|
1 /* |
|
2 * Copyright (c) 1982, 1986, 1988, 1993 |
|
3 * The Regents of the University of California. All rights reserved. |
|
4 * |
|
5 * Redistribution and use in source and binary forms, with or without |
|
6 * modification, are permitted provided that the following conditions |
|
7 * are met: |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * 3. All advertising materials mentioning features or use of this software |
|
14 * must display the following acknowledgement: |
|
15 * This product includes software developed by the University of |
|
16 * California, Berkeley and its contributors. |
|
17 * 4. Neither the name of the University nor the names of its contributors |
|
18 * may be used to endorse or promote products derived from this software |
|
19 * without specific prior written permission. |
|
20 * |
|
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
|
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
|
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
31 * SUCH DAMAGE. |
|
32 * |
|
33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 |
|
34 * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp |
|
35 */ |
|
36 |
|
37 /* |
|
38 * Changes and additions relating to SLiRP are |
|
39 * Copyright (c) 1995 Danny Gasparovski. |
|
40 * |
|
41 * Please read the file COPYRIGHT for the |
|
42 * terms and conditions of the copyright. |
|
43 */ |
|
44 |
|
45 #include <slirp.h> |
|
46 #include "ip_icmp.h" |
|
47 |
|
48 #ifdef LOG_ENABLED |
|
49 struct ipstat ipstat; |
|
50 #endif |
|
51 |
|
52 struct ipq ipq; |
|
53 |
|
54 static struct ip *ip_reass(register struct ipasfrag *ip, |
|
55 register struct ipq *fp); |
|
56 static void ip_freef(struct ipq *fp); |
|
57 static void ip_enq(register struct ipasfrag *p, |
|
58 register struct ipasfrag *prev); |
|
59 static void ip_deq(register struct ipasfrag *p); |
|
60 |
|
61 /* |
|
62 * IP initialization: fill in IP protocol switch table. |
|
63 * All protocols not implemented in kernel go to raw IP protocol handler. |
|
64 */ |
|
65 void |
|
66 ip_init() |
|
67 { |
|
68 ipq.next = ipq.prev = (ipqp_32)&ipq; |
|
69 ip_id = tt.tv_sec & 0xffff; |
|
70 udp_init(); |
|
71 tcp_init(); |
|
72 } |
|
73 |
|
74 /* |
|
75 * Ip input routine. Checksum and byte swap header. If fragmented |
|
76 * try to reassemble. Process options. Pass to next level. |
|
77 */ |
|
78 void |
|
79 ip_input(m) |
|
80 struct mbuf *m; |
|
81 { |
|
82 register struct ip *ip; |
|
83 int hlen; |
|
84 |
|
85 DEBUG_CALL("ip_input"); |
|
86 DEBUG_ARG("m = %lx", (long)m); |
|
87 DEBUG_ARG("m_len = %d", m->m_len); |
|
88 |
|
89 STAT(ipstat.ips_total++); |
|
90 |
|
91 if (m->m_len < sizeof (struct ip)) { |
|
92 STAT(ipstat.ips_toosmall++); |
|
93 return; |
|
94 } |
|
95 |
|
96 ip = mtod(m, struct ip *); |
|
97 |
|
98 if (ip->ip_v != IPVERSION) { |
|
99 STAT(ipstat.ips_badvers++); |
|
100 goto bad; |
|
101 } |
|
102 |
|
103 hlen = ip->ip_hl << 2; |
|
104 if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */ |
|
