|
1 /* |
|
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
|
3 * The Regents of the University of California. All rights reserved. |
|
4 * |
|
5 * Redistribution and use in source and binary forms, with or without |
|
6 * modification, are permitted provided that the following conditions |
|
7 * are met: |
|
8 * 1. Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * 2. Redistributions in binary form must reproduce the above copyright |
|
11 * notice, this list of conditions and the following disclaimer in the |
|
12 * documentation and/or other materials provided with the distribution. |
|
13 * 3. All advertising materials mentioning features or use of this software |
|
14 * must display the following acknowledgement: |
|
15 * This product includes software developed by the University of |
|
16 * California, Berkeley and its contributors. |
|
17 * 4. Neither the name of the University nor the names of its contributors |
|
18 * may be used to endorse or promote products derived from this software |
|
19 * without specific prior written permission. |
|
20 * |
|
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
|
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
|
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
31 * SUCH DAMAGE. |
|
32 * |
|
33 * @(#)tcp_subr.c 8.1 (Berkeley) 6/10/93 |
|
34 * tcp_subr.c,v 1.5 1994/10/08 22:39:58 phk Exp |
|
35 */ |
|
36 |
|
37 /* |
|
38 * Changes and additions relating to SLiRP |
|
39 * Copyright (c) 1995 Danny Gasparovski. |
|
40 * |
|
41 * Please read the file COPYRIGHT for the |
|
42 * terms and conditions of the copyright. |
|
43 */ |
|
44 |
|
45 #define WANT_SYS_IOCTL_H |
|
46 #include <slirp.h> |
|
47 |
|
48 /* patchable/settable parameters for tcp */ |
|
49 /* Don't do rfc1323 performance enhancements */ |
|
50 #define TCP_DO_RFC1323 0 |
|
51 |
|
52 /* |
|
53 * Tcp initialization |
|
54 */ |
|
55 void |
|
56 tcp_init() |
|
57 { |
|
58 tcp_iss = 1; /* wrong */ |
|
59 tcb.so_next = tcb.so_prev = &tcb; |
|
60 } |
|
61 |
|
62 /* |
|
63 * Create template to be used to send tcp packets on a connection. |
|
64 * Call after host entry created, fills |
|
65 * in a skeletal tcp/ip header, minimizing the amount of work |
|
66 * necessary when the connection is used. |
|
67 */ |
|
68 /* struct tcpiphdr * */ |
|
69 void |
|
70 tcp_template(tp) |
|
71 struct tcpcb *tp; |
|
72 { |
|
73 struct socket *so = tp->t_socket; |
|
74 register struct tcpiphdr *n = &tp->t_template; |
|
75 |
|
76 n->ti_next = n->ti_prev = 0; |
|
77 n->ti_x1 = 0; |
|
78 n->ti_pr = IPPROTO_TCP; |
|
79 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip)); |
|
80 n->ti_src = so->so_faddr; |
|
81 n->ti_dst = so->so_laddr; |
|
82 n->ti_sport = so->so_fport; |
|
83 n->ti_dport = so->so_lport; |
|
84 |
|
85 n->ti_seq = 0; |
|
86 n->ti_ack = 0; |
|
87 n->ti_x2 = 0; |
|
88 n->ti_off = 5; |
|
89 n->ti_flags = 0; |
|
90 n->ti_win = 0; |
|
91 n->ti_sum = 0; |
|
92 n->ti_urp = 0; |
|
93 } |
|
94 |
|
95 /* |
|
96 * Send a single message to the TCP at address specified by |
|
97 * the given TCP/IP header. If m == 0, then we make a copy |
|
98 * of the tcpiphdr at ti and send directly to the addressed host. |
|
99 * This is used to force keep alive messages out using the TCP |
|
100 * template for a connection tp->t_template. If flags are given |
