symbian-qemu-0.9.1-12/qemu-symbian-svp/qemu-doc.texi
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 \input texinfo @c -*- texinfo -*-
       
     2 @c %**start of header
       
     3 @setfilename qemu-doc.info
       
     4 @settitle QEMU Emulator User Documentation
       
     5 @exampleindent 0
       
     6 @paragraphindent 0
       
     7 @c %**end of header
       
     8 
       
     9 @iftex
       
    10 @titlepage
       
    11 @sp 7
       
    12 @center @titlefont{QEMU Emulator}
       
    13 @sp 1
       
    14 @center @titlefont{User Documentation}
       
    15 @sp 3
       
    16 @end titlepage
       
    17 @end iftex
       
    18 
       
    19 @ifnottex
       
    20 @node Top
       
    21 @top
       
    22 
       
    23 @menu
       
    24 * Introduction::
       
    25 * Installation::
       
    26 * QEMU PC System emulator::
       
    27 * QEMU System emulator for non PC targets::
       
    28 * QEMU User space emulator::
       
    29 * compilation:: Compilation from the sources
       
    30 * Index::
       
    31 @end menu
       
    32 @end ifnottex
       
    33 
       
    34 @contents
       
    35 
       
    36 @node Introduction
       
    37 @chapter Introduction
       
    38 
       
    39 @menu
       
    40 * intro_features:: Features
       
    41 @end menu
       
    42 
       
    43 @node intro_features
       
    44 @section Features
       
    45 
       
    46 QEMU is a FAST! processor emulator using dynamic translation to
       
    47 achieve good emulation speed.
       
    48 
       
    49 QEMU has two operating modes:
       
    50 
       
    51 @itemize @minus
       
    52 
       
    53 @item
       
    54 Full system emulation. In this mode, QEMU emulates a full system (for
       
    55 example a PC), including one or several processors and various
       
    56 peripherals. It can be used to launch different Operating Systems
       
    57 without rebooting the PC or to debug system code.
       
    58 
       
    59 @item
       
    60 User mode emulation. In this mode, QEMU can launch
       
    61 processes compiled for one CPU on another CPU. It can be used to
       
    62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
       
    63 to ease cross-compilation and cross-debugging.
       
    64 
       
    65 @end itemize
       
    66 
       
    67 QEMU can run without an host kernel driver and yet gives acceptable
       
    68 performance.
       
    69 
       
    70 For system emulation, the following hardware targets are supported:
       
    71 @itemize
       
    72 @item PC (x86 or x86_64 processor)
       
    73 @item ISA PC (old style PC without PCI bus)
       
    74 @item PREP (PowerPC processor)
       
    75 @item G3 BW PowerMac (PowerPC processor)
       
    76 @item Mac99 PowerMac (PowerPC processor, in progress)
       
    77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
       
    78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
       
    79 @item Malta board (32-bit and 64-bit MIPS processors)
       
    80 @item MIPS Magnum (64-bit MIPS processor)
       
    81 @item ARM Integrator/CP (ARM)
       
    82 @item ARM Versatile baseboard (ARM)
       
    83 @item ARM RealView Emulation baseboard (ARM)
       
    84 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
       
    85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
       
    86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
       
    87 @item Freescale MCF5208EVB (ColdFire V2).
       
    88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
       
    89 @item Palm Tungsten|E PDA (OMAP310 processor)
       
    90 @item N800 and N810 tablets (OMAP2420 processor)
       
    91 @item MusicPal (MV88W8618 ARM processor)
       
    92 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
       
    93 @item Siemens SX1 smartphone (OMAP310 processor)
       
    94 @end itemize
       
    95 
       
    96 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
       
    97 
       
    98 @node Installation
       
    99 @chapter Installation
       
   100 
       
   101 If you want to compile QEMU yourself, see @ref{compilation}.
       
   102 
       
   103 @menu
       
   104 * install_linux::   Linux
       
   105 * install_windows:: Windows
       
   106 * install_mac::     Macintosh
       
   107 @end menu
       
   108 
       
   109 @node install_linux
       
   110 @section Linux
       
   111 
       
   112 If a precompiled package is available for your distribution - you just
       
   113 have to install it. Otherwise, see @ref{compilation}.
       
   114 
       
   115 @node install_windows
       
   116 @section Windows
       
   117 
       
   118 Download the experimental binary installer at
       
   119 @url{http://www.free.oszoo.org/@/download.html}.
       
   120 
       
   121 @node install_mac
       
   122 @section Mac OS X
       
   123 
       
   124 Download the experimental binary installer at
       
   125 @url{http://www.free.oszoo.org/@/download.html}.
       
   126 
       
   127 @node QEMU PC System emulator
       
   128 @chapter QEMU PC System emulator
       
   129 
       
   130 @menu
       
   131 * pcsys_introduction:: Introduction
       
   132 * pcsys_quickstart::   Quick Start
       
   133 * sec_invocation::     Invocation
       
   134 * pcsys_keys::         Keys
       
   135 * pcsys_monitor::      QEMU Monitor
       
   136 * disk_images::        Disk Images
       
   137 * pcsys_network::      Network emulation
       
   138 * direct_linux_boot::  Direct Linux Boot
       
   139 * pcsys_usb::          USB emulation
       
   140 * vnc_security::       VNC security
       
   141 * gdb_usage::          GDB usage
       
   142 * pcsys_os_specific::  Target OS specific information
       
   143 @end menu
       
   144 
       
   145 @node pcsys_introduction
       
   146 @section Introduction
       
   147 
       
   148 @c man begin DESCRIPTION
       
   149 
       
   150 The QEMU PC System emulator simulates the
       
   151 following peripherals:
       
   152 
       
   153 @itemize @minus
       
   154 @item
       
   155 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
       
   156 @item
       
   157 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
       
   158 extensions (hardware level, including all non standard modes).
       
   159 @item
       
   160 PS/2 mouse and keyboard
       
   161 @item
       
   162 2 PCI IDE interfaces with hard disk and CD-ROM support
       
   163 @item
       
   164 Floppy disk
       
   165 @item
       
   166 PCI/ISA PCI network adapters
       
   167 @item
       
   168 Serial ports
       
   169 @item
       
   170 Creative SoundBlaster 16 sound card
       
   171 @item
       
   172 ENSONIQ AudioPCI ES1370 sound card
       
   173 @item
       
   174 Intel 82801AA AC97 Audio compatible sound card
       
   175 @item
       
   176 Adlib(OPL2) - Yamaha YM3812 compatible chip
       
   177 @item
       
   178 Gravis Ultrasound GF1 sound card
       
   179 @item
       
   180 CS4231A compatible sound card
       
   181 @item
       
   182 PCI UHCI USB controller and a virtual USB hub.
       
   183 @end itemize
       
   184 
       
   185 SMP is supported with up to 255 CPUs.
       
   186 
       
   187 Note that adlib, ac97, gus and cs4231a are only available when QEMU
       
   188 was configured with --audio-card-list option containing the name(s) of
       
   189 required card(s).
       
   190 
       
   191 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
       
   192 VGA BIOS.
       
   193 
       
   194 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
       
   195 
       
   196 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
       
   197 by Tibor "TS" Schütz.
       
   198 
       
   199 CS4231A is the chip used in Windows Sound System and GUSMAX products
       
   200 
       
   201 @c man end
       
   202 
       
   203 @node pcsys_quickstart
       
   204 @section Quick Start
       
   205 
       
   206 Download and uncompress the linux image (@file{linux.img}) and type:
       
   207 
       
   208 @example
       
   209 qemu linux.img
       
   210 @end example
       
   211 
       
   212 Linux should boot and give you a prompt.
       
   213 
       
   214 @node sec_invocation
       
   215 @section Invocation
       
   216 
       
   217 @example
       
   218 @c man begin SYNOPSIS
       
   219 usage: qemu [options] [@var{disk_image}]
       
   220 @c man end
       
   221 @end example
       
   222 
       
   223 @c man begin OPTIONS
       
   224 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
       
   225 
       
   226 General options:
       
   227 @table @option
       
   228 @item -M @var{machine}
       
   229 Select the emulated @var{machine} (@code{-M ?} for list)
       
   230 
       
   231 @item -fda @var{file}
       
   232 @item -fdb @var{file}
       
   233 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
       
   234 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
       
   235 
       
   236 @item -hda @var{file}
       
   237 @item -hdb @var{file}
       
   238 @item -hdc @var{file}
       
   239 @item -hdd @var{file}
       
   240 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
       
   241 
       
   242 @item -cdrom @var{file}
       
   243 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
       
   244 @option{-cdrom} at the same time). You can use the host CD-ROM by
       
   245 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
       
   246 
       
   247 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
       
   248 
       
   249 Define a new drive. Valid options are:
       
   250 
       
   251 @table @code
       
   252 @item file=@var{file}
       
   253 This option defines which disk image (@pxref{disk_images}) to use with
       
   254 this drive. If the filename contains comma, you must double it
       
   255 (for instance, "file=my,,file" to use file "my,file").
       
   256 @item if=@var{interface}
       
   257 This option defines on which type on interface the drive is connected.
       
   258 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
       
   259 @item bus=@var{bus},unit=@var{unit}
       
   260 These options define where is connected the drive by defining the bus number and
       
   261 the unit id.
       
   262 @item index=@var{index}
       
   263 This option defines where is connected the drive by using an index in the list
       
   264 of available connectors of a given interface type.
       
   265 @item media=@var{media}
       
   266 This option defines the type of the media: disk or cdrom.
       
   267 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
       
   268 These options have the same definition as they have in @option{-hdachs}.
       
   269 @item snapshot=@var{snapshot}
       
   270 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
       
   271 @item cache=@var{cache}
       
   272 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
       
   273 @item format=@var{format}
       
   274 Specify which disk @var{format} will be used rather than detecting
       
   275 the format.  Can be used to specifiy format=raw to avoid interpreting
       
   276 an untrusted format header.
       
   277 @end table
       
   278 
       
   279 By default, writethrough caching is used for all block device.  This means that
       
   280 the host page cache will be used to read and write data but write notification
       
   281 will be sent to the guest only when the data has been reported as written by
       
   282 the storage subsystem.
       
   283 
       
   284 Writeback caching will report data writes as completed as soon as the data is
       
   285 present in the host page cache.  This is safe as long as you trust your host.
       
   286 If your host crashes or loses power, then the guest may experience data
       
   287 corruption.  When using the @option{-snapshot} option, writeback caching is
       
   288 used by default.
       
   289 
       
   290 The host page can be avoided entirely with @option{cache=none}.  This will
       
   291 attempt to do disk IO directly to the guests memory.  QEMU may still perform
       
   292 an internal copy of the data.
       
   293 
       
   294 Some block drivers perform badly with @option{cache=writethrough}, most notably,
       
   295 qcow2.  If performance is more important than correctness,
       
   296 @option{cache=writeback} should be used with qcow2.  By default, if no explicit
       
   297 caching is specified for a qcow2 disk image, @option{cache=writeback} will be
       
   298 used.  For all other disk types, @option{cache=writethrough} is the default.
       
   299 
       
   300 Instead of @option{-cdrom} you can use:
       
   301 @example
       
   302 qemu -drive file=file,index=2,media=cdrom
       
   303 @end example
       
   304 
       
   305 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
       
   306 use:
       
   307 @example
       
   308 qemu -drive file=file,index=0,media=disk
       
   309 qemu -drive file=file,index=1,media=disk
       
   310 qemu -drive file=file,index=2,media=disk
       
   311 qemu -drive file=file,index=3,media=disk
       
   312 @end example
       
   313 
       
   314 You can connect a CDROM to the slave of ide0:
       
   315 @example
       
   316 qemu -drive file=file,if=ide,index=1,media=cdrom
       
   317 @end example
       
   318 
       
   319 If you don't specify the "file=" argument, you define an empty drive:
       
   320 @example
       
   321 qemu -drive if=ide,index=1,media=cdrom
       
   322 @end example
       
   323 
       
   324 You can connect a SCSI disk with unit ID 6 on the bus #0:
       
   325 @example
       
   326 qemu -drive file=file,if=scsi,bus=0,unit=6
       
   327 @end example
       
   328 
       
   329 Instead of @option{-fda}, @option{-fdb}, you can use:
       
   330 @example
       
   331 qemu -drive file=file,index=0,if=floppy
       
   332 qemu -drive file=file,index=1,if=floppy
       
   333 @end example
       
   334 
       
   335 By default, @var{interface} is "ide" and @var{index} is automatically
       
   336 incremented:
       
   337 @example
       
   338 qemu -drive file=a -drive file=b"
       
   339 @end example
       
   340 is interpreted like:
       
   341 @example
       
   342 qemu -hda a -hdb b
       
   343 @end example
       
   344 
       
   345 @item -boot [a|c|d|n]
       
   346 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
       
   347 is the default.
       
   348 
       
   349 @item -snapshot
       
   350 Write to temporary files instead of disk image files. In this case,
       
   351 the raw disk image you use is not written back. You can however force
       
   352 the write back by pressing @key{C-a s} (@pxref{disk_images}).
       
   353 
       
   354 @item -no-fd-bootchk
       
   355 Disable boot signature checking for floppy disks in Bochs BIOS. It may
       
   356 be needed to boot from old floppy disks.
       
   357 
       
   358 @item -m @var{megs}
       
   359 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
       
   360 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
       
   361 gigabytes respectively.
       
   362 
       
   363 @item -cpu @var{model}
       
   364 Select CPU model (-cpu ? for list and additional feature selection)
       
   365 
       
   366 @item -smp @var{n}
       
   367 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
       
   368 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
       
   369 to 4.
       
   370 
       
   371 @item -audio-help
       
   372 
       
   373 Will show the audio subsystem help: list of drivers, tunable
       
   374 parameters.
       
   375 
       
   376 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
       
   377 
       
   378 Enable audio and selected sound hardware. Use ? to print all
       
   379 available sound hardware.
       
   380 
       
   381 @example
       
   382 qemu -soundhw sb16,adlib disk.img
       
   383 qemu -soundhw es1370 disk.img
       
   384 qemu -soundhw ac97 disk.img
       
   385 qemu -soundhw all disk.img
       
   386 qemu -soundhw ?
       
   387 @end example
       
   388 
       
   389 Note that Linux's i810_audio OSS kernel (for AC97) module might
       
   390 require manually specifying clocking.
       
   391 
       
   392 @example
       
   393 modprobe i810_audio clocking=48000
       
   394 @end example
       
   395 
       
   396 @item -localtime
       
   397 Set the real time clock to local time (the default is to UTC
       
   398 time). This option is needed to have correct date in MS-DOS or
       
   399 Windows.
       
   400 
       
   401 @item -startdate @var{date}
       
   402 Set the initial date of the real time clock. Valid formats for
       
   403 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
       
   404 @code{2006-06-17}. The default value is @code{now}.
       
   405 
       
   406 @item -pidfile @var{file}
       
   407 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
       
   408 from a script.
       
   409 
       
   410 @item -daemonize
       
   411 Daemonize the QEMU process after initialization.  QEMU will not detach from
       
   412 standard IO until it is ready to receive connections on any of its devices.
       
   413 This option is a useful way for external programs to launch QEMU without having
       
   414 to cope with initialization race conditions.
       
   415 
       
   416 @item -win2k-hack
       
   417 Use it when installing Windows 2000 to avoid a disk full bug. After
       
   418 Windows 2000 is installed, you no longer need this option (this option
       
   419 slows down the IDE transfers).
       