105 STAT(ipstat.ips_badhlen++); /* or packet too short */ |
|
106 goto bad; |
|
107 } |
|
108 |
|
109 /* keep ip header intact for ICMP reply |
|
110 * ip->ip_sum = cksum(m, hlen); |
|
111 * if (ip->ip_sum) { |
|
112 */ |
|
113 if(cksum(m,hlen)) { |
|
114 STAT(ipstat.ips_badsum++); |
|
115 goto bad; |
|
116 } |
|
117 |
|
118 /* |
|
119 * Convert fields to host representation. |
|
120 */ |
|
121 NTOHS(ip->ip_len); |
|
122 if (ip->ip_len < hlen) { |
|
123 STAT(ipstat.ips_badlen++); |
|
124 goto bad; |
|
125 } |
|
126 NTOHS(ip->ip_id); |
|
127 NTOHS(ip->ip_off); |
|
128 |
|
129 /* |
|
130 * Check that the amount of data in the buffers |
|
131 * is as at least much as the IP header would have us expect. |
|
132 * Trim mbufs if longer than we expect. |
|
133 * Drop packet if shorter than we expect. |
|
134 */ |
|
135 if (m->m_len < ip->ip_len) { |
|
136 STAT(ipstat.ips_tooshort++); |
|
137 goto bad; |
|
138 } |
|
139 /* Should drop packet if mbuf too long? hmmm... */ |
|
140 if (m->m_len > ip->ip_len) |
|
141 m_adj(m, ip->ip_len - m->m_len); |
|
142 |
|
143 /* check ip_ttl for a correct ICMP reply */ |
|
144 if(ip->ip_ttl==0 || ip->ip_ttl==1) { |
|
145 icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl"); |
|
146 goto bad; |
|
147 } |
|
148 |
|
149 /* |
|
150 * Process options and, if not destined for us, |
|
151 * ship it on. ip_dooptions returns 1 when an |
|
152 * error was detected (causing an icmp message |
|
153 * to be sent and the original packet to be freed). |
|
154 */ |
|
155 /* We do no IP options */ |
|
156 /* if (hlen > sizeof (struct ip) && ip_dooptions(m)) |
|
157 * goto next; |
|
158 */ |
|
159 /* |
|
160 * If offset or IP_MF are set, must reassemble. |
|
161 * Otherwise, nothing need be done. |
|
162 * (We could look in the reassembly queue to see |
|
163 * if the packet was previously fragmented, |
|
164 * but it's not worth the time; just let them time out.) |
|
165 * |
|
166 * XXX This should fail, don't fragment yet |
|
167 */ |
|
168 if (ip->ip_off &~ IP_DF) { |
|
169 register struct ipq *fp; |
|
170 /* |
|
171 * Look for queue of fragments |
|
172 * of this datagram. |
|
173 */ |
|
174 for (fp = (struct ipq *) ipq.next; fp != &ipq; |
|
175 fp = (struct ipq *) fp->next) |
|
176 if (ip->ip_id == fp->ipq_id && |
|
177 ip->ip_src.s_addr == fp->ipq_src.s_addr && |
|
178 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && |
|
179 ip->ip_p == fp->ipq_p) |
|
180 goto found; |
|
181 fp = 0; |
|
182 found: |
|
183 |
|
184 /* |
|
185 * Adjust ip_len to not reflect header, |
|
186 * set ip_mff if more fragments are expected, |
|
187 * convert offset of this to bytes. |
|
188 */ |
|
189 ip->ip_len -= hlen; |
|
190 if (ip->ip_off & IP_MF) |
|
191 ((struct ipasfrag *)ip)->ipf_mff |= 1; |
|
192 else |
|
193 ((struct ipasfrag *)ip)->ipf_mff &= ~1; |
|
194 |
|
195 ip->ip_off <<= 3; |
|
196 |
|
197 /* |
|
198 * If datagram marked as having more fragments |
|
199 * or if this is not the first fragment, |
|
200 * attempt reassembly; if it succeeds, proceed. |