|
101 * then we send a message back to the TCP which originated the |
|
102 * segment ti, and discard the mbuf containing it and any other |
|
103 * attached mbufs. |
|
104 * |
|
105 * In any case the ack and sequence number of the transmitted |
|
106 * segment are as specified by the parameters. |
|
107 */ |
|
108 void |
|
109 tcp_respond(tp, ti, m, ack, seq, flags) |
|
110 struct tcpcb *tp; |
|
111 register struct tcpiphdr *ti; |
|
112 register struct mbuf *m; |
|
113 tcp_seq ack, seq; |
|
114 int flags; |
|
115 { |
|
116 register int tlen; |
|
117 int win = 0; |
|
118 |
|
119 DEBUG_CALL("tcp_respond"); |
|
120 DEBUG_ARG("tp = %lx", (long)tp); |
|
121 DEBUG_ARG("ti = %lx", (long)ti); |
|
122 DEBUG_ARG("m = %lx", (long)m); |
|
123 DEBUG_ARG("ack = %u", ack); |
|
124 DEBUG_ARG("seq = %u", seq); |
|
125 DEBUG_ARG("flags = %x", flags); |
|
126 |
|
127 if (tp) |
|
128 win = sbspace(&tp->t_socket->so_rcv); |
|
129 if (m == 0) { |
|
130 if ((m = m_get()) == NULL) |
|
131 return; |
|
132 #ifdef TCP_COMPAT_42 |
|
133 tlen = 1; |
|
134 #else |
|
135 tlen = 0; |
|
136 #endif |
|
137 m->m_data += IF_MAXLINKHDR; |
|
138 *mtod(m, struct tcpiphdr *) = *ti; |
|
139 ti = mtod(m, struct tcpiphdr *); |
|
140 flags = TH_ACK; |
|
141 } else { |
|
142 /* |
|
143 * ti points into m so the next line is just making |
|
144 * the mbuf point to ti |
|
145 */ |
|
146 m->m_data = (caddr_t)ti; |
|
147 |
|
148 m->m_len = sizeof (struct tcpiphdr); |
|
149 tlen = 0; |
|
150 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } |
|
151 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t); |
|
152 xchg(ti->ti_dport, ti->ti_sport, u_int16_t); |
|
153 #undef xchg |
|
154 } |
|
155 ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen)); |
|
156 tlen += sizeof (struct tcpiphdr); |
|
157 m->m_len = tlen; |
|
158 |
|
159 ti->ti_next = ti->ti_prev = 0; |
|
160 ti->ti_x1 = 0; |
|
161 ti->ti_seq = htonl(seq); |
|
162 ti->ti_ack = htonl(ack); |
|
163 ti->ti_x2 = 0; |
|
164 ti->ti_off = sizeof (struct tcphdr) >> 2; |
|
165 ti->ti_flags = flags; |
|
166 if (tp) |
|
167 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale)); |
|
168 else |
|
169 ti->ti_win = htons((u_int16_t)win); |
|
170 ti->ti_urp = 0; |
|
171 ti->ti_sum = 0; |
|
172 ti->ti_sum = cksum(m, tlen); |
|
173 ((struct ip *)ti)->ip_len = tlen; |
|
174 |
|
175 if(flags & TH_RST) |
|
176 ((struct ip *)ti)->ip_ttl = MAXTTL; |
|
177 else |
|
178 ((struct ip *)ti)->ip_ttl = IPDEFTTL; |
|
179 |
|
180 (void) ip_output((struct socket *)0, m); |
|
181 } |
|
182 |
|
183 /* |
|
184 * Create a new TCP control block, making an |
|
185 * empty reassembly queue and hooking it to the argument |
|
186 * protocol control block. |
|
187 */ |
|
188 struct tcpcb * |
|
189 tcp_newtcpcb(so) |
|
190 struct socket *so; |
|
191 { |
|
192 register struct tcpcb *tp; |
|
193 |
|
194 tp = (struct tcpcb *)malloc(sizeof(*tp)); |
|
195 if (tp == NULL) |
|
196 return ((struct tcpcb *)0); |
|
197 |
|
198 memset((char *) tp, 0, sizeof(struct tcpcb)); |
|
199 tp->seg_next = tp->seg_prev = (tcpiphdrp_32)tp; |
|
200 tp->t_maxseg = TCP_MSS; |
|
201 |
|
202 tp->t_flags = TCP_DO_RFC1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0; |
|
203 tp->t_socket = so; |
|
204 |
|
205 /* |
|
206 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no |
|