   420 
       
   421 @item -option-rom @var{file}
       
   422 Load the contents of @var{file} as an option ROM.
       
   423 This option is useful to load things like EtherBoot.
       
   424 
       
   425 @item -name @var{name}
       
   426 Sets the @var{name} of the guest.
       
   427 This name will be displayed in the SDL window caption.
       
   428 The @var{name} will also be used for the VNC server.
       
   429 
       
   430 @end table
       
   431 
       
   432 Display options:
       
   433 @table @option
       
   434 
       
   435 @item -nographic
       
   436 
       
   437 Normally, QEMU uses SDL to display the VGA output. With this option,
       
   438 you can totally disable graphical output so that QEMU is a simple
       
   439 command line application. The emulated serial port is redirected on
       
   440 the console. Therefore, you can still use QEMU to debug a Linux kernel
       
   441 with a serial console.
       
   442 
       
   443 @item -curses
       
   444 
       
   445 Normally, QEMU uses SDL to display the VGA output.  With this option,
       
   446 QEMU can display the VGA output when in text mode using a 
       
   447 curses/ncurses interface.  Nothing is displayed in graphical mode.
       
   448 
       
   449 @item -no-frame
       
   450 
       
   451 Do not use decorations for SDL windows and start them using the whole
       
   452 available screen space. This makes the using QEMU in a dedicated desktop
       
   453 workspace more convenient.
       
   454 
       
   455 @item -no-quit
       
   456 
       
   457 Disable SDL window close capability.
       
   458 
       
   459 @item -full-screen
       
   460 Start in full screen.
       
   461 
       
   462 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
       
   463 
       
   464 Normally, QEMU uses SDL to display the VGA output.  With this option,
       
   465 you can have QEMU listen on VNC display @var{display} and redirect the VGA
       
   466 display over the VNC session.  It is very useful to enable the usb
       
   467 tablet device when using this option (option @option{-usbdevice
       
   468 tablet}). When using the VNC display, you must use the @option{-k}
       
   469 parameter to set the keyboard layout if you are not using en-us. Valid
       
   470 syntax for the @var{display} is
       
   471 
       
   472 @table @code
       
   473 
       
   474 @item @var{host}:@var{d}
       
   475 
       
   476 TCP connections will only be allowed from @var{host} on display @var{d}.
       
   477 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
       
   478 be omitted in which case the server will accept connections from any host.
       
   479 
       
   480 @item @code{unix}:@var{path}
       
   481 
       
   482 Connections will be allowed over UNIX domain sockets where @var{path} is the
       
   483 location of a unix socket to listen for connections on.
       
   484 
       
   485 @item none
       
   486 
       
   487 VNC is initialized but not started. The monitor @code{change} command
       
   488 can be used to later start the VNC server.
       
   489 
       
   490 @end table
       
   491 
       
   492 Following the @var{display} value there may be one or more @var{option} flags
       
   493 separated by commas. Valid options are
       
   494 
       
   495 @table @code
       
   496 
       
   497 @item reverse
       
   498 
       
   499 Connect to a listening VNC client via a ``reverse'' connection. The
       
   500 client is specified by the @var{display}. For reverse network
       
   501 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
       
   502 is a TCP port number, not a display number.
       
   503 
       
   504 @item password
       
   505 
       
   506 Require that password based authentication is used for client connections.
       
   507 The password must be set separately using the @code{change} command in the
       
   508 @ref{pcsys_monitor}
       
   509 
       
   510 @item tls
       
   511 
       
   512 Require that client use TLS when communicating with the VNC server. This
       
   513 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
       
   514 attack. It is recommended that this option be combined with either the
       
   515 @var{x509} or @var{x509verify} options.
       
   516 
       
   517 @item x509=@var{/path/to/certificate/dir}
       
   518 
       
   519 Valid if @option{tls} is specified. Require that x509 credentials are used
       
   520 for negotiating the TLS session. The server will send its x509 certificate
       
   521 to the client. It is recommended that a password be set on the VNC server
       
   522 to provide authentication of the client when this is used. The path following
       
   523 this option specifies where the x509 certificates are to be loaded from.
       
   524 See the @ref{vnc_security} section for details on generating certificates.
       
   525 
       
   526 @item x509verify=@var{/path/to/certificate/dir}
       
   527 
       
   528 Valid if @option{tls} is specified. Require that x509 credentials are used
       
   529 for negotiating the TLS session. The server will send its x509 certificate
       
   530 to the client, and request that the client send its own x509 certificate.
       
   531 The server will validate the client's certificate against the CA certificate,
       
   532 and reject clients when validation fails. If the certificate authority is
       
   533 trusted, this is a sufficient authentication mechanism. You may still wish
       
   534 to set a password on the VNC server as a second authentication layer. The
       
   535 path following this option specifies where the x509 certificates are to
       
   536 be loaded from. See the @ref{vnc_security} section for details on generating
       
   537 certificates.
       
   538 
       
   539 @end table
       
   540 
       
   541 @item -k @var{language}
       
   542 
       
   543 Use keyboard layout @var{language} (for example @code{fr} for
       
   544 French). This option is only needed where it is not easy to get raw PC
       
   545 keycodes (e.g. on Macs, with some X11 servers or with a VNC
       
   546 display). You don't normally need to use it on PC/Linux or PC/Windows
       
   547 hosts.
       
   548 
       
   549 The available layouts are:
       
   550 @example
       
   551 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
       
   552 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
       
   553 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
       
   554 @end example
       
   555 
       
   556 The default is @code{en-us}.
       
   557 
       
   558 @end table
       
   559 
       
   560 USB options:
       
   561 @table @option
       
   562 
       
   563 @item -usb
       
   564 Enable the USB driver (will be the default soon)
       
   565 
       
   566 @item -usbdevice @var{devname}
       
   567 Add the USB device @var{devname}. @xref{usb_devices}.
       
   568 
       
   569 @table @code
       
   570 
       
   571 @item mouse
       
   572 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
       
   573 
       
   574 @item tablet
       
   575 Pointer device that uses absolute coordinates (like a touchscreen). This
       
   576 means qemu is able to report the mouse position without having to grab the
       
   577 mouse. Also overrides the PS/2 mouse emulation when activated.
       
   578 
       
   579 @item disk:[format=@var{format}]:file
       
   580 Mass storage device based on file. The optional @var{format} argument
       
   581 will be used rather than detecting the format. Can be used to specifiy
       
   582 format=raw to avoid interpreting an untrusted format header.
       
   583 
       
   584 @item host:bus.addr
       
   585 Pass through the host device identified by bus.addr (Linux only).
       
   586 
       
   587 @item host:vendor_id:product_id
       
   588 Pass through the host device identified by vendor_id:product_id (Linux only).
       
   589 
       
   590 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
       
   591 Serial converter to host character device @var{dev}, see @code{-serial} for the
       
   592 available devices.
       
   593 
       
   594 @item braille
       
   595 Braille device.  This will use BrlAPI to display the braille output on a real
       
   596 or fake device.
       
   597 
       
   598 @item net:options
       
   599 Network adapter that supports CDC ethernet and RNDIS protocols.
       
   600 
       
   601 @end table
       
   602 
       
   603 @end table
       
   604 
       
   605 Network options:
       
   606 
       
   607 @table @option
       
   608 
       
   609 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
       
   610 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
       
   611 = 0 is the default). The NIC is an ne2k_pci by default on the PC
       
   612 target. Optionally, the MAC address can be changed. If no
       
   613 @option{-net} option is specified, a single NIC is created.
       
   614 Qemu can emulate several different models of network card.
       
   615 Valid values for @var{type} are
       
   616 @code{i82551}, @code{i82557b}, @code{i82559er},
       
   617 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
       
   618 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
       
   619 Not all devices are supported on all targets.  Use -net nic,model=?
       
   620 for a list of available devices for your target.
       
   621 
       
   622 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
       
   623 Use the user mode network stack which requires no administrator
       
   624 privilege to run.  @option{hostname=name} can be used to specify the client
       
   625 hostname reported by the builtin DHCP server.
       
   626 
       
   627 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
       
   628 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
       
   629 the network script @var{file} to configure it and the network script 
       
   630 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
       
   631 automatically provides one. @option{fd}=@var{h} can be used to specify
       
   632 the handle of an already opened host TAP interface. The default network 
       
   633 configure script is @file{/etc/qemu-ifup} and the default network 
       
   634 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
       
   635 or @option{downscript=no} to disable script execution. Example:
       
   636 
       
   637 @example
       
   638 qemu linux.img -net nic -net tap
       
   639 @end example
       
   640 
       
   641 More complicated example (two NICs, each one connected to a TAP device)
       
   642 @example
       
   643 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
       
   644                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
       
   645 @end example
       
   646 
       
   647 
       
   648 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
       
   649 
       
   650 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
       
   651 machine using a TCP socket connection. If @option{listen} is
       
   652 specified, QEMU waits for incoming connections on @var{port}
       
   653 (@var{host} is optional). @option{connect} is used to connect to
       
   654 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
       
   655 specifies an already opened TCP socket.
       
   656 
       
   657 Example:
       
   658 @example
       
   659 # launch a first QEMU instance
       
   660 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
       
   661                -net socket,listen=:1234
       
   662 # connect the VLAN 0 of this instance to the VLAN 0
       
   663 # of the first instance
       
   664 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
       
   665                -net socket,connect=127.0.0.1:1234
       
   666 @end example
       
   667 
       
   668 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
       
   669 
       
   670 Create a VLAN @var{n} shared with another QEMU virtual
       
   671 machines using a UDP multicast socket, effectively making a bus for
       
   672 every QEMU with same multicast address @var{maddr} and @var{port}.
       
   673 NOTES:
       
   674 @enumerate
       
   675 @item
       
   676 Several QEMU can be running on different hosts and share same bus (assuming
       
   677 correct multicast setup for these hosts).
       
   678 @item
       
   679 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
       
   680 @url{http://user-mode-linux.sf.net}.
       
   681 @item
       
   682 Use @option{fd=h} to specify an already opened UDP multicast socket.
       
   683 @end enumerate
       
   684 
       
   685 Example:
       
   686 @example
       
   687 # launch one QEMU instance
       
   688 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
       
   689                -net socket,mcast=230.0.0.1:1234
       
   690 # launch another QEMU instance on same "bus"
       
   691 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
       
   692                -net socket,mcast=230.0.0.1:1234
       
   693 # launch yet another QEMU instance on same "bus"
       
   694 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
       
   695                -net socket,mcast=230.0.0.1:1234
       
   696 @end example
       
   697 
       
   698 Example (User Mode Linux compat.):
       
   699 @example
       
   700 # launch QEMU instance (note mcast address selected
       
   701 # is UML's default)
       
   702 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
       
   703                -net socket,mcast=239.192.168.1:1102
       
   704 # launch UML
       
   705 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
       
   706 @end example
       
   707 
       
   708 @item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
       
   709 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
       
   710 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
       
   711 and MODE @var{octalmode} to change default ownership and permissions for
       
   712 communication port. This option is available only if QEMU has been compiled
       
   713 with vde support enabled.
       
   714 
       
   715 Example:
       
   716 @example
       
   717 # launch vde switch
       
   718 vde_switch -F -sock /tmp/myswitch
       
   719 # launch QEMU instance
       
   720 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
       
   721 @end example
       
   722 
       
   723 @item -net none
       
   724 Indicate that no network devices should be configured. It is used to
       
   725 override the default configuration (@option{-net nic -net user}) which
       
   726 is activated if no @option{-net} options are provided.
       
   727 
       
   728 @item -tftp @var{dir}
       
   729 When using the user mode network stack, activate a built-in TFTP
       
   730 server. The files in @var{dir} will be exposed as the root of a TFTP server.
       
   731 The TFTP client on the guest must be configured in binary mode (use the command
       
   732 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
       
   733 usual 10.0.2.2.
       
   734 
       
   735 @item -bootp @var{file}
       
   736 When using the user mode network stack, broadcast @var{file} as the BOOTP
       
   737 filename.  In conjunction with @option{-tftp}, this can be used to network boot
       
   738 a guest from a local directory.
       
   739 
       
   740 Example (using pxelinux):
       
   741 @example
       
   742 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
       
   743 @end example
       
   744 
       
   745 @item -smb @var{dir}
       
   746 When using the user mode network stack, activate a built-in SMB
       
   747 server so that Windows OSes can access to the host files in @file{@var{dir}}
       
   748 transparently.
       
   749 
       
   750 In the guest Windows OS, the line:
       
   751 @example
       
   752 10.0.2.4 smbserver
       
   753 @end example
       
   754 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
       
   755 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
       
   756 
       
   757 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
       
   758 
       
   759 Note that a SAMBA server must be installed on the host OS in
       
   760 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
       
   761 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
       
   762 
       
   763 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
       
   764 
       
   765 When using the user mode network stack, redirect incoming TCP or UDP
       
   766 connections to the host port @var{host-port} to the guest
       
   767 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
       
   768 is not specified, its value is 10.0.2.15 (default address given by the
       
   769 built-in DHCP server).
       
   770 
       
   771 For example, to redirect host X11 connection from screen 1 to guest
       
   772 screen 0, use the following:
       
   773 
       
   774 @example
       
   775 # on the host
       
   776 qemu -redir tcp:6001::6000 [...]
       
   777 # this host xterm should open in the guest X11 server
       
   778 xterm -display :1
       
   779 @end example
       
   780 
       
   781 To redirect telnet connections from host port 5555 to telnet port on
       
   782 the guest, use the following:
       
   783 
       
   784 @example
       
   785 # on the host
       
   786 qemu -redir tcp:5555::23 [...]
       
   787 telnet localhost 5555
       
   788 @end example
       
   789 
       
   790 Then when you use on the host @code{telnet localhost 5555}, you
       
   791 connect to the guest telnet server.
       
   792 
       
   793 @end table
       
   794 
       
   795 Bluetooth(R) options:
       
   796 @table @option
       
   797 
       
   798 @item -bt hci[...]
       
   799 Defines the function of the corresponding Bluetooth HCI.  -bt options
       
   800 are matched with the HCIs present in the chosen machine type.  For
       
   801 example when emulating a machine with only one HCI built into it, only
       
   802 the first @code{-bt hci[...]} option is valid and defines the HCI's
       
   803 logic.  The Transport Layer is decided by the machine type.  Currently
       
   804 the machines @code{n800} and @code{n810} have one HCI and all other
       
   805 machines have none.
       
   806 
       
   807 @anchor{bt-hcis}
       
   808 The following three types are recognized:
       
   809 
       
   810 @table @code
       
   811 @item -bt hci,null
       
   812 (default) The corresponding Bluetooth HCI assumes no internal logic
       
   813 and will not respond to any HCI commands or emit events.
       
   814 
       
   815 @item -bt hci,host[:@var{id}]
       
   816 (@code{bluez} only) The corresponding HCI passes commands / events
       
   817 to / from the physical HCI identified by the name @var{id} (default:
       
   818 @code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
       
   819 capable systems like Linux.
       
   820 
       
   821 @item -bt hci[,vlan=@var{n}]
       
   822 Add a virtual, standard HCI that will participate in the Bluetooth
       
   823 scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
       
   824 VLANs, devices inside a bluetooth network @var{n} can only communicate
       
   825 with other devices in the same network (scatternet).
       
   826 @end table
       
   827 
       
   828 @item -bt vhci[,vlan=@var{n}]
       
   829 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
       
   830 to the host bluetooth stack instead of to the emulated target.  This
       
   831 allows the host and target machines to participate in a common scatternet
       
   832 and communicate.  Requires the Linux @code{vhci} driver installed.  Can
       
   833 be used as following:
       
   834 
       
   835 @example
       
   836 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
       
   837 @end example
       
   838 
       
   839 @item -bt device:@var{dev}[,vlan=@var{n}]
       
   840 Emulate a bluetooth device @var{dev} and place it in network @var{n}
       
   841 (default @code{0}).  QEMU can only emulate one type of bluetooth devices
       
   842 currently:
       
   843 
       
   844 @table @code
       
   845 @item keyboard
       
   846 Virtual wireless keyboard implementing the HIDP bluetooth profile.
       
   847 @end table
       
   848 
       
   849 @end table
       
   850 
       
   851 Linux boot specific: When using these options, you can use a given
       
   852 Linux kernel without installing it in the disk image. It can be useful
       
   853 for easier testing of various kernels.
       