|
201 */ |
|
202 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) { |
|
203 STAT(ipstat.ips_fragments++); |
|
204 ip = ip_reass((struct ipasfrag *)ip, fp); |
|
205 if (ip == 0) |
|
206 return; |
|
207 STAT(ipstat.ips_reassembled++); |
|
208 m = dtom(ip); |
|
209 } else |
|
210 if (fp) |
|
211 ip_freef(fp); |
|
212 |
|
213 } else |
|
214 ip->ip_len -= hlen; |
|
215 |
|
216 /* |
|
217 * Switch out to protocol's input routine. |
|
218 */ |
|
219 STAT(ipstat.ips_delivered++); |
|
220 switch (ip->ip_p) { |
|
221 case IPPROTO_TCP: |
|
222 tcp_input(m, hlen, (struct socket *)NULL); |
|
223 break; |
|
224 case IPPROTO_UDP: |
|
225 udp_input(m, hlen); |
|
226 break; |
|
227 case IPPROTO_ICMP: |
|
228 icmp_input(m, hlen); |
|
229 break; |
|
230 default: |
|
231 STAT(ipstat.ips_noproto++); |
|
232 m_free(m); |
|
233 } |
|
234 return; |
|
235 bad: |
|
236 m_freem(m); |
|
237 return; |
|
238 } |
|
239 |
|
240 /* |
|
241 * Take incoming datagram fragment and try to |
|
242 * reassemble it into whole datagram. If a chain for |
|
243 * reassembly of this datagram already exists, then it |
|
244 * is given as fp; otherwise have to make a chain. |
|
245 */ |
|
246 static struct ip * |
|
247 ip_reass(register struct ipasfrag *ip, register struct ipq *fp) |
|
248 { |
|
249 register struct mbuf *m = dtom(ip); |
|
250 register struct ipasfrag *q; |
|
251 int hlen = ip->ip_hl << 2; |
|
252 int i, next; |
|
253 |
|
254 DEBUG_CALL("ip_reass"); |
|
255 DEBUG_ARG("ip = %lx", (long)ip); |
|
256 DEBUG_ARG("fp = %lx", (long)fp); |
|
257 DEBUG_ARG("m = %lx", (long)m); |
|
258 |
|
259 /* |
|
260 * Presence of header sizes in mbufs |
|
261 * would confuse code below. |
|
262 * Fragment m_data is concatenated. |
|
263 */ |
|
264 m->m_data += hlen; |
|
265 m->m_len -= hlen; |
|
266 |
|
267 /* |
|
268 * If first fragment to arrive, create a reassembly queue. |
|
269 */ |
|
270 if (fp == 0) { |
|
271 struct mbuf *t; |
|
272 if ((t = m_get()) == NULL) goto dropfrag; |
|
273 fp = mtod(t, struct ipq *); |
|
274 insque_32(fp, &ipq); |
|
275 fp->ipq_ttl = IPFRAGTTL; |
|
276 fp->ipq_p = ip->ip_p; |
|
277 fp->ipq_id = ip->ip_id; |
|
278 fp->ipq_next = fp->ipq_prev = (ipasfragp_32)fp; |
|
279 fp->ipq_src = ((struct ip *)ip)->ip_src; |
|
280 fp->ipq_dst = ((struct ip *)ip)->ip_dst; |
|
281 q = (struct ipasfrag *)fp; |
|
282 goto insert; |
|
283 } |
|
284 |
|
285 /* |
|
286 * Find a segment which begins after this one does. |
|
287 */ |
|
288 for (q = (struct ipasfrag *)fp->ipq_next; q != (struct ipasfrag *)fp; |
|
289 q = (struct ipasfrag *)q->ipf_next) |
|
290 if (q->ip_off > ip->ip_off) |
|
291 break; |
|
292 |
|
293 /* |
|
294 * If there is a preceding segment, it may provide some of |
|
295 * our data already. If so, drop the data from the incoming |
|
296 * segment. If it provides all of our data, drop us. |
|
297 */ |
|
298 if (q->ipf_prev != (ipasfragp_32)fp) { |
|
299 i = ((struct ipasfrag *)(q->ipf_prev))->ip_off + |
|