207 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives |
|
208 * reasonable initial retransmit time. |
|
209 */ |
|
210 tp->t_srtt = TCPTV_SRTTBASE; |
|
211 tp->t_rttvar = TCPTV_SRTTDFLT << 2; |
|
212 tp->t_rttmin = TCPTV_MIN; |
|
213 |
|
214 TCPT_RANGESET(tp->t_rxtcur, |
|
215 ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1, |
|
216 TCPTV_MIN, TCPTV_REXMTMAX); |
|
217 |
|
218 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; |
|
219 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; |
|
220 tp->t_state = TCPS_CLOSED; |
|
221 |
|
222 so->so_tcpcb = tp; |
|
223 |
|
224 return (tp); |
|
225 } |
|
226 |
|
227 /* |
|
228 * Drop a TCP connection, reporting |
|
229 * the specified error. If connection is synchronized, |
|
230 * then send a RST to peer. |
|
231 */ |
|
232 struct tcpcb *tcp_drop(struct tcpcb *tp, int err) |
|
233 { |
|
234 /* tcp_drop(tp, errno) |
|
235 register struct tcpcb *tp; |
|
236 int errno; |
|
237 { |
|
238 */ |
|
239 |
|
240 DEBUG_CALL("tcp_drop"); |
|
241 DEBUG_ARG("tp = %lx", (long)tp); |
|
242 DEBUG_ARG("errno = %d", errno); |
|
243 |
|
244 if (TCPS_HAVERCVDSYN(tp->t_state)) { |
|
245 tp->t_state = TCPS_CLOSED; |
|
246 (void) tcp_output(tp); |
|
247 STAT(tcpstat.tcps_drops++); |
|
248 } else |
|
249 STAT(tcpstat.tcps_conndrops++); |
|
250 /* if (errno == ETIMEDOUT && tp->t_softerror) |
|
251 * errno = tp->t_softerror; |
|
252 */ |
|
253 /* so->so_error = errno; */ |
|
254 return (tcp_close(tp)); |
|
255 } |
|
256 |
|
257 /* |
|
258 * Close a TCP control block: |
|
259 * discard all space held by the tcp |
|
260 * discard internet protocol block |
|
261 * wake up any sleepers |
|
262 */ |
|
263 struct tcpcb * |
|
264 tcp_close(tp) |
|
265 register struct tcpcb *tp; |
|
266 { |
|
267 register struct tcpiphdr *t; |
|
268 struct socket *so = tp->t_socket; |
|
269 register struct mbuf *m; |
|
270 |
|
271 DEBUG_CALL("tcp_close"); |
|
272 DEBUG_ARG("tp = %lx", (long )tp); |
|
273 |
|
274 /* free the reassembly queue, if any */ |
|
275 t = (struct tcpiphdr *) tp->seg_next; |
|
276 while (t != (struct tcpiphdr *)tp) { |
|
277 t = (struct tcpiphdr *)t->ti_next; |
|
278 m = (struct mbuf *) REASS_MBUF((struct tcpiphdr *)t->ti_prev); |
|
279 remque_32((struct tcpiphdr *) t->ti_prev); |
|
280 m_freem(m); |
|
281 } |
|
282 /* It's static */ |
|
283 /* if (tp->t_template) |
|
284 * (void) m_free(dtom(tp->t_template)); |
|
285 */ |
|
286 /* free(tp, M_PCB); */ |
|
287 free(tp); |
|
288 so->so_tcpcb = 0; |
|
289 soisfdisconnected(so); |
|
290 /* clobber input socket cache if we're closing the cached connection */ |
|
291 if (so == tcp_last_so) |
|
292 tcp_last_so = &tcb; |
|
293 closesocket(so->s); |
|
294 sbfree(&so->so_rcv); |
|
295 sbfree(&so->so_snd); |
|
296 sofree(so); |
|
297 STAT(tcpstat.tcps_closed++); |
|
298 return ((struct tcpcb *)0); |
|
299 } |
|
300 |
|
301 #ifdef notdef |
|
302 void |
|
303 tcp_drain() |
|
304 { |
|
305 /* XXX */ |
|
306 } |
|
307 |
|
308 /* |
|
309 * When a source quench is received, close congestion window |
|
310 * to one segment. We will gradually open it again as we proceed. |
|
311 */ |
|
312 void |
|
313 tcp_quench(i, errno) |
|
314 |
|
315 int errno; |
|
316 { |
|
317 struct tcpcb *tp = intotcpcb(inp); |
|
318 |
|
319 if (tp) |
|
320 tp->snd_cwnd = tp->t_maxseg; |
|
321 } |
|
322 |
|
323 #endif /* notdef */ |