   854 
       
   855 @table @option
       
   856 
       
   857 @item -kernel @var{bzImage}
       
   858 Use @var{bzImage} as kernel image.
       
   859 
       
   860 @item -append @var{cmdline}
       
   861 Use @var{cmdline} as kernel command line
       
   862 
       
   863 @item -initrd @var{file}
       
   864 Use @var{file} as initial ram disk.
       
   865 
       
   866 @end table
       
   867 
       
   868 Debug/Expert options:
       
   869 @table @option
       
   870 
       
   871 @item -serial @var{dev}
       
   872 Redirect the virtual serial port to host character device
       
   873 @var{dev}. The default device is @code{vc} in graphical mode and
       
   874 @code{stdio} in non graphical mode.
       
   875 
       
   876 This option can be used several times to simulate up to 4 serials
       
   877 ports.
       
   878 
       
   879 Use @code{-serial none} to disable all serial ports.
       
   880 
       
   881 Available character devices are:
       
   882 @table @code
       
   883 @item vc[:WxH]
       
   884 Virtual console. Optionally, a width and height can be given in pixel with
       
   885 @example
       
   886 vc:800x600
       
   887 @end example
       
   888 It is also possible to specify width or height in characters:
       
   889 @example
       
   890 vc:80Cx24C
       
   891 @end example
       
   892 @item pty
       
   893 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
       
   894 @item none
       
   895 No device is allocated.
       
   896 @item null
       
   897 void device
       
   898 @item /dev/XXX
       
   899 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
       
   900 parameters are set according to the emulated ones.
       
   901 @item /dev/parport@var{N}
       
   902 [Linux only, parallel port only] Use host parallel port
       
   903 @var{N}. Currently SPP and EPP parallel port features can be used.
       
   904 @item file:@var{filename}
       
   905 Write output to @var{filename}. No character can be read.
       
   906 @item stdio
       
   907 [Unix only] standard input/output
       
   908 @item pipe:@var{filename}
       
   909 name pipe @var{filename}
       
   910 @item COM@var{n}
       
   911 [Windows only] Use host serial port @var{n}
       
   912 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
       
   913 This implements UDP Net Console.
       
   914 When @var{remote_host} or @var{src_ip} are not specified
       
   915 they default to @code{0.0.0.0}.
       
   916 When not using a specified @var{src_port} a random port is automatically chosen.
       
   917 
       
   918 If you just want a simple readonly console you can use @code{netcat} or
       
   919 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
       
   920 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
       
   921 will appear in the netconsole session.
       
   922 
       
   923 If you plan to send characters back via netconsole or you want to stop
       
   924 and start qemu a lot of times, you should have qemu use the same
       
   925 source port each time by using something like @code{-serial
       
   926 udp::4555@@:4556} to qemu. Another approach is to use a patched
       
   927 version of netcat which can listen to a TCP port and send and receive
       
   928 characters via udp.  If you have a patched version of netcat which
       
   929 activates telnet remote echo and single char transfer, then you can
       
   930 use the following options to step up a netcat redirector to allow
       
   931 telnet on port 5555 to access the qemu port.
       
   932 @table @code
       
   933 @item Qemu Options:
       
   934 -serial udp::4555@@:4556
       
   935 @item netcat options:
       
   936 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
       
   937 @item telnet options:
       
   938 localhost 5555
       
   939 @end table
       
   940 
       
   941 
       
   942 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
       
   943 The TCP Net Console has two modes of operation.  It can send the serial
       
   944 I/O to a location or wait for a connection from a location.  By default
       
   945 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
       
   946 the @var{server} option QEMU will wait for a client socket application
       
   947 to connect to the port before continuing, unless the @code{nowait}
       
   948 option was specified.  The @code{nodelay} option disables the Nagle buffering
       
   949 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
       
   950 one TCP connection at a time is accepted. You can use @code{telnet} to
       
   951 connect to the corresponding character device.
       
   952 @table @code
       
   953 @item Example to send tcp console to 192.168.0.2 port 4444
       
   954 -serial tcp:192.168.0.2:4444
       
   955 @item Example to listen and wait on port 4444 for connection
       
   956 -serial tcp::4444,server
       
   957 @item Example to not wait and listen on ip 192.168.0.100 port 4444
       
   958 -serial tcp:192.168.0.100:4444,server,nowait
       
   959 @end table
       
   960 
       
   961 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
       
   962 The telnet protocol is used instead of raw tcp sockets.  The options
       
   963 work the same as if you had specified @code{-serial tcp}.  The
       
   964 difference is that the port acts like a telnet server or client using
       
   965 telnet option negotiation.  This will also allow you to send the
       
   966 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
       
   967 sequence.  Typically in unix telnet you do it with Control-] and then
       
   968 type "send break" followed by pressing the enter key.
       
   969 
       
   970 @item unix:@var{path}[,server][,nowait]
       
   971 A unix domain socket is used instead of a tcp socket.  The option works the
       
   972 same as if you had specified @code{-serial tcp} except the unix domain socket
       
   973 @var{path} is used for connections.
       
   974 
       
   975 @item mon:@var{dev_string}
       
   976 This is a special option to allow the monitor to be multiplexed onto
       
   977 another serial port.  The monitor is accessed with key sequence of
       
   978 @key{Control-a} and then pressing @key{c}. See monitor access
       
   979 @ref{pcsys_keys} in the -nographic section for more keys.
       
   980 @var{dev_string} should be any one of the serial devices specified
       
   981 above.  An example to multiplex the monitor onto a telnet server
       
   982 listening on port 4444 would be:
       
   983 @table @code
       
   984 @item -serial mon:telnet::4444,server,nowait
       
   985 @end table
       
   986 
       
   987 @item braille
       
   988 Braille device.  This will use BrlAPI to display the braille output on a real
       
   989 or fake device.
       
   990 
       
   991 @end table
       
   992 
       
   993 @item -parallel @var{dev}
       
   994 Redirect the virtual parallel port to host device @var{dev} (same
       
   995 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
       
   996 be used to use hardware devices connected on the corresponding host
       
   997 parallel port.
       
   998 
       
   999 This option can be used several times to simulate up to 3 parallel
       
  1000 ports.
       
  1001 
       
  1002 Use @code{-parallel none} to disable all parallel ports.
       
  1003 
       
  1004 @item -monitor @var{dev}
       
  1005 Redirect the monitor to host device @var{dev} (same devices as the
       
  1006 serial port).
       
  1007 The default device is @code{vc} in graphical mode and @code{stdio} in
       
  1008 non graphical mode.
       
  1009 
       
  1010 @item -echr numeric_ascii_value
       
  1011 Change the escape character used for switching to the monitor when using
       
  1012 monitor and serial sharing.  The default is @code{0x01} when using the
       
  1013 @code{-nographic} option.  @code{0x01} is equal to pressing
       
  1014 @code{Control-a}.  You can select a different character from the ascii
       
  1015 control keys where 1 through 26 map to Control-a through Control-z.  For
       
  1016 instance you could use the either of the following to change the escape
       
  1017 character to Control-t.
       
  1018 @table @code
       
  1019 @item -echr 0x14
       
  1020 @item -echr 20
       
  1021 @end table
       
  1022 
       
  1023 @item -s
       
  1024 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
       
  1025 @item -p @var{port}
       
  1026 Change gdb connection port.  @var{port} can be either a decimal number
       
  1027 to specify a TCP port, or a host device (same devices as the serial port).
       
  1028 @item -S
       
  1029 Do not start CPU at startup (you must type 'c' in the monitor).
       
  1030 @item -d
       
  1031 Output log in /tmp/qemu.log
       
  1032 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
       
  1033 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
       
  1034 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
       
  1035 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
       
  1036 all those parameters. This option is useful for old MS-DOS disk
       
  1037 images.
       
  1038 
       
  1039 @item -L path
       
  1040 Set the directory for the BIOS, VGA BIOS and keymaps.
       
  1041 
       
  1042 @item -vga @var{type}
       
  1043 Select type of VGA card to emulate. Valid values for @var{type} are
       
  1044 @table @code
       
  1045 @item cirrus
       
  1046 Cirrus Logic GD5446 Video card. All Windows versions starting from
       
  1047 Windows 95 should recognize and use this graphic card. For optimal
       
  1048 performances, use 16 bit color depth in the guest and the host OS.
       
  1049 (This one is the default)
       
  1050 @item std
       
  1051 Standard VGA card with Bochs VBE extensions.  If your guest OS
       
  1052 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
       
  1053 to use high resolution modes (>= 1280x1024x16) then you should use
       
  1054 this option.
       
  1055 @item vmware
       
  1056 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
       
  1057 recent XFree86/XOrg server or Windows guest with a driver for this
       
  1058 card.
       
  1059 @end table
       
  1060 
       
  1061 @item -no-acpi
       
  1062 Disable ACPI (Advanced Configuration and Power Interface) support. Use
       
  1063 it if your guest OS complains about ACPI problems (PC target machine
       
  1064 only).
       
  1065 
       
  1066 @item -no-reboot
       
  1067 Exit instead of rebooting.
       
  1068 
       
  1069 @item -no-shutdown
       
  1070 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
       
  1071 This allows for instance switching to monitor to commit changes to the
       
  1072 disk image.
       
  1073 
       
  1074 @item -loadvm file
       
  1075 Start right away with a saved state (@code{loadvm} in monitor)
       
  1076 
       
  1077 @item -semihosting
       
  1078 Enable semihosting syscall emulation (ARM and M68K target machines only).
       
  1079 
       
  1080 On ARM this implements the "Angel" interface.
       
  1081 On M68K this implements the "ColdFire GDB" interface used by libgloss.
       
  1082 
       
  1083 Note that this allows guest direct access to the host filesystem,
       
  1084 so should only be used with trusted guest OS.
       
  1085 
       
  1086 @item -icount [N|auto]
       
  1087 Enable virtual instruction counter.  The virtual cpu will execute one
       
  1088 instruction every 2^N ns of virtual time.  If @code{auto} is specified
       
  1089 then the virtual cpu speed will be automatically adjusted to keep virtual
       
  1090 time within a few seconds of real time.
       
  1091 
       
  1092 Note that while this option can give deterministic behavior, it does not
       
  1093 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
       
  1094 order cores with complex cache hierarchies.  The number of instructions
       
  1095 executed often has little or no correlation with actual performance.
       
  1096 @end table
       
  1097 
       
  1098 @c man end
       
  1099 
       
  1100 @node pcsys_keys
       
  1101 @section Keys
       
  1102 
       
  1103 @c man begin OPTIONS
       
  1104 
       
  1105 During the graphical emulation, you can use the following keys:
       
  1106 @table @key
       
  1107 @item Ctrl-Alt-f
       
  1108 Toggle full screen
       
  1109 
       
  1110 @item Ctrl-Alt-n
       
  1111 Switch to virtual console 'n'. Standard console mappings are:
       
  1112 @table @emph
       
  1113 @item 1
       
  1114 Target system display
       
  1115 @item 2
       
  1116 Monitor
       
  1117 @item 3
       
  1118 Serial port
       
  1119 @end table
       
  1120 
       
  1121 @item Ctrl-Alt
       
  1122 Toggle mouse and keyboard grab.
       
  1123 @end table
       
  1124 
       
  1125 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
       
  1126 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
       
  1127 
       
  1128 During emulation, if you are using the @option{-nographic} option, use
       
  1129 @key{Ctrl-a h} to get terminal commands:
       
  1130 
       
  1131 @table @key
       
  1132 @item Ctrl-a h
       
  1133 Print this help
       
  1134 @item Ctrl-a x
       
  1135 Exit emulator
       
  1136 @item Ctrl-a s
       
  1137 Save disk data back to file (if -snapshot)
       
  1138 @item Ctrl-a t
       
  1139 toggle console timestamps
       
  1140 @item Ctrl-a b
       
  1141 Send break (magic sysrq in Linux)
       
  1142 @item Ctrl-a c
       
  1143 Switch between console and monitor
       
  1144 @item Ctrl-a Ctrl-a
       
  1145 Send Ctrl-a
       
  1146 @end table
       
  1147 @c man end
       
  1148 
       
  1149 @ignore
       
  1150 
       
  1151 @c man begin SEEALSO
       
  1152 The HTML documentation of QEMU for more precise information and Linux
       
  1153 user mode emulator invocation.
       
  1154 @c man end
       
  1155 
       
  1156 @c man begin AUTHOR
       
  1157 Fabrice Bellard
       
  1158 @c man end
       
  1159 
       
  1160 @end ignore
       
  1161 
       
  1162 @node pcsys_monitor
       
  1163 @section QEMU Monitor
       
  1164 
       
  1165 The QEMU monitor is used to give complex commands to the QEMU
       
  1166 emulator. You can use it to:
       
  1167 
       
  1168 @itemize @minus
       
  1169 
       
  1170 @item
       
  1171 Remove or insert removable media images
       
  1172 (such as CD-ROM or floppies).
       
  1173 
       
  1174 @item
       
  1175 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
       
  1176 from a disk file.
       
  1177 
       
  1178 @item Inspect the VM state without an external debugger.
       
  1179 
       
  1180 @end itemize
       
  1181 
       
  1182 @subsection Commands
       
  1183 
       
  1184 The following commands are available:
       
  1185 
       
  1186 @table @option
       
  1187 
       
  1188 @item help or ? [@var{cmd}]
       
  1189 Show the help for all commands or just for command @var{cmd}.
       
  1190 
       
  1191 @item commit
       
  1192 Commit changes to the disk images (if -snapshot is used).
       
  1193 
       
  1194 @item info @var{subcommand}
       
  1195 Show various information about the system state.
       
  1196 
       
  1197 @table @option
       
  1198 @item info network
       
  1199 show the various VLANs and the associated devices
       
  1200 @item info block
       
  1201 show the block devices
       
  1202 @item info registers
       
  1203 show the cpu registers
       
  1204 @item info history
       
  1205 show the command line history
       
  1206 @item info pci
       
  1207 show emulated PCI device
       
  1208 @item info usb
       
  1209 show USB devices plugged on the virtual USB hub
       
  1210 @item info usbhost
       
  1211 show all USB host devices
       
  1212 @item info capture
       
  1213 show information about active capturing
       
  1214 @item info snapshots
       
  1215 show list of VM snapshots
       
  1216 @item info mice
       
  1217 show which guest mouse is receiving events
       
  1218 @end table
       
  1219 
       
  1220 @item q or quit
       
  1221 Quit the emulator.
       
  1222 
       
  1223 @item eject [-f] @var{device}
       
  1224 Eject a removable medium (use -f to force it).
       
  1225 
       
  1226 @item change @var{device} @var{setting}
       
  1227 
       
  1228 Change the configuration of a device.
       
  1229 
       
  1230 @table @option
       
  1231 @item change @var{diskdevice} @var{filename}
       
  1232 Change the medium for a removable disk device to point to @var{filename}. eg
       
  1233 
       
  1234 @example
       
  1235 (qemu) change ide1-cd0 /path/to/some.iso
       
  1236 @end example
       
  1237 
       
  1238 @item change vnc @var{display},@var{options}
       
  1239 Change the configuration of the VNC server. The valid syntax for @var{display}
       
  1240 and @var{options} are described at @ref{sec_invocation}. eg
       
  1241 
       
  1242 @example
       
  1243 (qemu) change vnc localhost:1
       
  1244 @end example
       
  1245 
       
  1246 @item change vnc password [@var{password}]
       
  1247 
       
  1248 Change the password associated with the VNC server. If the new password is not
       
  1249 supplied, the monitor will prompt for it to be entered. VNC passwords are only
       
  1250 significant up to 8 letters. eg
       
  1251 
       
  1252 @example
       
  1253 (qemu) change vnc password
       
  1254 Password: ********
       
  1255 @end example
       
  1256 
       
  1257 @end table
       
  1258 
       
  1259 @item screendump @var{filename}
       
  1260 Save screen into PPM image @var{filename}.
       
  1261 
       
  1262 @item mouse_move @var{dx} @var{dy} [@var{dz}]
       
  1263 Move the active mouse to the specified coordinates @var{dx} @var{dy}
       
  1264 with optional scroll axis @var{dz}.
       