300 ((struct ipasfrag *)(q->ipf_prev))->ip_len - ip->ip_off; |
|
301 if (i > 0) { |
|
302 if (i >= ip->ip_len) |
|
303 goto dropfrag; |
|
304 m_adj(dtom(ip), i); |
|
305 ip->ip_off += i; |
|
306 ip->ip_len -= i; |
|
307 } |
|
308 } |
|
309 |
|
310 /* |
|
311 * While we overlap succeeding segments trim them or, |
|
312 * if they are completely covered, dequeue them. |
|
313 */ |
|
314 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) { |
|
315 i = (ip->ip_off + ip->ip_len) - q->ip_off; |
|
316 if (i < q->ip_len) { |
|
317 q->ip_len -= i; |
|
318 q->ip_off += i; |
|
319 m_adj(dtom(q), i); |
|
320 break; |
|
321 } |
|
322 q = (struct ipasfrag *) q->ipf_next; |
|
323 m_freem(dtom((struct ipasfrag *) q->ipf_prev)); |
|
324 ip_deq((struct ipasfrag *) q->ipf_prev); |
|
325 } |
|
326 |
|
327 insert: |
|
328 /* |
|
329 * Stick new segment in its place; |
|
330 * check for complete reassembly. |
|
331 */ |
|
332 ip_enq(ip, (struct ipasfrag *) q->ipf_prev); |
|
333 next = 0; |
|
334 for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp; |
|
335 q = (struct ipasfrag *) q->ipf_next) { |
|
336 if (q->ip_off != next) |
|
337 return (0); |
|
338 next += q->ip_len; |
|
339 } |
|
340 if (((struct ipasfrag *)(q->ipf_prev))->ipf_mff & 1) |
|
341 return (0); |
|
342 |
|
343 /* |
|
344 * Reassembly is complete; concatenate fragments. |
|
345 */ |
|
346 q = (struct ipasfrag *) fp->ipq_next; |
|
347 m = dtom(q); |
|
348 |
|
349 q = (struct ipasfrag *) q->ipf_next; |
|
350 while (q != (struct ipasfrag *)fp) { |
|
351 struct mbuf *t; |
|
352 t = dtom(q); |
|
353 q = (struct ipasfrag *) q->ipf_next; |
|
354 m_cat(m, t); |
|
355 } |
|
356 |
|
357 /* |
|
358 * Create header for new ip packet by |
|
359 * modifying header of first packet; |
|
360 * dequeue and discard fragment reassembly header. |
|
361 * Make header visible. |
|
362 */ |
|
363 ip = (struct ipasfrag *) fp->ipq_next; |
|
364 |
|
365 /* |
|
366 * If the fragments concatenated to an mbuf that's |
|
367 * bigger than the total size of the fragment, then and |
|
368 * m_ext buffer was alloced. But fp->ipq_next points to |
|
369 * the old buffer (in the mbuf), so we must point ip |
|
370 * into the new buffer. |
|
371 */ |
|
372 if (m->m_flags & M_EXT) { |
|
373 int delta; |
|
374 delta = (char *)ip - m->m_dat; |
|
375 ip = (struct ipasfrag *)(m->m_ext + delta); |
|
376 } |
|
377 |
|
378 /* DEBUG_ARG("ip = %lx", (long)ip); |
|
379 * ip=(struct ipasfrag *)m->m_data; */ |
|
380 |
|
381 ip->ip_len = next; |
|
382 ip->ipf_mff &= ~1; |
|
383 ((struct ip *)ip)->ip_src = fp->ipq_src; |
|
384 ((struct ip *)ip)->ip_dst = fp->ipq_dst; |
|
385 remque_32(fp); |
|
386 (void) m_free(dtom(fp)); |
|
387 m = dtom(ip); |
|
388 m->m_len += (ip->ip_hl << 2); |
|
389 m->m_data -= (ip->ip_hl << 2); |
|
390 |
|
391 return ((struct ip *)ip); |
|
392 |
|
393 dropfrag: |
|
394 STAT(ipstat.ips_fragdropped++); |
|
395 m_freem(m); |
|
396 return (0); |
|
397 } |
|
398 |
|
399 /* |
|
400 * Free a fragment reassembly header and all |
|
401 * associated datagrams. |