|
324 |
|
325 /* |
|
326 * TCP protocol interface to socket abstraction. |
|
327 */ |
|
328 |
|
329 /* |
|
330 * User issued close, and wish to trail through shutdown states: |
|
331 * if never received SYN, just forget it. If got a SYN from peer, |
|
332 * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. |
|
333 * If already got a FIN from peer, then almost done; go to LAST_ACK |
|
334 * state. In all other cases, have already sent FIN to peer (e.g. |
|
335 * after PRU_SHUTDOWN), and just have to play tedious game waiting |
|
336 * for peer to send FIN or not respond to keep-alives, etc. |
|
337 * We can let the user exit from the close as soon as the FIN is acked. |
|
338 */ |
|
339 void |
|
340 tcp_sockclosed(tp) |
|
341 struct tcpcb *tp; |
|
342 { |
|
343 |
|
344 DEBUG_CALL("tcp_sockclosed"); |
|
345 DEBUG_ARG("tp = %lx", (long)tp); |
|
346 |
|
347 switch (tp->t_state) { |
|
348 |
|
349 case TCPS_CLOSED: |
|
350 case TCPS_LISTEN: |
|
351 case TCPS_SYN_SENT: |
|
352 tp->t_state = TCPS_CLOSED; |
|
353 tp = tcp_close(tp); |
|
354 break; |
|
355 |
|
356 case TCPS_SYN_RECEIVED: |
|
357 case TCPS_ESTABLISHED: |
|
358 tp->t_state = TCPS_FIN_WAIT_1; |
|
359 break; |
|
360 |
|
361 case TCPS_CLOSE_WAIT: |
|
362 tp->t_state = TCPS_LAST_ACK; |
|
363 break; |
|
364 } |
|
365 /* soisfdisconnecting(tp->t_socket); */ |
|
366 if (tp && tp->t_state >= TCPS_FIN_WAIT_2) |
|
367 soisfdisconnected(tp->t_socket); |
|
368 if (tp) |
|
369 tcp_output(tp); |
|
370 } |
|
371 |
|
372 /* |
|
373 * Connect to a host on the Internet |
|
374 * Called by tcp_input |
|
375 * Only do a connect, the tcp fields will be set in tcp_input |
|
376 * return 0 if there's a result of the connect, |
|
377 * else return -1 means we're still connecting |
|
378 * The return value is almost always -1 since the socket is |
|
379 * nonblocking. Connect returns after the SYN is sent, and does |
|
380 * not wait for ACK+SYN. |
|
381 */ |
|
382 int tcp_fconnect(so) |
|
383 struct socket *so; |
|
384 { |
|
385 int ret=0; |
|
386 |
|
387 DEBUG_CALL("tcp_fconnect"); |
|
388 DEBUG_ARG("so = %lx", (long )so); |
|
389 |
|
390 if( (ret=so->s=socket(AF_INET,SOCK_STREAM,0)) >= 0) { |
|
391 int opt, s=so->s; |
|
392 struct sockaddr_in addr; |
|
393 |
|
394 fd_nonblock(s); |
|
395 opt = 1; |
|
396 setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(char *)&opt,sizeof(opt )); |
|
397 opt = 1; |
|
398 setsockopt(s,SOL_SOCKET,SO_OOBINLINE,(char *)&opt,sizeof(opt )); |
|
399 |
|
400 addr.sin_family = AF_INET; |
|
401 if ((so->so_faddr.s_addr & htonl(0xffffff00)) == special_addr.s_addr) { |
|
402 /* It's an alias */ |
|
403 switch(ntohl(so->so_faddr.s_addr) & 0xff) { |
|
404 case CTL_DNS: |
|
405 addr.sin_addr = dns_addr; |
|
406 break; |
|
407 case CTL_ALIAS: |
|
408 default: |
|
409 addr.sin_addr = loopback_addr; |
|
410 break; |
|
411 } |
|
412 } else |
|
413 addr.sin_addr = so->so_faddr; |
|
414 addr.sin_port = so->so_fport; |
|
415 |
|
416 DEBUG_MISC((dfd, " connect()ing, addr.sin_port=%d, " |
|
417 "addr.sin_addr.s_addr=%.16s\n", |
|
418 ntohs(addr.sin_port), inet_ntoa(addr.sin_addr))); |
|
419 /* We don't care what port we get */ |
|
420 ret = connect(s,(struct sockaddr *)&addr,sizeof (addr)); |
|
421 |
|
422 /* |
|
423 * If it's not in progress, it failed, so we just return 0, |
|