  1265 
       
  1266 @item mouse_button @var{val}
       
  1267 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
       
  1268 
       
  1269 @item mouse_set @var{index}
       
  1270 Set which mouse device receives events at given @var{index}, index
       
  1271 can be obtained with
       
  1272 @example
       
  1273 info mice
       
  1274 @end example
       
  1275 
       
  1276 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
       
  1277 Capture audio into @var{filename}. Using sample rate @var{frequency}
       
  1278 bits per sample @var{bits} and number of channels @var{channels}.
       
  1279 
       
  1280 Defaults:
       
  1281 @itemize @minus
       
  1282 @item Sample rate = 44100 Hz - CD quality
       
  1283 @item Bits = 16
       
  1284 @item Number of channels = 2 - Stereo
       
  1285 @end itemize
       
  1286 
       
  1287 @item stopcapture @var{index}
       
  1288 Stop capture with a given @var{index}, index can be obtained with
       
  1289 @example
       
  1290 info capture
       
  1291 @end example
       
  1292 
       
  1293 @item log @var{item1}[,...]
       
  1294 Activate logging of the specified items to @file{/tmp/qemu.log}.
       
  1295 
       
  1296 @item savevm [@var{tag}|@var{id}]
       
  1297 Create a snapshot of the whole virtual machine. If @var{tag} is
       
  1298 provided, it is used as human readable identifier. If there is already
       
  1299 a snapshot with the same tag or ID, it is replaced. More info at
       
  1300 @ref{vm_snapshots}.
       
  1301 
       
  1302 @item loadvm @var{tag}|@var{id}
       
  1303 Set the whole virtual machine to the snapshot identified by the tag
       
  1304 @var{tag} or the unique snapshot ID @var{id}.
       
  1305 
       
  1306 @item delvm @var{tag}|@var{id}
       
  1307 Delete the snapshot identified by @var{tag} or @var{id}.
       
  1308 
       
  1309 @item stop
       
  1310 Stop emulation.
       
  1311 
       
  1312 @item c or cont
       
  1313 Resume emulation.
       
  1314 
       
  1315 @item gdbserver [@var{port}]
       
  1316 Start gdbserver session (default @var{port}=1234)
       
  1317 
       
  1318 @item x/fmt @var{addr}
       
  1319 Virtual memory dump starting at @var{addr}.
       
  1320 
       
  1321 @item xp /@var{fmt} @var{addr}
       
  1322 Physical memory dump starting at @var{addr}.
       
  1323 
       
  1324 @var{fmt} is a format which tells the command how to format the
       
  1325 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
       
  1326 
       
  1327 @table @var
       
  1328 @item count
       
  1329 is the number of items to be dumped.
       
  1330 
       
  1331 @item format
       
  1332 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
       
  1333 c (char) or i (asm instruction).
       
  1334 
       
  1335 @item size
       
  1336 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
       
  1337 @code{h} or @code{w} can be specified with the @code{i} format to
       
  1338 respectively select 16 or 32 bit code instruction size.
       
  1339 
       
  1340 @end table
       
  1341 
       
  1342 Examples:
       
  1343 @itemize
       
  1344 @item
       
  1345 Dump 10 instructions at the current instruction pointer:
       
  1346 @example
       
  1347 (qemu) x/10i $eip
       
  1348 0x90107063:  ret
       
  1349 0x90107064:  sti
       
  1350 0x90107065:  lea    0x0(%esi,1),%esi
       
  1351 0x90107069:  lea    0x0(%edi,1),%edi
       
  1352 0x90107070:  ret
       
  1353 0x90107071:  jmp    0x90107080
       
  1354 0x90107073:  nop
       
  1355 0x90107074:  nop
       
  1356 0x90107075:  nop
       
  1357 0x90107076:  nop
       
  1358 @end example
       
  1359 
       
  1360 @item
       
  1361 Dump 80 16 bit values at the start of the video memory.
       
  1362 @smallexample
       
  1363 (qemu) xp/80hx 0xb8000
       
  1364 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
       
  1365 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
       
  1366 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
       
  1367 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
       
  1368 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
       
  1369 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
       
  1370 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
       
  1371 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
       
  1372 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
       
  1373 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
       
  1374 @end smallexample
       
  1375 @end itemize
       
  1376 
       
  1377 @item p or print/@var{fmt} @var{expr}
       
  1378 
       
  1379 Print expression value. Only the @var{format} part of @var{fmt} is
       
  1380 used.
       
  1381 
       
  1382 @item sendkey @var{keys}
       
  1383 
       
  1384 Send @var{keys} to the emulator. @var{keys} could be the name of the
       
  1385 key or @code{#} followed by the raw value in either decimal or hexadecimal
       
  1386 format. Use @code{-} to press several keys simultaneously. Example:
       
  1387 @example
       
  1388 sendkey ctrl-alt-f1
       
  1389 @end example
       
  1390 
       
  1391 This command is useful to send keys that your graphical user interface
       
  1392 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
       
  1393 
       
  1394 @item system_reset
       
  1395 
       
  1396 Reset the system.
       
  1397 
       
  1398 @item boot_set @var{bootdevicelist}
       
  1399 
       
  1400 Define new values for the boot device list. Those values will override
       
  1401 the values specified on the command line through the @code{-boot} option.
       
  1402 
       
  1403 The values that can be specified here depend on the machine type, but are
       
  1404 the same that can be specified in the @code{-boot} command line option.
       
  1405 
       
  1406 @item usb_add @var{devname}
       
  1407 
       
  1408 Add the USB device @var{devname}.  For details of available devices see
       
  1409 @ref{usb_devices}
       
  1410 
       
  1411 @item usb_del @var{devname}
       
  1412 
       
  1413 Remove the USB device @var{devname} from the QEMU virtual USB
       
  1414 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
       
  1415 command @code{info usb} to see the devices you can remove.
       
  1416 
       
  1417 @end table
       
  1418 
       
  1419 @subsection Integer expressions
       
  1420 
       
  1421 The monitor understands integers expressions for every integer
       
  1422 argument. You can use register names to get the value of specifics
       
  1423 CPU registers by prefixing them with @emph{$}.
       
  1424 
       
  1425 @node disk_images
       
  1426 @section Disk Images
       
  1427 
       
  1428 Since version 0.6.1, QEMU supports many disk image formats, including
       
  1429 growable disk images (their size increase as non empty sectors are
       
  1430 written), compressed and encrypted disk images. Version 0.8.3 added
       
  1431 the new qcow2 disk image format which is essential to support VM
       
  1432 snapshots.
       
  1433 
       
  1434 @menu
       
  1435 * disk_images_quickstart::    Quick start for disk image creation
       
  1436 * disk_images_snapshot_mode:: Snapshot mode
       
  1437 * vm_snapshots::              VM snapshots
       
  1438 * qemu_img_invocation::       qemu-img Invocation
       
  1439 * qemu_nbd_invocation::       qemu-nbd Invocation
       
  1440 * host_drives::               Using host drives
       
  1441 * disk_images_fat_images::    Virtual FAT disk images
       
  1442 * disk_images_nbd::           NBD access
       
  1443 @end menu
       
  1444 
       
  1445 @node disk_images_quickstart
       
  1446 @subsection Quick start for disk image creation
       
  1447 
       
  1448 You can create a disk image with the command:
       
  1449 @example
       
  1450 qemu-img create myimage.img mysize
       
  1451 @end example
       
  1452 where @var{myimage.img} is the disk image filename and @var{mysize} is its
       
  1453 size in kilobytes. You can add an @code{M} suffix to give the size in
       
  1454 megabytes and a @code{G} suffix for gigabytes.
       
  1455 
       
  1456 See @ref{qemu_img_invocation} for more information.
       
  1457 
       
  1458 @node disk_images_snapshot_mode
       
  1459 @subsection Snapshot mode
       
  1460 
       
  1461 If you use the option @option{-snapshot}, all disk images are
       
  1462 considered as read only. When sectors in written, they are written in
       
  1463 a temporary file created in @file{/tmp}. You can however force the
       
  1464 write back to the raw disk images by using the @code{commit} monitor
       
  1465 command (or @key{C-a s} in the serial console).
       
  1466 
       
  1467 @node vm_snapshots
       
  1468 @subsection VM snapshots
       
  1469 
       
  1470 VM snapshots are snapshots of the complete virtual machine including
       
  1471 CPU state, RAM, device state and the content of all the writable
       
  1472 disks. In order to use VM snapshots, you must have at least one non
       
  1473 removable and writable block device using the @code{qcow2} disk image
       
  1474 format. Normally this device is the first virtual hard drive.
       
  1475 
       
  1476 Use the monitor command @code{savevm} to create a new VM snapshot or
       
  1477 replace an existing one. A human readable name can be assigned to each
       
  1478 snapshot in addition to its numerical ID.
       
  1479 
       
  1480 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
       
  1481 a VM snapshot. @code{info snapshots} lists the available snapshots
       
  1482 with their associated information:
       
  1483 
       
  1484 @example
       
  1485 (qemu) info snapshots
       
  1486 Snapshot devices: hda
       
  1487 Snapshot list (from hda):
       
  1488 ID        TAG                 VM SIZE                DATE       VM CLOCK
       
  1489 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
       
  1490 2                                 40M 2006-08-06 12:43:29   00:00:18.633
       
  1491 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
       
  1492 @end example
       
  1493 
       
  1494 A VM snapshot is made of a VM state info (its size is shown in
       
  1495 @code{info snapshots}) and a snapshot of every writable disk image.
       
  1496 The VM state info is stored in the first @code{qcow2} non removable
       
  1497 and writable block device. The disk image snapshots are stored in
       
  1498 every disk image. The size of a snapshot in a disk image is difficult
       
  1499 to evaluate and is not shown by @code{info snapshots} because the
       
  1500 associated disk sectors are shared among all the snapshots to save
       
  1501 disk space (otherwise each snapshot would need a full copy of all the
       
  1502 disk images).
       
  1503 
       
  1504 When using the (unrelated) @code{-snapshot} option
       
  1505 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
       
  1506 but they are deleted as soon as you exit QEMU.
       
  1507 
       
  1508 VM snapshots currently have the following known limitations:
       
  1509 @itemize
       
  1510 @item
       
  1511 They cannot cope with removable devices if they are removed or
       
  1512 inserted after a snapshot is done.
       
  1513 @item
       
  1514 A few device drivers still have incomplete snapshot support so their
       
  1515 state is not saved or restored properly (in particular USB).
       
  1516 @end itemize
       
  1517 
       
  1518 @node qemu_img_invocation
       
  1519 @subsection @code{qemu-img} Invocation
       
  1520 
       
  1521 @include qemu-img.texi
       
  1522 
       
  1523 @node qemu_nbd_invocation
       
  1524 @subsection @code{qemu-nbd} Invocation
       
  1525 
       
  1526 @include qemu-nbd.texi
       
  1527 
       
  1528 @node host_drives
       
  1529 @subsection Using host drives
       
  1530 
       
  1531 In addition to disk image files, QEMU can directly access host
       
  1532 devices. We describe here the usage for QEMU version >= 0.8.3.
       
  1533 
       
  1534 @subsubsection Linux
       
  1535 
       
  1536 On Linux, you can directly use the host device filename instead of a
       
  1537 disk image filename provided you have enough privileges to access
       
  1538 it. For example, use @file{/dev/cdrom} to access to the CDROM or
       
  1539 @file{/dev/fd0} for the floppy.
       
  1540 
       
  1541 @table @code
       
  1542 @item CD
       
  1543 You can specify a CDROM device even if no CDROM is loaded. QEMU has
       
  1544 specific code to detect CDROM insertion or removal. CDROM ejection by
       
  1545 the guest OS is supported. Currently only data CDs are supported.
       
  1546 @item Floppy
       
  1547 You can specify a floppy device even if no floppy is loaded. Floppy
       
  1548 removal is currently not detected accurately (if you change floppy
       
  1549 without doing floppy access while the floppy is not loaded, the guest
       
  1550 OS will think that the same floppy is loaded).
       
  1551 @item Hard disks
       
  1552 Hard disks can be used. Normally you must specify the whole disk
       
  1553 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
       
  1554 see it as a partitioned disk. WARNING: unless you know what you do, it
       
  1555 is better to only make READ-ONLY accesses to the hard disk otherwise
       
  1556 you may corrupt your host data (use the @option{-snapshot} command
       
  1557 line option or modify the device permissions accordingly).
       
  1558 @end table
       
  1559 
       
  1560 @subsubsection Windows
       
  1561 
       
  1562 @table @code
       
  1563 @item CD
       
  1564 The preferred syntax is the drive letter (e.g. @file{d:}). The
       
  1565 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
       
  1566 supported as an alias to the first CDROM drive.
       
  1567 
       
  1568 Currently there is no specific code to handle removable media, so it
       
  1569 is better to use the @code{change} or @code{eject} monitor commands to
       
  1570 change or eject media.
       
  1571 @item Hard disks
       
  1572 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
       
  1573 where @var{N} is the drive number (0 is the first hard disk).
       
  1574 
       
  1575 WARNING: unless you know what you do, it is better to only make
       
  1576 READ-ONLY accesses to the hard disk otherwise you may corrupt your
       
  1577 host data (use the @option{-snapshot} command line so that the
       
  1578 modifications are written in a temporary file).
       
  1579 @end table
       
  1580 
       
  1581 
       
  1582 @subsubsection Mac OS X
       
  1583 
       
  1584 @file{/dev/cdrom} is an alias to the first CDROM.
       
  1585 
       
  1586 Currently there is no specific code to handle removable media, so it
       
  1587 is better to use the @code{change} or @code{eject} monitor commands to
       
  1588 change or eject media.
       
  1589 
       
  1590 @node disk_images_fat_images
       
  1591 @subsection Virtual FAT disk images
       
  1592 
       
  1593 QEMU can automatically create a virtual FAT disk image from a
       
  1594 directory tree. In order to use it, just type:
       
  1595 
       
  1596 @example
       
  1597 qemu linux.img -hdb fat:/my_directory
       
  1598 @end example
       
  1599 
       
  1600 Then you access access to all the files in the @file{/my_directory}
       
  1601 directory without having to copy them in a disk image or to export
       
  1602 them via SAMBA or NFS. The default access is @emph{read-only}.
       
  1603 
       
  1604 Floppies can be emulated with the @code{:floppy:} option:
       
  1605 
       
  1606 @example
       
  1607 qemu linux.img -fda fat:floppy:/my_directory
       
  1608 @end example
       
  1609 
       
  1610 A read/write support is available for testing (beta stage) with the
       
  1611 @code{:rw:} option:
       
  1612 
       
  1613 @example
       
  1614 qemu linux.img -fda fat:floppy:rw:/my_directory
       
  1615 @end example
       
  1616 
       
  1617 What you should @emph{never} do:
       
  1618 @itemize
       
  1619 @item use non-ASCII filenames ;
       
  1620 @item use "-snapshot" together with ":rw:" ;
       
  1621 @item expect it to work when loadvm'ing ;
       
  1622 @item write to the FAT directory on the host system while accessing it with the guest system.
       