|
402 */ |
|
403 static void |
|
404 ip_freef(struct ipq *fp) |
|
405 { |
|
406 register struct ipasfrag *q, *p; |
|
407 |
|
408 for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp; |
|
409 q = p) { |
|
410 p = (struct ipasfrag *) q->ipf_next; |
|
411 ip_deq(q); |
|
412 m_freem(dtom(q)); |
|
413 } |
|
414 remque_32(fp); |
|
415 (void) m_free(dtom(fp)); |
|
416 } |
|
417 |
|
418 /* |
|
419 * Put an ip fragment on a reassembly chain. |
|
420 * Like insque, but pointers in middle of structure. |
|
421 */ |
|
422 static void |
|
423 ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev) |
|
424 { |
|
425 DEBUG_CALL("ip_enq"); |
|
426 DEBUG_ARG("prev = %lx", (long)prev); |
|
427 p->ipf_prev = (ipasfragp_32) prev; |
|
428 p->ipf_next = prev->ipf_next; |
|
429 ((struct ipasfrag *)(prev->ipf_next))->ipf_prev = (ipasfragp_32) p; |
|
430 prev->ipf_next = (ipasfragp_32) p; |
|
431 } |
|
432 |
|
433 /* |
|
434 * To ip_enq as remque is to insque. |
|
435 */ |
|
436 static void |
|
437 ip_deq(register struct ipasfrag *p) |
|
438 { |
|
439 ((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next; |
|
440 ((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev; |
|
441 } |
|
442 |
|
443 /* |
|
444 * IP timer processing; |
|
445 * if a timer expires on a reassembly |
|
446 * queue, discard it. |
|
447 */ |
|
448 void |
|
449 ip_slowtimo() |
|
450 { |
|
451 register struct ipq *fp; |
|
452 |
|
453 DEBUG_CALL("ip_slowtimo"); |
|
454 |
|
455 fp = (struct ipq *) ipq.next; |
|
456 if (fp == 0) |
|
457 return; |
|
458 |
|
459 while (fp != &ipq) { |
|
460 --fp->ipq_ttl; |
|
461 fp = (struct ipq *) fp->next; |
|
462 if (((struct ipq *)(fp->prev))->ipq_ttl == 0) { |
|
463 STAT(ipstat.ips_fragtimeout++); |
|
464 ip_freef((struct ipq *) fp->prev); |
|
465 } |
|
466 } |
|
467 } |
|
468 |
|
469 /* |
|
470 * Do option processing on a datagram, |
|
471 * possibly discarding it if bad options are encountered, |
|
472 * or forwarding it if source-routed. |
|
473 * Returns 1 if packet has been forwarded/freed, |
|
474 * 0 if the packet should be processed further. |
|
475 */ |
|
476 |
|
477 #ifdef notdef |
|
478 |
|
479 int |
|
480 ip_dooptions(m) |
|
481 struct mbuf *m; |
|
482 { |
|
483 register struct ip *ip = mtod(m, struct ip *); |
|
484 register u_char *cp; |
|
485 register struct ip_timestamp *ipt; |
|
486 register struct in_ifaddr *ia; |
|
487 /* int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; */ |
|
488 int opt, optlen, cnt, off, code, type, forward = 0; |
|
489 struct in_addr *sin, dst; |
|
490 typedef u_int32_t n_time; |
|
491 n_time ntime; |
|
492 |
|
493 dst = ip->ip_dst; |
|
494 cp = (u_char *)(ip + 1); |
|
495 cnt = (ip->ip_hl << 2) - sizeof (struct ip); |
|
496 for (; cnt > 0; cnt -= optlen, cp += optlen) { |
|
497 opt = cp[IPOPT_OPTVAL]; |
|
498 if (opt == IPOPT_EOL) |
|
499 break; |
|
500 if (opt == IPOPT_NOP) |
|
501 optlen = 1; |
|
502 else { |
|
503 optlen = cp[IPOPT_OLEN]; |
|
504 if (optlen <= 0 || optlen > cnt) { |
|
