); |
|
647 |
|
648 ret = ioctl(env->kvm_fd, type, arg); |
|
649 if (ret == -1) |
|
650 ret = -errno; |
|
651 |
|
652 return ret; |
|
653 } |
|
654 |
|
655 int kvm_has_sync_mmu(void) |
|
656 { |
|
657 #ifdef KVM_CAP_SYNC_MMU |
|
658 KVMState *s = kvm_state; |
|
659 |
|
660 if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0) |
|
661 return 1; |
|
662 #endif |
|
663 |
|
664 return 0; |
|
665 } |