  1623 @end itemize
       
  1624 
       
  1625 @node disk_images_nbd
       
  1626 @subsection NBD access
       
  1627 
       
  1628 QEMU can access directly to block device exported using the Network Block Device
       
  1629 protocol.
       
  1630 
       
  1631 @example
       
  1632 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
       
  1633 @end example
       
  1634 
       
  1635 If the NBD server is located on the same host, you can use an unix socket instead
       
  1636 of an inet socket:
       
  1637 
       
  1638 @example
       
  1639 qemu linux.img -hdb nbd:unix:/tmp/my_socket
       
  1640 @end example
       
  1641 
       
  1642 In this case, the block device must be exported using qemu-nbd:
       
  1643 
       
  1644 @example
       
  1645 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
       
  1646 @end example
       
  1647 
       
  1648 The use of qemu-nbd allows to share a disk between several guests:
       
  1649 @example
       
  1650 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
       
  1651 @end example
       
  1652 
       
  1653 and then you can use it with two guests:
       
  1654 @example
       
  1655 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
       
  1656 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
       
  1657 @end example
       
  1658 
       
  1659 @node pcsys_network
       
  1660 @section Network emulation
       
  1661 
       
  1662 QEMU can simulate several network cards (PCI or ISA cards on the PC
       
  1663 target) and can connect them to an arbitrary number of Virtual Local
       
  1664 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
       
  1665 VLAN. VLAN can be connected between separate instances of QEMU to
       
  1666 simulate large networks. For simpler usage, a non privileged user mode
       
  1667 network stack can replace the TAP device to have a basic network
       
  1668 connection.
       
  1669 
       
  1670 @subsection VLANs
       
  1671 
       
  1672 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
       
  1673 connection between several network devices. These devices can be for
       
  1674 example QEMU virtual Ethernet cards or virtual Host ethernet devices
       
  1675 (TAP devices).
       
  1676 
       
  1677 @subsection Using TAP network interfaces
       
  1678 
       
  1679 This is the standard way to connect QEMU to a real network. QEMU adds
       
  1680 a virtual network device on your host (called @code{tapN}), and you
       
  1681 can then configure it as if it was a real ethernet card.
       
  1682 
       
  1683 @subsubsection Linux host
       
  1684 
       
  1685 As an example, you can download the @file{linux-test-xxx.tar.gz}
       
  1686 archive and copy the script @file{qemu-ifup} in @file{/etc} and
       
  1687 configure properly @code{sudo} so that the command @code{ifconfig}
       
  1688 contained in @file{qemu-ifup} can be executed as root. You must verify
       
  1689 that your host kernel supports the TAP network interfaces: the
       
  1690 device @file{/dev/net/tun} must be present.
       
  1691 
       
  1692 See @ref{sec_invocation} to have examples of command lines using the
       
  1693 TAP network interfaces.
       
  1694 
       
  1695 @subsubsection Windows host
       
  1696 
       
  1697 There is a virtual ethernet driver for Windows 2000/XP systems, called
       
  1698 TAP-Win32. But it is not included in standard QEMU for Windows,
       
  1699 so you will need to get it separately. It is part of OpenVPN package,
       
  1700 so download OpenVPN from : @url{http://openvpn.net/}.
       
  1701 
       
  1702 @subsection Using the user mode network stack
       
  1703 
       
  1704 By using the option @option{-net user} (default configuration if no
       
  1705 @option{-net} option is specified), QEMU uses a completely user mode
       
  1706 network stack (you don't need root privilege to use the virtual
       
  1707 network). The virtual network configuration is the following:
       
  1708 
       
  1709 @example
       
  1710 
       
  1711          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
       
  1712                            |          (10.0.2.2)
       
  1713                            |
       
  1714                            ---->  DNS server (10.0.2.3)
       
  1715                            |
       
  1716                            ---->  SMB server (10.0.2.4)
       
  1717 @end example
       
  1718 
       
  1719 The QEMU VM behaves as if it was behind a firewall which blocks all
       
  1720 incoming connections. You can use a DHCP client to automatically
       
  1721 configure the network in the QEMU VM. The DHCP server assign addresses
       
  1722 to the hosts starting from 10.0.2.15.
       
  1723 
       
  1724 In order to check that the user mode network is working, you can ping
       
  1725 the address 10.0.2.2 and verify that you got an address in the range
       
  1726 10.0.2.x from the QEMU virtual DHCP server.
       
  1727 
       
  1728 Note that @code{ping} is not supported reliably to the internet as it
       
  1729 would require root privileges. It means you can only ping the local
       
  1730 router (10.0.2.2).
       
  1731 
       
  1732 When using the built-in TFTP server, the router is also the TFTP
       
  1733 server.
       
  1734 
       
  1735 When using the @option{-redir} option, TCP or UDP connections can be
       
  1736 redirected from the host to the guest. It allows for example to
       
  1737 redirect X11, telnet or SSH connections.
       
  1738 
       
  1739 @subsection Connecting VLANs between QEMU instances
       
  1740 
       
  1741 Using the @option{-net socket} option, it is possible to make VLANs
       
  1742 that span several QEMU instances. See @ref{sec_invocation} to have a
       
  1743 basic example.
       
  1744 
       
  1745 @node direct_linux_boot
       
  1746 @section Direct Linux Boot
       
  1747 
       
  1748 This section explains how to launch a Linux kernel inside QEMU without
       
  1749 having to make a full bootable image. It is very useful for fast Linux
       
  1750 kernel testing.
       
  1751 
       
  1752 The syntax is:
       
  1753 @example
       
  1754 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
       
  1755 @end example
       
  1756 
       
  1757 Use @option{-kernel} to provide the Linux kernel image and
       
  1758 @option{-append} to give the kernel command line arguments. The
       
  1759 @option{-initrd} option can be used to provide an INITRD image.
       
  1760 
       
  1761 When using the direct Linux boot, a disk image for the first hard disk
       
  1762 @file{hda} is required because its boot sector is used to launch the
       
  1763 Linux kernel.
       
  1764 
       
  1765 If you do not need graphical output, you can disable it and redirect
       
  1766 the virtual serial port and the QEMU monitor to the console with the
       
  1767 @option{-nographic} option. The typical command line is:
       
  1768 @example
       
  1769 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
       
  1770      -append "root=/dev/hda console=ttyS0" -nographic
       
  1771 @end example
       
  1772 
       
  1773 Use @key{Ctrl-a c} to switch between the serial console and the
       
  1774 monitor (@pxref{pcsys_keys}).
       
  1775 
       
  1776 @node pcsys_usb
       
  1777 @section USB emulation
       
  1778 
       
  1779 QEMU emulates a PCI UHCI USB controller. You can virtually plug
       
  1780 virtual USB devices or real host USB devices (experimental, works only
       
  1781 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
       
  1782 as necessary to connect multiple USB devices.
       
  1783 
       
  1784 @menu
       
  1785 * usb_devices::
       
  1786 * host_usb_devices::
       
  1787 @end menu
       
  1788 @node usb_devices
       
  1789 @subsection Connecting USB devices
       
  1790 
       
  1791 USB devices can be connected with the @option{-usbdevice} commandline option
       
  1792 or the @code{usb_add} monitor command.  Available devices are:
       
  1793 
       
  1794 @table @code
       
  1795 @item mouse
       
  1796 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
       
  1797 @item tablet
       
  1798 Pointer device that uses absolute coordinates (like a touchscreen).
       
  1799 This means qemu is able to report the mouse position without having
       
  1800 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
       
  1801 @item disk:@var{file}
       
  1802 Mass storage device based on @var{file} (@pxref{disk_images})
       
  1803 @item host:@var{bus.addr}
       
  1804 Pass through the host device identified by @var{bus.addr}
       
  1805 (Linux only)
       
  1806 @item host:@var{vendor_id:product_id}
       
  1807 Pass through the host device identified by @var{vendor_id:product_id}
       
  1808 (Linux only)
       
  1809 @item wacom-tablet
       
  1810 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
       
  1811 above but it can be used with the tslib library because in addition to touch
       
  1812 coordinates it reports touch pressure.
       
  1813 @item keyboard
       
  1814 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
       
  1815 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
       
  1816 Serial converter. This emulates an FTDI FT232BM chip connected to host character
       
  1817 device @var{dev}. The available character devices are the same as for the
       
  1818 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
       
  1819 used to override the default 0403:6001. For instance, 
       
  1820 @example
       
  1821 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
       
  1822 @end example
       
  1823 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
       
  1824 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
       
  1825 @item braille
       
  1826 Braille device.  This will use BrlAPI to display the braille output on a real
       
  1827 or fake device.
       
  1828 @item net:@var{options}
       
  1829 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
       
  1830 specifies NIC options as with @code{-net nic,}@var{options} (see description).
       
  1831 For instance, user-mode networking can be used with
       
  1832 @example
       
  1833 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
       
  1834 @end example
       
  1835 Currently this cannot be used in machines that support PCI NICs.
       
  1836 @item bt[:@var{hci-type}]
       
  1837 Bluetooth dongle whose type is specified in the same format as with
       
  1838 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
       
  1839 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
       
  1840 This USB device implements the USB Transport Layer of HCI.  Example
       
  1841 usage:
       
  1842 @example
       
  1843 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
       
  1844 @end example
       
  1845 @end table
       
  1846 
       
  1847 @node host_usb_devices
       
  1848 @subsection Using host USB devices on a Linux host
       
  1849 
       
  1850 WARNING: this is an experimental feature. QEMU will slow down when
       
  1851 using it. USB devices requiring real time streaming (i.e. USB Video
       
  1852 Cameras) are not supported yet.
       
  1853 
       
  1854 @enumerate
       
  1855 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
       
  1856 is actually using the USB device. A simple way to do that is simply to
       
  1857 disable the corresponding kernel module by renaming it from @file{mydriver.o}
       
  1858 to @file{mydriver.o.disabled}.
       
  1859 
       
  1860 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
       
  1861 @example
       
  1862 ls /proc/bus/usb
       
  1863 001  devices  drivers
       
  1864 @end example
       
  1865 
       
  1866 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
       
  1867 @example
       
  1868 chown -R myuid /proc/bus/usb
       
  1869 @end example
       
  1870 
       
  1871 @item Launch QEMU and do in the monitor:
       
  1872 @example
       
  1873 info usbhost
       
  1874   Device 1.2, speed 480 Mb/s
       
  1875     Class 00: USB device 1234:5678, USB DISK
       
  1876 @end example
       
  1877 You should see the list of the devices you can use (Never try to use
       
  1878 hubs, it won't work).
       
  1879 
       
  1880 @item Add the device in QEMU by using:
       
  1881 @example
       
  1882 usb_add host:1234:5678
       
  1883 @end example
       
  1884 
       
  1885 Normally the guest OS should report that a new USB device is
       
  1886 plugged. You can use the option @option{-usbdevice} to do the same.
       
  1887 
       
  1888 @item Now you can try to use the host USB device in QEMU.
       
  1889 
       
  1890 @end enumerate
       
  1891 
       
  1892 When relaunching QEMU, you may have to unplug and plug again the USB
       
  1893 device to make it work again (this is a bug).
       
  1894 
       
  1895 @node vnc_security
       
  1896 @section VNC security
       
  1897 
       
  1898 The VNC server capability provides access to the graphical console
       
  1899 of the guest VM across the network. This has a number of security
       
  1900 considerations depending on the deployment scenarios.
       
  1901 
       
  1902 @menu
       
  1903 * vnc_sec_none::
       
  1904 * vnc_sec_password::
       
  1905 * vnc_sec_certificate::
       
  1906 * vnc_sec_certificate_verify::
       
  1907 * vnc_sec_certificate_pw::
       
  1908 * vnc_generate_cert::
       
  1909 @end menu
       
  1910 @node vnc_sec_none
       
  1911 @subsection Without passwords
       
  1912 
       
  1913 The simplest VNC server setup does not include any form of authentication.
       
  1914 For this setup it is recommended to restrict it to listen on a UNIX domain
       
  1915 socket only. For example
       
  1916 
       
  1917 @example
       
  1918 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
       
  1919 @end example
       
  1920 
       
  1921 This ensures that only users on local box with read/write access to that
       
  1922 path can access the VNC server. To securely access the VNC server from a
       
  1923 remote machine, a combination of netcat+ssh can be used to provide a secure
       
  1924 tunnel.
       
  1925 
       
  1926 @node vnc_sec_password
       
  1927 @subsection With passwords
       
  1928 
       
  1929 The VNC protocol has limited support for password based authentication. Since
       
  1930 the protocol limits passwords to 8 characters it should not be considered
       
  1931 to provide high security. The password can be fairly easily brute-forced by
       
  1932 a client making repeat connections. For this reason, a VNC server using password
       
  1933 authentication should be restricted to only listen on the loopback interface
       
  1934 or UNIX domain sockets. Password authentication is requested with the @code{password}
       
  1935 option, and then once QEMU is running the password is set with the monitor. Until
       
  1936 the monitor is used to set the password all clients will be rejected.
       
  1937 
       
  1938 @example
       
  1939 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
       
  1940 (qemu) change vnc password
       
  1941 Password: ********
       
  1942 (qemu)
       
  1943 @end example
       
  1944 
       
  1945 @node vnc_sec_certificate
       
  1946 @subsection With x509 certificates
       
  1947 
       
  1948 The QEMU VNC server also implements the VeNCrypt extension allowing use of
       
  1949 TLS for encryption of the session, and x509 certificates for authentication.
       
  1950 The use of x509 certificates is strongly recommended, because TLS on its
       
  1951 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
       
  1952 support provides a secure session, but no authentication. This allows any
       
  1953 client to connect, and provides an encrypted session.
       
  1954 
       
  1955 @example
       
  1956 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
       
  1957 @end example
       
  1958 
       
  1959 In the above example @code{/etc/pki/qemu} should contain at least three files,
       
  1960 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
       
  1961 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
       
  1962 NB the @code{server-key.pem} file should be protected with file mode 0600 to
       
  1963 only be readable by the user owning it.
       
  1964 
       
  1965 @node vnc_sec_certificate_verify
       
  1966 @subsection With x509 certificates and client verification
       
  1967 
       
  1968 Certificates can also provide a means to authenticate the client connecting.
       
  1969 The server will request that the client provide a certificate, which it will
       
  1970 then validate against the CA certificate. This is a good choice if deploying
       
  1971 in an environment with a private internal certificate authority.
       
  1972 
       
  1973 @example
       
  1974 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
       
  1975 @end example
       
  1976 
       
  1977 
       
  1978 @node vnc_sec_certificate_pw
       
  1979 @subsection With x509 certificates, client verification and passwords
       
  1980 
       
  1981 Finally, the previous method can be combined with VNC password authentication
       
  1982 to provide two layers of authentication for clients.
       
  1983 
       
  1984 @example
       
  1985 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
       
  1986 (qemu) change vnc password
       
  1987 Password: ********
       
  1988 (qemu)
       
  1989 @end example
       
  1990 
       
  1991 @node vnc_generate_cert
       
  1992 @subsection Generating certificates for VNC
       
  1993 
       
  1994 The GNU TLS packages provides a command called @code{certtool} which can
       
  1995 be used to generate certificates and keys in PEM format. At a minimum it
       
  1996 is neccessary to setup a certificate authority, and issue certificates to
       
  1997 each server. If using certificates for authentication, then each client
       
  1998 will also need to be issued a certificate. The recommendation is for the
       
  1999 server to keep its certificates in either @code{/etc/pki/qemu} or for
       
  2000 unprivileged users in @code{$HOME/.pki/qemu}.
       