505 code = &cp[IPOPT_OLEN] - (u_char *)ip; |
|
506 goto bad; |
|
507 } |
|
508 } |
|
509 switch (opt) { |
|
510 |
|
511 default: |
|
512 break; |
|
513 |
|
514 /* |
|
515 * Source routing with record. |
|
516 * Find interface with current destination address. |
|
517 * If none on this machine then drop if strictly routed, |
|
518 * or do nothing if loosely routed. |
|
519 * Record interface address and bring up next address |
|
520 * component. If strictly routed make sure next |
|
521 * address is on directly accessible net. |
|
522 */ |
|
523 case IPOPT_LSRR: |
|
524 case IPOPT_SSRR: |
|
525 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
|
526 code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
|
527 goto bad; |
|
528 } |
|
529 ipaddr.sin_addr = ip->ip_dst; |
|
530 ia = (struct in_ifaddr *) |
|
531 ifa_ifwithaddr((struct sockaddr *)&ipaddr); |
|
532 if (ia == 0) { |
|
533 if (opt == IPOPT_SSRR) { |
|
534 type = ICMP_UNREACH; |
|
535 code = ICMP_UNREACH_SRCFAIL; |
|
536 goto bad; |
|
537 } |
|
538 /* |
|
539 * Loose routing, and not at next destination |
|
540 * yet; nothing to do except forward. |
|
541 */ |
|
542 break; |
|
543 } |
|
544 off--; / * 0 origin * / |
|
545 if (off > optlen - sizeof(struct in_addr)) { |
|
546 /* |
|
547 * End of source route. Should be for us. |
|
548 */ |
|
549 save_rte(cp, ip->ip_src); |
|
550 break; |
|
551 } |
|
552 /* |
|
553 * locate outgoing interface |
|
554 */ |
|
555 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr, |
|
556 sizeof(ipaddr.sin_addr)); |
|
557 if (opt == IPOPT_SSRR) { |
|
558 #define INA struct in_ifaddr * |
|
559 #define SA struct sockaddr * |
|
560 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) |
|
561 ia = (INA)ifa_ifwithnet((SA)&ipaddr); |
|
562 } else |
|
563 ia = ip_rtaddr(ipaddr.sin_addr); |
|
564 if (ia == 0) { |
|
565 type = ICMP_UNREACH; |
|
566 code = ICMP_UNREACH_SRCFAIL; |
|
567 goto bad; |
|
568 } |
|
569 ip->ip_dst = ipaddr.sin_addr; |
|
570 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), |
|
571 (caddr_t)(cp + off), sizeof(struct in_addr)); |
|
572 cp[IPOPT_OFFSET] += sizeof(struct in_addr); |
|
573 /* |
|
574 * Let ip_intr's mcast routing check handle mcast pkts |
|
575 */ |
|
576 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); |
|
577 break; |
|
578 |
|
579 case IPOPT_RR: |
|
580 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
|
581 code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
|
582 goto bad; |
|
583 } |
|
584 /* |
|
585 * If no space remains, ignore. |
|
586 */ |
|
587 off--; * 0 origin * |
|
588 if (off > optlen - sizeof(struct in_addr)) |
|
589 break; |
|
590 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr, |
|
591 sizeof(ipaddr.sin_addr)); |
|
592 /* |
|
593 * locate outgoing interface; if we're the destination, |
|
594 * use the incoming interface (should be same). |
|
595 */ |
|
596 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && |
|
597 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { |
|
598 type = ICMP_UNREACH; |
|
599 code = ICMP_UNREACH_HOST; |
|
600 goto bad; |
|
601 } |
|
602 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), |
|
603 (caddr_t)(cp + off), sizeof(struct in_addr)); |
|
604 cp[IPOPT_OFFSET] += sizeof(struct in_addr); |
|
605 break; |
|
606 |
|
607 case IPOPT_TS: |
|
608 code = cp - (u_char *)ip; |
|
609 ipt = (struct ip_timestamp *)cp; |
|
610 if (ipt->ipt_len < 5) |
|
611 goto bad; |
|
612 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { |
|
613 if (++ipt->ipt_oflw == 0) |
|
614 goto bad; |
|
615 break; |
|
616 } |
|
617 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); |
|
618 switch (ipt->ipt_flg) { |
|
619 |
|
620 case IPOPT_TS_TSONLY: |
|
621 break; |
|
622 |
|
623 case IPOPT_TS_TSANDADDR: |
|
624 if (ipt->ipt_ptr + sizeof(n_time) + |
|
625 sizeof(struct in_addr) > ipt->ipt_len) |
|
626 goto bad; |
|
627 ipaddr.sin_addr = dst; |
|
628 ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr, |
|
629 m->m_pkthdr.rcvif); |
|
630 if (ia == 0) |
|
631 continue; |
|
632 bcopy((caddr_t)&IA_SIN(ia)->sin_addr, |
|
633 (caddr_t)sin, sizeof(struct in_addr)); |
|
634 ipt->ipt_ptr += sizeof(struct in_addr); |
|
635 break; |
|
636 |
|
637 case IPOPT_TS_PRESPEC: |
|
638 if (ipt->ipt_ptr + sizeof(n_time) + |
|
639 sizeof(struct in_addr) > ipt->ipt_len) |
|
640 goto bad; |
|
641 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr, |
|
642 sizeof(struct in_addr)); |
|
643 if (ifa_ifwithaddr((SA)&ipaddr) == 0) |
|
644 continue; |
|
645 ipt->ipt_ptr += sizeof(struct in_addr); |
|
646 break; |
|
647 |
|
648 default: |
|
649 goto bad; |
|
650 } |
|
651 ntime = iptime(); |
|
652 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1, |
|
653 sizeof(n_time)); |
|
654 ipt->ipt_ptr += sizeof(n_time); |
|
655 } |
|
656 } |
|
657 if (forward) { |
|
658 ip_forward(m, 1); |
|
659 return (1); |
|
660 } |
|
661 } |
|
662 } |
|
663 return (0); |
|
664 bad: |
|
665 /* ip->ip_len -= ip->ip_hl << 2; XXX icmp_error adds in hdr length */ |
|
666 |
|
667 /* Not yet */ |
|
668 icmp_error(m, type, code, 0, 0); |
|
669 |
|
670 STAT(ipstat.ips_badoptions++); |
|
671 return (1); |
|
672 } |
|
673 |
|
674 #endif /* notdef */ |
|
675 |
|
676 /* |
|
677 * Strip out IP options, at higher |
|
678 * level protocol in the kernel. |
|
679 * Second argument is buffer to which options |
|
680 * will be moved, and return value is their length. |
|
681 * (XXX) should be deleted; last arg currently ignored. |
|
682 */ |
|
683 void |
|
684 ip_stripoptions(m, mopt) |
|
685 register struct mbuf *m; |
|
686 struct mbuf *mopt; |
|
687 { |
|
688 register int i; |
|
689 struct ip *ip = mtod(m, struct ip *); |
|
690 register caddr_t opts; |
|
691 int olen; |
|
692 |
|
693 olen = (ip->ip_hl<<2) - sizeof (struct ip); |
|
694 opts = (caddr_t)(ip + 1); |
|
695 i = m->m_len - (sizeof (struct ip) + olen); |
|
696 memcpy(opts, opts + olen, (unsigned)i); |
|
697 m->m_len -= olen; |
|
698 |
|
699 ip->ip_hl = sizeof(struct ip) >> 2; |
|
700 } |