  2001 
       
  2002 @menu
       
  2003 * vnc_generate_ca::
       
  2004 * vnc_generate_server::
       
  2005 * vnc_generate_client::
       
  2006 @end menu
       
  2007 @node vnc_generate_ca
       
  2008 @subsubsection Setup the Certificate Authority
       
  2009 
       
  2010 This step only needs to be performed once per organization / organizational
       
  2011 unit. First the CA needs a private key. This key must be kept VERY secret
       
  2012 and secure. If this key is compromised the entire trust chain of the certificates
       
  2013 issued with it is lost.
       
  2014 
       
  2015 @example
       
  2016 # certtool --generate-privkey > ca-key.pem
       
  2017 @end example
       
  2018 
       
  2019 A CA needs to have a public certificate. For simplicity it can be a self-signed
       
  2020 certificate, or one issue by a commercial certificate issuing authority. To
       
  2021 generate a self-signed certificate requires one core piece of information, the
       
  2022 name of the organization.
       
  2023 
       
  2024 @example
       
  2025 # cat > ca.info <<EOF
       
  2026 cn = Name of your organization
       
  2027 ca
       
  2028 cert_signing_key
       
  2029 EOF
       
  2030 # certtool --generate-self-signed \
       
  2031            --load-privkey ca-key.pem
       
  2032            --template ca.info \
       
  2033            --outfile ca-cert.pem
       
  2034 @end example
       
  2035 
       
  2036 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
       
  2037 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
       
  2038 
       
  2039 @node vnc_generate_server
       
  2040 @subsubsection Issuing server certificates
       
  2041 
       
  2042 Each server (or host) needs to be issued with a key and certificate. When connecting
       
  2043 the certificate is sent to the client which validates it against the CA certificate.
       
  2044 The core piece of information for a server certificate is the hostname. This should
       
  2045 be the fully qualified hostname that the client will connect with, since the client
       
  2046 will typically also verify the hostname in the certificate. On the host holding the
       
  2047 secure CA private key:
       
  2048 
       
  2049 @example
       
  2050 # cat > server.info <<EOF
       
  2051 organization = Name  of your organization
       
  2052 cn = server.foo.example.com
       
  2053 tls_www_server
       
  2054 encryption_key
       
  2055 signing_key
       
  2056 EOF
       
  2057 # certtool --generate-privkey > server-key.pem
       
  2058 # certtool --generate-certificate \
       
  2059            --load-ca-certificate ca-cert.pem \
       
  2060            --load-ca-privkey ca-key.pem \
       
  2061            --load-privkey server server-key.pem \
       
  2062            --template server.info \
       
  2063            --outfile server-cert.pem
       
  2064 @end example
       
  2065 
       
  2066 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
       
  2067 to the server for which they were generated. The @code{server-key.pem} is security
       
  2068 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
       
  2069 
       
  2070 @node vnc_generate_client
       
  2071 @subsubsection Issuing client certificates
       
  2072 
       
  2073 If the QEMU VNC server is to use the @code{x509verify} option to validate client
       
  2074 certificates as its authentication mechanism, each client also needs to be issued
       
  2075 a certificate. The client certificate contains enough metadata to uniquely identify
       
  2076 the client, typically organization, state, city, building, etc. On the host holding
       
  2077 the secure CA private key:
       
  2078 
       
  2079 @example
       
  2080 # cat > client.info <<EOF
       
  2081 country = GB
       
  2082 state = London
       
  2083 locality = London
       
  2084 organiazation = Name of your organization
       
  2085 cn = client.foo.example.com
       
  2086 tls_www_client
       
  2087 encryption_key
       
  2088 signing_key
       
  2089 EOF
       
  2090 # certtool --generate-privkey > client-key.pem
       
  2091 # certtool --generate-certificate \
       
  2092            --load-ca-certificate ca-cert.pem \
       
  2093            --load-ca-privkey ca-key.pem \
       
  2094            --load-privkey client-key.pem \
       
  2095            --template client.info \
       
  2096            --outfile client-cert.pem
       
  2097 @end example
       
  2098 
       
  2099 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
       
  2100 copied to the client for which they were generated.
       
  2101 
       
  2102 @node gdb_usage
       
  2103 @section GDB usage
       
  2104 
       
  2105 QEMU has a primitive support to work with gdb, so that you can do
       
  2106 'Ctrl-C' while the virtual machine is running and inspect its state.
       
  2107 
       
  2108 In order to use gdb, launch qemu with the '-s' option. It will wait for a
       
  2109 gdb connection:
       
  2110 @example
       
  2111 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
       
  2112        -append "root=/dev/hda"
       
  2113 Connected to host network interface: tun0
       
  2114 Waiting gdb connection on port 1234
       
  2115 @end example
       
  2116 
       
  2117 Then launch gdb on the 'vmlinux' executable:
       
  2118 @example
       
  2119 > gdb vmlinux
       
  2120 @end example
       
  2121 
       
  2122 In gdb, connect to QEMU:
       
  2123 @example
       
  2124 (gdb) target remote localhost:1234
       
  2125 @end example
       
  2126 
       
  2127 Then you can use gdb normally. For example, type 'c' to launch the kernel:
       
  2128 @example
       
  2129 (gdb) c
       
  2130 @end example
       
  2131 
       
  2132 Here are some useful tips in order to use gdb on system code:
       
  2133 
       
  2134 @enumerate
       
  2135 @item
       
  2136 Use @code{info reg} to display all the CPU registers.
       
  2137 @item
       
  2138 Use @code{x/10i $eip} to display the code at the PC position.
       
  2139 @item
       
  2140 Use @code{set architecture i8086} to dump 16 bit code. Then use
       
  2141 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
       
  2142 @end enumerate
       
  2143 
       
  2144 Advanced debugging options:
       
  2145 
       
  2146 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
       
  2147 @table @code
       
  2148 @item maintenance packet qqemu.sstepbits
       
  2149 
       
  2150 This will display the MASK bits used to control the single stepping IE:
       
  2151 @example
       
  2152 (gdb) maintenance packet qqemu.sstepbits
       
  2153 sending: "qqemu.sstepbits"
       
  2154 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
       
  2155 @end example
       
  2156 @item maintenance packet qqemu.sstep
       
  2157 
       
  2158 This will display the current value of the mask used when single stepping IE:
       
  2159 @example
       
  2160 (gdb) maintenance packet qqemu.sstep
       
  2161 sending: "qqemu.sstep"
       
  2162 received: "0x7"
       
  2163 @end example
       
  2164 @item maintenance packet Qqemu.sstep=HEX_VALUE
       
  2165 
       
  2166 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
       
  2167 @example
       
  2168 (gdb) maintenance packet Qqemu.sstep=0x5
       
  2169 sending: "qemu.sstep=0x5"
       
  2170 received: "OK"
       
  2171 @end example
       
  2172 @end table
       
  2173 
       
  2174 @node pcsys_os_specific
       
  2175 @section Target OS specific information
       
  2176 
       
  2177 @subsection Linux
       
  2178 
       
  2179 To have access to SVGA graphic modes under X11, use the @code{vesa} or
       
  2180 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
       
  2181 color depth in the guest and the host OS.
       
  2182 
       
  2183 When using a 2.6 guest Linux kernel, you should add the option
       
  2184 @code{clock=pit} on the kernel command line because the 2.6 Linux
       
  2185 kernels make very strict real time clock checks by default that QEMU
       
  2186 cannot simulate exactly.
       
  2187 
       
  2188 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
       
  2189 not activated because QEMU is slower with this patch. The QEMU
       
  2190 Accelerator Module is also much slower in this case. Earlier Fedora
       
  2191 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
       
  2192 patch by default. Newer kernels don't have it.
       
  2193 
       
  2194 @subsection Windows
       
  2195 
       
  2196 If you have a slow host, using Windows 95 is better as it gives the
       
  2197 best speed. Windows 2000 is also a good choice.
       
  2198 
       
  2199 @subsubsection SVGA graphic modes support
       
  2200 
       
  2201 QEMU emulates a Cirrus Logic GD5446 Video
       
  2202 card. All Windows versions starting from Windows 95 should recognize
       
  2203 and use this graphic card. For optimal performances, use 16 bit color
       
  2204 depth in the guest and the host OS.
       
  2205 
       
  2206 If you are using Windows XP as guest OS and if you want to use high
       
  2207 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
       
  2208 1280x1024x16), then you should use the VESA VBE virtual graphic card
       
  2209 (option @option{-std-vga}).
       
  2210 
       
  2211 @subsubsection CPU usage reduction
       
  2212 
       
  2213 Windows 9x does not correctly use the CPU HLT
       
  2214 instruction. The result is that it takes host CPU cycles even when
       
  2215 idle. You can install the utility from
       
  2216 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
       
  2217 problem. Note that no such tool is needed for NT, 2000 or XP.
       
  2218 
       
  2219 @subsubsection Windows 2000 disk full problem
       
  2220 
       
  2221 Windows 2000 has a bug which gives a disk full problem during its
       
  2222 installation. When installing it, use the @option{-win2k-hack} QEMU
       
  2223 option to enable a specific workaround. After Windows 2000 is
       
  2224 installed, you no longer need this option (this option slows down the
       
  2225 IDE transfers).
       
  2226 
       
  2227 @subsubsection Windows 2000 shutdown
       
  2228 
       
  2229 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
       
  2230 can. It comes from the fact that Windows 2000 does not automatically
       
  2231 use the APM driver provided by the BIOS.
       
  2232 
       
  2233 In order to correct that, do the following (thanks to Struan
       
  2234 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
       
  2235 Add/Troubleshoot a device => Add a new device & Next => No, select the
       
  2236 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
       
  2237 (again) a few times. Now the driver is installed and Windows 2000 now
       
  2238 correctly instructs QEMU to shutdown at the appropriate moment.
       
  2239 
       
  2240 @subsubsection Share a directory between Unix and Windows
       
  2241 
       
  2242 See @ref{sec_invocation} about the help of the option @option{-smb}.
       
  2243 
       
  2244 @subsubsection Windows XP security problem
       
  2245 
       
  2246 Some releases of Windows XP install correctly but give a security
       
  2247 error when booting:
       
  2248 @example
       
  2249 A problem is preventing Windows from accurately checking the
       
  2250 license for this computer. Error code: 0x800703e6.
       
  2251 @end example
       
  2252 
       
  2253 The workaround is to install a service pack for XP after a boot in safe
       
  2254 mode. Then reboot, and the problem should go away. Since there is no
       
  2255 network while in safe mode, its recommended to download the full
       
  2256 installation of SP1 or SP2 and transfer that via an ISO or using the
       
  2257 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
       
  2258 
       
  2259 @subsection MS-DOS and FreeDOS
       
  2260 
       
  2261 @subsubsection CPU usage reduction
       
  2262 
       
  2263 DOS does not correctly use the CPU HLT instruction. The result is that
       
  2264 it takes host CPU cycles even when idle. You can install the utility
       
  2265 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
       
  2266 problem.
       
  2267 
       
  2268 @node QEMU System emulator for non PC targets
       
  2269 @chapter QEMU System emulator for non PC targets
       
  2270 
       
  2271 QEMU is a generic emulator and it emulates many non PC
       
  2272 machines. Most of the options are similar to the PC emulator. The
       
  2273 differences are mentioned in the following sections.
       
  2274 
       
  2275 @menu
       
  2276 * QEMU PowerPC System emulator::
       
  2277 * Sparc32 System emulator::
       
  2278 * Sparc64 System emulator::
       
  2279 * MIPS System emulator::
       
  2280 * ARM System emulator::
       
  2281 * ColdFire System emulator::
       
  2282 @end menu
       
  2283 
       
  2284 @node QEMU PowerPC System emulator
       
  2285 @section QEMU PowerPC System emulator
       
  2286 
       
  2287 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
       
  2288 or PowerMac PowerPC system.
       
  2289 
       
  2290 QEMU emulates the following PowerMac peripherals:
       
  2291 
       
  2292 @itemize @minus
       
  2293 @item
       
  2294 UniNorth PCI Bridge
       
  2295 @item
       
  2296 PCI VGA compatible card with VESA Bochs Extensions
       
  2297 @item
       
  2298 2 PMAC IDE interfaces with hard disk and CD-ROM support
       
  2299 @item
       
  2300 NE2000 PCI adapters
       
  2301 @item
       
  2302 Non Volatile RAM
       
  2303 @item
       
  2304 VIA-CUDA with ADB keyboard and mouse.
       
  2305 @end itemize
       
  2306 
       
  2307 QEMU emulates the following PREP peripherals:
       
  2308 
       
  2309 @itemize @minus
       
  2310 @item
       
  2311 PCI Bridge
       
  2312 @item
       
  2313 PCI VGA compatible card with VESA Bochs Extensions
       
  2314 @item
       
  2315 2 IDE interfaces with hard disk and CD-ROM support
       
  2316 @item
       
  2317 Floppy disk
       
  2318 @item
       
  2319 NE2000 network adapters
       
  2320 @item
       
  2321 Serial port
       
  2322 @item
       
  2323 PREP Non Volatile RAM
       
  2324 @item
       
  2325 PC compatible keyboard and mouse.
       
  2326 @end itemize
       
  2327 
       
  2328 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
       
  2329 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
       
  2330 
       
  2331 @c man begin OPTIONS
       
  2332 
       
  2333 The following options are specific to the PowerPC emulation:
       
  2334 
       
  2335 @table @option
       
  2336 
       
  2337 @item -g WxH[xDEPTH]
       
  2338 
       
  2339 Set the initial VGA graphic mode. The default is 800x600x15.
       
  2340 
       
  2341 @end table
       
  2342 
       
  2343 @c man end
       
  2344 
       
  2345 
       
  2346 More information is available at
       
  2347 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
       
  2348 
       
  2349 @node Sparc32 System emulator
       
  2350 @section Sparc32 System emulator
       
  2351 
       
  2352 Use the executable @file{qemu-system-sparc} to simulate the following
       
  2353 Sun4m architecture machines:
       
  2354 @itemize @minus
       
  2355 @item
       
  2356 SPARCstation 4
       
  2357 @item
       
  2358 SPARCstation 5
       
  2359 @item
       
  2360 SPARCstation 10
       
  2361 @item
       
  2362 SPARCstation 20
       
  2363 @item
       
  2364 SPARCserver 600MP
       
  2365 @item
       
  2366 SPARCstation LX
       
  2367 @item
       
  2368 SPARCstation Voyager
       
  2369 @item
       
  2370 SPARCclassic
       
  2371 @item
       
  2372 SPARCbook
       
  2373 @end itemize
       
  2374 
       
  2375 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
       
  2376 but Linux limits the number of usable CPUs to 4.
       
  2377 
       
  2378 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
       
  2379 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
       
  2380 emulators are not usable yet.
       
  2381 
       
  2382 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
       
  2383 
       
  2384 @itemize @minus
       
  2385 @item
       
  2386 IOMMU or IO-UNITs
       
  2387 @item
       
  2388 TCX Frame buffer
       
  2389 @item
       
  2390 Lance (Am7990) Ethernet
       
  2391 @item
       
  2392 Non Volatile RAM M48T02/M48T08
       
  2393 @item
       
  2394 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
       
  2395 and power/reset logic
       
  2396 @item
       
  2397 ESP SCSI controller with hard disk and CD-ROM support
       
  2398 @item
       
  2399 Floppy drive (not on SS-600MP)
       
  2400 @item
       
  2401 CS4231 sound device (only on SS-5, not working yet)
       
  2402 @end itemize
       
  2403 
       
  2404 The number of peripherals is fixed in the architecture.  Maximum
       
  2405 memory size depends on the machine type, for SS-5 it is 256MB and for
       
  2406 others 2047MB.
       
  2407 
       
  2408 Since version 0.8.2, QEMU uses OpenBIOS
       
  2409 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
       
  2410 firmware implementation. The goal is to implement a 100% IEEE
       
  2411 1275-1994 (referred to as Open Firmware) compliant firmware.
       
  2412 
       
  2413 A sample Linux 2.6 series kernel and ram disk image are available on
       
  2414 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
       
  2415 some kernel versions work. Please note that currently Solaris kernels
       
  2416 don't work probably due to interface issues between OpenBIOS and
       
  2417 Solaris.
       
  2418 
       
  2419 @c man begin OPTIONS
       
  2420 
       
  2421 The following options are specific to the Sparc32 emulation:
       
  2422 
       
  2423 @table @option
       
  2424 
       
  2425 @item -g WxHx[xDEPTH]
       
  2426 
       
  2427 Set the initial TCX graphic mode. The default is 1024x768x8, currently
       
  2428 the only other possible mode is 1024x768x24.
       
  2429 
       
  2430 @item -prom-env string
       
  2431 
       
  2432 Set OpenBIOS variables in NVRAM, for example:
       
  2433 
       
  2434 @example
       
  2435 qemu-system-sparc -prom-env 'auto-boot?=false' \
       
  2436  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
       
  2437 @end example
       
  2438 
       
  2439 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
       
  2440 
       
  2441 Set the emulated machine type. Default is SS-5.
       
  2442 
       
  2443 @end table
       
  2444 
       
  2445 @c man end
       
  2446 
       
  2447 @node Sparc64 System emulator
       
  2448 @section Sparc64 System emulator
       
  2449 
       
  2450 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
       
  2451 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
       
  2452 Niagara (T1) machine. The emulator is not usable for anything yet, but
       
  2453 it can launch some kernels.
       
  2454 
       
  2455 QEMU emulates the following peripherals:
       
  2456 
       
  2457 @itemize @minus
       
  2458 @item
       
  2459 UltraSparc IIi APB PCI Bridge
       
  2460 @item
       
  2461 PCI VGA compatible card with VESA Bochs Extensions
       
  2462 @item
       
  2463 PS/2 mouse and keyboard
       
  2464 @item
       
  2465 Non Volatile RAM M48T59
       
  2466 @item
       
  2467 PC-compatible serial ports
       
  2468 @item
       
  2469 2 PCI IDE interfaces with hard disk and CD-ROM support
       
  2470 @item
       
  2471 Floppy disk
       
  2472 @end itemize
       
  2473 
       
  2474 @c man begin OPTIONS
       
  2475 
       
  2476 The following options are specific to the Sparc64 emulation:
       
  2477 
       
  2478 @table @option
       
  2479 
       
  2480 @item -prom-env string
       
  2481 
       
  2482 Set OpenBIOS variables in NVRAM, for example:
       
  2483 
       
  2484 @example
       
  2485 qemu-system-sparc64 -prom-env 'auto-boot?=false'
       
  2486 @end example
       
  2487 
       
  2488 @item -M [sun4u|sun4v|Niagara]
       
  2489 
       
  2490 Set the emulated machine type. The default is sun4u.
       
  2491 
       
  2492 @end table
       
  2493 
       
  2494 @c man end
       
  2495 
       
  2496 @node MIPS System emulator
       
  2497 @section MIPS System emulator
       
  2498 
       
  2499 Four executables cover simulation of 32 and 64-bit MIPS systems in
       
  2500 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
       
  2501 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
       
  2502 Five different machine types are emulated:
       
  2503 
       
  2504 @itemize @minus
       
  2505 @item
       
  2506 A generic ISA PC-like machine "mips"
       
  2507 @item
       
  2508 The MIPS Malta prototype board "malta"
       
  2509 @item
       
  2510 An ACER Pica "pica61". This machine needs the 64-bit emulator.
       
  2511 @item
       
  2512 MIPS emulator pseudo board "mipssim"
       
  2513 @item
       
  2514 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
       
  2515 @end itemize
       
  2516 
       
  2517 The generic emulation is supported by Debian 'Etch' and is able to
       
  2518 install Debian into a virtual disk image. The following devices are
       
  2519 emulated:
       
  2520 
       
  2521 @itemize @minus
       
  2522 @item
       
  2523 A range of MIPS CPUs, default is the 24Kf
       
  2524 @item
       
  2525 PC style serial port
       
  2526 @item
       
  2527 PC style IDE disk
       
  2528 @item
       
  2529 NE2000 network card
       
  2530 @end itemize
       
  2531 
       
  2532 The Malta emulation supports the following devices:
       
  2533 
       
  2534 @itemize @minus
       
  2535 @item
       
  2536 Core board with MIPS 24Kf CPU and Galileo system controller
       
  2537 @item
       
  2538 PIIX4 PCI/USB/SMbus controller
       
  2539 @item
       
  2540 The Multi-I/O chip's serial device
       
  2541 @item
       
  2542 PCnet32 PCI network card
       
  2543 @item
       
  2544 Malta FPGA serial device
       
  2545 @item
       
  2546 Cirrus VGA graphics card
       
  2547 @end itemize
       
  2548 
       
  2549 The ACER Pica emulation supports:
       
  2550 
       
  2551 @itemize @minus
       
  2552 @item
       
  2553 MIPS R4000 CPU
       
  2554 @item
       
  2555 PC-style IRQ and DMA controllers
       
  2556 @item
       
  2557 PC Keyboard
       
  2558 @item
       
  2559 IDE controller
       
  2560 @end itemize
       
  2561 
       
  2562 The mipssim pseudo board emulation provides an environment similiar
       
  2563 to what the proprietary MIPS emulator uses for running Linux.
       
  2564 It supports:
       
  2565 
       
  2566 @itemize @minus
       
  2567 @item
       
  2568 A range of MIPS CPUs, default is the 24Kf
       
  2569 @item
       
  2570 PC style serial port
       
  2571 @item
       
  2572 MIPSnet network emulation
       
  2573 @end itemize
       
  2574 
       
  2575 The MIPS Magnum R4000 emulation supports:
       
  2576 
       
  2577 @itemize @minus
       
  2578 @item
       
  2579 MIPS R4000 CPU
       
  2580 @item
       
  2581 PC-style IRQ controller
       
  2582 @item
       
  2583 PC Keyboard
       
  2584 @item
       
  2585 SCSI controller
       
  2586 @item
       
  2587 G364 framebuffer
       
  2588 @end itemize
       
  2589 
       
  2590 
       
  2591 @node ARM System emulator
       
  2592 @section ARM System emulator
       
  2593 
       
  2594 Use the executable @file{qemu-system-arm} to simulate a ARM
       
  2595 machine. The ARM Integrator/CP board is emulated with the following
       
  2596 devices:
       
  2597 
       
  2598 @itemize @minus
       
  2599 @item
       
  2600 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
       
  2601 @item
       
  2602 Two PL011 UARTs
       
  2603 @item
       
  2604 SMC 91c111 Ethernet adapter
       
  2605 @item
       
  2606 PL110 LCD controller
       
  2607 @item
       
  2608 PL050 KMI with PS/2 keyboard and mouse.
       
  2609 @item
       
  2610 PL181 MultiMedia Card Interface with SD card.
       
  2611 @end itemize
       
  2612 
       
  2613 The ARM Versatile baseboard is emulated with the following devices:
       
  2614 
       
  2615 @itemize @minus
       
  2616 @item
       
  2617 ARM926E, ARM1136 or Cortex-A8 CPU
       
  2618 @item
       
  2619 PL190 Vectored Interrupt Controller
       
  2620 @item
       
  2621 Four PL011 UARTs
       
  2622 @item
       
  2623 SMC 91c111 Ethernet adapter
       
  2624 @item
       
  2625 PL110 LCD controller
       
  2626 @item
       
  2627 PL050 KMI with PS/2 keyboard and mouse.
       
  2628 @item
       
  2629 PCI host bridge.  Note the emulated PCI bridge only provides access to
       
  2630 PCI memory space.  It does not provide access to PCI IO space.
       
  2631 This means some devices (eg. ne2k_pci NIC) are not usable, and others
       
  2632 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
       
  2633 mapped control registers.
       
  2634 @item
       
  2635 PCI OHCI USB controller.
       
  2636 @item
       
  2637 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
       
  2638 @item
       
  2639 PL181 MultiMedia Card Interface with SD card.
       
  2640 @end itemize
       
  2641 
       
  2642 The ARM RealView Emulation baseboard is emulated with the following devices:
       
  2643 
       
  2644 @itemize @minus
       
  2645 @item
       
  2646 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
       
  2647 @item
       
  2648 ARM AMBA Generic/Distributed Interrupt Controller
       
  2649 @item
       
  2650 Four PL011 UARTs
       
  2651 @item
       
  2652 SMC 91c111 Ethernet adapter
       
  2653 @item
       
  2654 PL110 LCD controller
       
  2655 @item
       
  2656 PL050 KMI with PS/2 keyboard and mouse
       
  2657 @item
       
  2658 PCI host bridge
       
  2659 @item
       
  2660 PCI OHCI USB controller
       
  2661 @item
       
  2662 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
       
  2663 @item
       
  2664 PL181 MultiMedia Card Interface with SD card.
       
  2665 @end itemize
       
  2666 
       
  2667 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
       
  2668 and "Terrier") emulation includes the following peripherals:
       
  2669 
       
  2670 @itemize @minus
       
  2671 @item
       
  2672 Intel PXA270 System-on-chip (ARM V5TE core)
       
  2673 @item
       
  2674 NAND Flash memory
       
  2675 @item
       
  2676 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
       
  2677 @item
       
  2678 On-chip OHCI USB controller
       
  2679 @item
       
  2680 On-chip LCD controller
       
  2681 @item
       
  2682 On-chip Real Time Clock
       
  2683 @item
       
  2684 TI ADS7846 touchscreen controller on SSP bus
       
  2685 @item
       
  2686 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
       
  2687 @item
       
  2688 GPIO-connected keyboard controller and LEDs
       
  2689 @item
       
  2690 Secure Digital card connected to PXA MMC/SD host
       
  2691 @item
       
  2692 Three on-chip UARTs
       
  2693 @item
       
  2694 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
       
  2695 @end itemize
       
  2696 
       
  2697 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
       
  2698 following elements:
       
  2699 
       
  2700 @itemize @minus
       
  2701 @item
       
  2702 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
       
  2703 @item
       
  2704 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
       
  2705 @item
       
  2706 On-chip LCD controller
       
  2707 @item
       
  2708 On-chip Real Time Clock
       
  2709 @item
       
  2710 TI TSC2102i touchscreen controller / analog-digital converter / Audio
       
  2711 CODEC, connected through MicroWire and I@math{^2}S busses
       
  2712 @item
       
  2713 GPIO-connected matrix keypad
       
  2714 @item
       
  2715 Secure Digital card connected to OMAP MMC/SD host
       
  2716 @item
       
  2717 Three on-chip UARTs
       
  2718 @end itemize
       
  2719 
       
  2720 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
       
  2721 emulation supports the following elements:
       
  2722 
       
  2723 @itemize @minus
       
  2724 @item
       
  2725 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
       
  2726 @item
       
  2727 RAM and non-volatile OneNAND Flash memories
       
  2728 @item
       
  2729 Display connected to EPSON remote framebuffer chip and OMAP on-chip
       
  2730 display controller and a LS041y3 MIPI DBI-C controller
       
  2731 @item
       
  2732 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
       
  2733 driven through SPI bus
       
  2734 @item
       
  2735 National Semiconductor LM8323-controlled qwerty keyboard driven
       
  2736 through I@math{^2}C bus
       
  2737 @item
       
  2738 Secure Digital card connected to OMAP MMC/SD host
       
  2739 @item
       
  2740 Three OMAP on-chip UARTs and on-chip STI debugging console
       
  2741 @item
       
  2742 A Bluetooth(R) transciever and HCI connected to an UART
       
  2743 @item
       
  2744 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
       
  2745 TUSB6010 chip - only USB host mode is supported
       
  2746 @item
       
  2747 TI TMP105 temperature sensor driven through I@math{^2}C bus
       
  2748 @item
       
  2749 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
       
  2750 @item
       
  2751 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
       
  2752 through CBUS
       
  2753 @end itemize
       
  2754 
       
  2755 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
       
  2756 devices:
       
  2757 
       
  2758 @itemize @minus
       
  2759 @item
       
  2760 Cortex-M3 CPU core.
       
  2761 @item
       
  2762 64k Flash and 8k SRAM.
       
  2763 @item
       
  2764 Timers, UARTs, ADC and I@math{^2}C interface.
       
  2765 @item
       
  2766 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
       
  2767 @end itemize
       
  2768 
       
  2769 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
       
  2770 devices:
       
  2771 
       
  2772 @itemize @minus
       
  2773 @item
       
  2774 Cortex-M3 CPU core.
       
  2775 @item
       
  2776 256k Flash and 64k SRAM.
       
  2777 @item
       
  2778 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
       
  2779 @item
       
  2780 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
       
  2781 @end itemize
       
  2782 
       
  2783 The Freecom MusicPal internet radio emulation includes the following
       
  2784 elements:
       
  2785 
       
  2786 @itemize @minus
       
  2787 @item
       
  2788 Marvell MV88W8618 ARM core.
       
  2789 @item
       
  2790 32 MB RAM, 256 KB SRAM, 8 MB flash.
       
  2791 @item
       
  2792 Up to 2 16550 UARTs
       
  2793 @item
       
  2794 MV88W8xx8 Ethernet controller
       
  2795 @item
       
  2796 MV88W8618 audio controller, WM8750 CODEC and mixer
       
  2797 @item
       
  2798 128×64 display with brightness control
       
  2799 @item
       
  2800 2 buttons, 2 navigation wheels with button function
       
  2801 @end itemize
       
  2802 
       
  2803 The Siemens SX1 models v1 and v2 (default) basic emulation.
       
  2804 The emulaton includes the following elements:
       
  2805 
       
  2806 @itemize @minus
       
  2807 @item
       
  2808 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
       
  2809 @item
       
  2810 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
       
  2811 V1
       
  2812 1 Flash of 16MB and 1 Flash of 8MB
       
  2813 V2
       
  2814 1 Flash of 32MB
       
  2815 @item
       
  2816 On-chip LCD controller
       
  2817 @item
       
  2818 On-chip Real Time Clock
       
  2819 @item
       
  2820 Secure Digital card connected to OMAP MMC/SD host
       
  2821 @item
       
  2822 Three on-chip UARTs
       
  2823 @end itemize
       
  2824 
       
  2825 A Linux 2.6 test image is available on the QEMU web site. More
       
  2826 information is available in the QEMU mailing-list archive.
       
  2827 
       
  2828 @node ColdFire System emulator
       
  2829 @section ColdFire System emulator
       
  2830 
       
  2831 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
       
  2832 The emulator is able to boot a uClinux kernel.
       
  2833 
       
  2834 The M5208EVB emulation includes the following devices:
       
  2835 
       
  2836 @itemize @minus
       
  2837 @item
       
  2838 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
       
  2839 @item
       
  2840 Three Two on-chip UARTs.
       
  2841 @item
       
  2842 Fast Ethernet Controller (FEC)
       
  2843 @end itemize
       
  2844 
       
  2845 The AN5206 emulation includes the following devices:
       
  2846 
       
  2847 @itemize @minus
       
  2848 @item
       
  2849 MCF5206 ColdFire V2 Microprocessor.
       
  2850 @item
       
  2851 Two on-chip UARTs.
       
  2852 @end itemize
       
  2853 
       
  2854 @node QEMU User space emulator
       
  2855 @chapter QEMU User space emulator
       
  2856 
       
  2857 @menu
       
  2858 * Supported Operating Systems ::
       
  2859 * Linux User space emulator::
       
  2860 * Mac OS X/Darwin User space emulator ::
       
  2861 * BSD User space emulator ::
       
  2862 @end menu
       
  2863 
       
  2864 @node Supported Operating Systems
       
  2865 @section Supported Operating Systems
       
  2866 
       
  2867 The following OS are supported in user space emulation:
       
  2868 
       
  2869 @itemize @minus
       
  2870 @item
       
  2871 Linux (referred as qemu-linux-user)
       
  2872 @item
       
  2873 Mac OS X/Darwin (referred as qemu-darwin-user)
       
  2874 @item
       
  2875 BSD (referred as qemu-bsd-user)
       
  2876 @end itemize
       
  2877 
       
  2878 @node Linux User space emulator
       
  2879 @section Linux User space emulator
       
  2880 
       
  2881 @menu
       
  2882 * Quick Start::
       
  2883 * Wine launch::
       
  2884 * Command line options::
       
  2885 * Other binaries::
       
  2886 @end menu
       
  2887 
       
  2888 @node Quick Start
       
  2889 @subsection Quick Start
       
  2890 
       
  2891 In order to launch a Linux process, QEMU needs the process executable
       
  2892 itself and all the target (x86) dynamic libraries used by it.
       
  2893 
       
  2894 @itemize
       
  2895 
       
  2896 @item On x86, you can just try to launch any process by using the native
       
  2897 libraries:
       
  2898 
       
  2899 @example
       
  2900 qemu-i386 -L / /bin/ls
       
  2901 @end example
       
  2902 
       
  2903 @code{-L /} tells that the x86 dynamic linker must be searched with a
       
  2904 @file{/} prefix.
       
  2905 
       
  2906 @item Since QEMU is also a linux process, you can launch qemu with
       
  2907 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
       
  2908 
       
  2909 @example
       
  2910 qemu-i386 -L / qemu-i386 -L / /bin/ls
       
  2911 @end example
       
  2912 
       
  2913 @item On non x86 CPUs, you need first to download at least an x86 glibc
       
  2914 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
       
  2915 @code{LD_LIBRARY_PATH} is not set:
       
  2916 
       
  2917 @example
       
  2918 unset LD_LIBRARY_PATH
       
  2919 @end example
       
  2920 
       
  2921 Then you can launch the precompiled @file{ls} x86 executable:
       
  2922 
       
  2923 @example
       
  2924 qemu-i386 tests/i386/ls
       
  2925 @end example
       
  2926 You can look at @file{qemu-binfmt-conf.sh} so that
       
  2927 QEMU is automatically launched by the Linux kernel when you try to
       
  2928 launch x86 executables. It requires the @code{binfmt_misc} module in the
       
  2929 Linux kernel.
       
  2930 
       
  2931 @item The x86 version of QEMU is also included. You can try weird things such as:
       
  2932 @example
       
  2933 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
       
  2934           /usr/local/qemu-i386/bin/ls-i386
       
  2935 @end example
       
  2936 
       
  2937 @end itemize
       
  2938 
       
  2939 @node Wine launch
       
  2940 @subsection Wine launch
       
  2941 
       
  2942 @itemize
       
  2943 
       
  2944 @item Ensure that you have a working QEMU with the x86 glibc
       
  2945 distribution (see previous section). In order to verify it, you must be
       
  2946 able to do:
       
  2947 
       
  2948 @example
       
  2949 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
       
  2950 @end example
       
  2951 
       
  2952 @item Download the binary x86 Wine install
       
  2953 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
       
  2954 
       
  2955 @item Configure Wine on your account. Look at the provided script
       
  2956 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
       
  2957 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
       
  2958 
       
  2959 @item Then you can try the example @file{putty.exe}:
       
  2960 
       
  2961 @example
       
  2962 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
       
  2963           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
       
  2964 @end example
       
  2965 
       
  2966 @end itemize
       
  2967 
       
  2968 @node Command line options
       
  2969 @subsection Command line options
       
  2970 
       
  2971 @example
       
  2972 usage: qemu-i386 [-h] [-d] [-L path] [-r version] [-s size] [-cpu model] [-g port] program [arguments...]
       
  2973 @end example
       
  2974 
       
  2975 @table @option
       
  2976 @item -h
       
  2977 Print the help
       
  2978 @item -L path
       
  2979 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
       
  2980 @item -r version
       
  2981 Set the kernel version reported by the uname syscall.  An application
       
  2982 (in particular the C library) may require a minimum kernel version,
       
  2983 and terminate with a 'FATAL: kernel too old' message if the host
       
  2984 kernel is not sufficiently modern.
       
  2985 @item -s size
       
  2986 Set the x86 stack size in bytes (default=524288)
       
  2987 @item -cpu model
       
  2988 Select CPU model (-cpu ? for list and additional feature selection)
       
  2989 @end table
       
  2990 
       
  2991 Debug options:
       
  2992 
       
  2993 @table @option
       
  2994 @item -d
       
  2995 Activate log (logfile=/tmp/qemu.log)
       
  2996 @item -p pagesize
       
  2997 Act as if the host page size was 'pagesize' bytes
       
  2998 @item -g port
       
  2999 Wait gdb connection to port
       
  3000 @end table
       
  3001 
       
  3002 Environment variables:
       
  3003 
       
  3004 @table @env
       
  3005 @item QEMU_STRACE
       
  3006 Print system calls and arguments similar to the 'strace' program
       
  3007 (NOTE: the actual 'strace' program will not work because the user
       
  3008 space emulator hasn't implemented ptrace).  At the moment this is
       
  3009 incomplete.  All system calls that don't have a specific argument
       
  3010 format are printed with information for six arguments.  Many
       
  3011 flag-style arguments don't have decoders and will show up as numbers.
       
  3012 @end table
       
  3013 
       
  3014 @node Other binaries
       
  3015 @subsection Other binaries
       
  3016 
       
  3017 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
       
  3018 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
       
  3019 configurations), and arm-uclinux bFLT format binaries.
       
  3020 
       
  3021 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
       
  3022 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
       
  3023 coldfire uClinux bFLT format binaries.
       
  3024 
       
  3025 The binary format is detected automatically.
       
  3026 
       
  3027 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
       
  3028 
       
  3029 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
       
  3030 (Sparc64 CPU, 32 bit ABI).
       
  3031 
       
  3032 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
       
  3033 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
       
  3034 
       
  3035 @node Mac OS X/Darwin User space emulator
       
  3036 @section Mac OS X/Darwin User space emulator
       
  3037 
       
  3038 @menu
       
  3039 * Mac OS X/Darwin Status::
       
  3040 * Mac OS X/Darwin Quick Start::
       
  3041 * Mac OS X/Darwin Command line options::
       
  3042 @end menu
       
  3043 
       
  3044 @node Mac OS X/Darwin Status
       
  3045 @subsection Mac OS X/Darwin Status
       
  3046 
       
  3047 @itemize @minus
       
  3048 @item
       
  3049 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
       
  3050 @item
       
  3051 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
       
  3052 @item
       
  3053 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
       
  3054 @item
       
  3055 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
       
  3056 @end itemize
       
  3057 
       
  3058 [1] If you're host commpage can be executed by qemu.
       
  3059 
       
  3060 @node Mac OS X/Darwin Quick Start
       
  3061 @subsection Quick Start
       
  3062 
       
  3063 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
       
  3064 itself and all the target dynamic libraries used by it. If you don't have the FAT
       
  3065 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
       
  3066 CD or compile them by hand.
       
  3067 
       
  3068 @itemize
       
  3069 
       
  3070 @item On x86, you can just try to launch any process by using the native
       
  3071 libraries:
       
  3072 
       
  3073 @example
       
  3074 qemu-i386 /bin/ls
       
  3075 @end example
       
  3076 
       
  3077 or to run the ppc version of the executable:
       
  3078 
       
  3079 @example
       
  3080 qemu-ppc /bin/ls
       
  3081 @end example
       
  3082 
       
  3083 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
       
  3084 are installed:
       
  3085 
       
  3086 @example
       
  3087 qemu-i386 -L /opt/x86_root/ /bin/ls
       
  3088 @end example
       
  3089 
       
  3090 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
       
  3091 @file{/opt/x86_root/usr/bin/dyld}.
       
  3092 
       
  3093 @end itemize
       
  3094 
       
  3095 @node Mac OS X/Darwin Command line options
       
  3096 @subsection Command line options
       
  3097 
       
  3098 @example
       
  3099 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
       
  3100 @end example
       
  3101 
       
  3102 @table @option
       
  3103 @item -h
       
  3104 Print the help
       
  3105 @item -L path
       
  3106 Set the library root path (default=/)
       
  3107 @item -s size
       
  3108 Set the stack size in bytes (default=524288)
       
  3109 @end table
       
  3110 
       
  3111 Debug options:
       
  3112 
       
  3113 @table @option
       
  3114 @item -d
       
  3115 Activate log (logfile=/tmp/qemu.log)
       
  3116 @item -p pagesize
       
  3117 Act as if the host page size was 'pagesize' bytes
       
  3118 @end table
       
  3119 
       
  3120 @node BSD User space emulator
       
  3121 @section BSD User space emulator
       
  3122 
       
  3123 @menu
       
  3124 * BSD Status::
       
  3125 * BSD Quick Start::
       
  3126 * BSD Command line options::
       
  3127 @end menu
       
  3128 
       
  3129 @node BSD Status
       
  3130 @subsection BSD Status
       
  3131 
       
  3132 @itemize @minus
       
  3133 @item
       
  3134 target Sparc64 on Sparc64: Some trivial programs work.
       
  3135 @end itemize
       
  3136 
       
  3137 @node BSD Quick Start
       
  3138 @subsection Quick Start
       
  3139 
       
  3140 In order to launch a BSD process, QEMU needs the process executable
       
  3141 itself and all the target dynamic libraries used by it.
       
  3142 
       
  3143 @itemize
       
  3144 
       
  3145 @item On Sparc64, you can just try to launch any process by using the native
       
  3146 libraries:
       
  3147 
       
  3148 @example
       
  3149 qemu-sparc64 /bin/ls
       
  3150 @end example
       
  3151 
       
  3152 @end itemize
       
  3153 
       
  3154 @node BSD Command line options
       
  3155 @subsection Command line options
       
  3156 
       
  3157 @example
       
  3158 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
       
  3159 @end example
       
  3160 
       
  3161 @table @option
       
  3162 @item -h
       
  3163 Print the help
       
  3164 @item -L path
       
  3165 Set the library root path (default=/)
       
  3166 @item -s size
       
  3167 Set the stack size in bytes (default=524288)
       
  3168 @item -bsd type
       
  3169 Set the type of the emulated BSD Operating system. Valid values are
       
  3170 FreeBSD, NetBSD and OpenBSD (default).
       
  3171 @end table
       
  3172 
       
  3173 Debug options:
       
  3174 
       
  3175 @table @option
       
  3176 @item -d
       
  3177 Activate log (logfile=/tmp/qemu.log)
       
  3178 @item -p pagesize
       
  3179 Act as if the host page size was 'pagesize' bytes
       
  3180 @end table
       
  3181 
       
  3182 @node compilation
       
  3183 @chapter Compilation from the sources
       
  3184 
       
  3185 @menu
       
  3186 * Linux/Unix::
       
  3187 * Windows::
       
  3188 * Cross compilation for Windows with Linux::
       
  3189 * Mac OS X::
       
  3190 @end menu
       
  3191 
       
  3192 @node Linux/Unix
       
  3193 @section Linux/Unix
       
  3194 
       
  3195 @subsection Compilation
       
  3196 
       
  3197 First you must decompress the sources:
       
  3198 @example
       
  3199 cd /tmp
       
  3200 tar zxvf qemu-x.y.z.tar.gz
       
  3201 cd qemu-x.y.z
       
  3202 @end example
       
  3203 
       
  3204 Then you configure QEMU and build it (usually no options are needed):
       
  3205 @example
       
  3206 ./configure
       
  3207 make
       
  3208 @end example
       
  3209 
       
  3210 Then type as root user:
       
  3211 @example
       
  3212 make install
       
  3213 @end example
       
  3214 to install QEMU in @file{/usr/local}.
       
  3215 
       
  3216 @subsection GCC version
       
  3217 
       
  3218 In order to compile QEMU successfully, it is very important that you
       
  3219 have the right tools. The most important one is gcc. On most hosts and
       
  3220 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
       
  3221 Linux distribution includes a gcc 4.x compiler, you can usually
       
  3222 install an older version (it is invoked by @code{gcc32} or
       
  3223 @code{gcc34}). The QEMU configure script automatically probes for
       
  3224 these older versions so that usually you don't have to do anything.
       
  3225 
       
  3226 @node Windows
       
  3227 @section Windows
       
  3228 
       
  3229 @itemize
       
  3230 @item Install the current versions of MSYS and MinGW from
       
  3231 @url{http://www.mingw.org/}. You can find detailed installation
       
  3232 instructions in the download section and the FAQ.
       
  3233 
       
  3234 @item Download
       
  3235 the MinGW development library of SDL 1.2.x
       
  3236 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
       
  3237 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
       
  3238 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
       
  3239 directory. Edit the @file{sdl-config} script so that it gives the
       
  3240 correct SDL directory when invoked.
       
  3241 
       
  3242 @item Extract the current version of QEMU.
       
  3243 
       
  3244 @item Start the MSYS shell (file @file{msys.bat}).
       
  3245 
       
  3246 @item Change to the QEMU directory. Launch @file{./configure} and
       
  3247 @file{make}.  If you have problems using SDL, verify that
       
  3248 @file{sdl-config} can be launched from the MSYS command line.
       
  3249 
       
  3250 @item You can install QEMU in @file{Program Files/Qemu} by typing
       
  3251 @file{make install}. Don't forget to copy @file{SDL.dll} in
       
  3252 @file{Program Files/Qemu}.
       
  3253 
       
  3254 @end itemize
       
  3255 
       
  3256 @node Cross compilation for Windows with Linux
       
  3257 @section Cross compilation for Windows with Linux
       
  3258 
       
  3259 @itemize
       
  3260 @item
       
  3261 Install the MinGW cross compilation tools available at
       
  3262 @url{http://www.mingw.org/}.
       
  3263 
       
  3264 @item
       
  3265 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
       
  3266 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
       
  3267 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
       
  3268 the QEMU configuration script.
       
  3269 
       
  3270 @item
       
  3271 Configure QEMU for Windows cross compilation:
       
  3272 @example
       
  3273 ./configure --enable-mingw32
       
  3274 @end example
       
  3275 If necessary, you can change the cross-prefix according to the prefix
       
  3276 chosen for the MinGW tools with --cross-prefix. You can also use
       
  3277 --prefix to set the Win32 install path.
       
  3278 
       
  3279 @item You can install QEMU in the installation directory by typing
       
  3280 @file{make install}. Don't forget to copy @file{SDL.dll} in the
       
  3281 installation directory.
       
  3282 
       
  3283 @end itemize
       
  3284 
       
  3285 Note: Currently, Wine does not seem able to launch
       
  3286 QEMU for Win32.
       
  3287 
       
  3288 @node Mac OS X
       
  3289 @section Mac OS X
       
  3290 
       
  3291 The Mac OS X patches are not fully merged in QEMU, so you should look
       
  3292 at the QEMU mailing list archive to have all the necessary
       
  3293 information.
       
  3294 
       
  3295 @node Index
       
  3296 @chapter Index
       
  3297 @printindex cp
       
  3298 
       
  3299 @bye