424 * without clearing SS_NOFDREF |
|
425 */ |
|
426 soisfconnecting(so); |
|
427 } |
|
428 |
|
429 return(ret); |
|
430 } |
|
431 |
|
432 /* |
|
433 * Accept the socket and connect to the local-host |
|
434 * |
|
435 * We have a problem. The correct thing to do would be |
|
436 * to first connect to the local-host, and only if the |
|
437 * connection is accepted, then do an accept() here. |
|
438 * But, a) we need to know who's trying to connect |
|
439 * to the socket to be able to SYN the local-host, and |
|
440 * b) we are already connected to the foreign host by |
|
441 * the time it gets to accept(), so... We simply accept |
|
442 * here and SYN the local-host. |
|
443 */ |
|
444 void |
|
445 tcp_connect(inso) |
|
446 struct socket *inso; |
|
447 { |
|
448 struct socket *so; |
|
449 struct sockaddr_in addr; |
|
450 socklen_t addrlen = sizeof(struct sockaddr_in); |
|
451 struct tcpcb *tp; |
|
452 int s, opt; |
|
453 |
|
454 DEBUG_CALL("tcp_connect"); |
|
455 DEBUG_ARG("inso = %lx", (long)inso); |
|
456 |
|
457 /* |
|
458 * If it's an SS_ACCEPTONCE socket, no need to socreate() |
|
459 * another socket, just use the accept() socket. |
|
460 */ |
|
461 if (inso->so_state & SS_FACCEPTONCE) { |
|
462 /* FACCEPTONCE already have a tcpcb */ |
|
463 so = inso; |
|
464 } else { |
|
465 if ((so = socreate()) == NULL) { |
|
466 /* If it failed, get rid of the pending connection */ |
|
467 closesocket(accept(inso->s,(struct sockaddr *)&addr,&addrlen)); |
|
468 return; |
|
469 } |
|
470 if (tcp_attach(so) < 0) { |
|
471 free(so); /* NOT sofree */ |
|
472 return; |
|
473 } |
|
474 so->so_laddr = inso->so_laddr; |
|
475 so->so_lport = inso->so_lport; |
|
476 } |
|
477 |
|
478 (void) tcp_mss(sototcpcb(so), 0); |
|
479 |
|
480 if ((s = accept(inso->s,(struct sockaddr *)&addr,&addrlen)) < 0) { |
|
481 tcp_close(sototcpcb(so)); /* This will sofree() as well */ |
|
482 return; |
|
483 } |
|
484 fd_nonblock(s); |
|
485 opt = 1; |
|
486 setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(char *)&opt,sizeof(int)); |
|
487 opt = 1; |
|
488 setsockopt(s,SOL_SOCKET,SO_OOBINLINE,(char *)&opt,sizeof(int)); |
|
489 opt = 1; |
|
490 setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&opt,sizeof(int)); |
|
491 |
|
492 so->so_fport = addr.sin_port; |
|
493 so->so_faddr = addr.sin_addr; |
|
494 /* Translate connections from localhost to the real hostname */ |
|
495 if (so->so_faddr.s_addr == 0 || so->so_faddr.s_addr == loopback_addr.s_addr) |
|
496 so->so_faddr = alias_addr; |
|
497 |
|
498 /* Close the accept() socket, set right state */ |
|
499 if (inso->so_state & SS_FACCEPTONCE) { |
|
500 closesocket(so->s); /* If we only accept once, close the accept() socket */ |
|
501 so->so_state = SS_NOFDREF; /* Don't select it yet, even though we have an FD */ |
|
502 /* if it's not FACCEPTONCE, it's already NOFDREF */ |
|
503 } |
|
504 so->s = s; |
|
505 |
|
506 so->so_iptos = tcp_tos(so); |
|
507 tp = sototcpcb(so); |
|
508 |
|
509 tcp_template(tp); |
|
510 |
|
511 /* Compute window scaling to request. */ |
|
512 /* while (tp->request_r_scale < TCP_MAX_WINSHIFT && |
|
513 * (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.sb_hiwat) |
|
514 * tp->request_r_scale++; |
|
515 */ |
|
516 |
|
517 /* soisconnecting(so); */ /* NOFDREF used instead */ |
|
518 STAT(tcpstat.tcps_connattempt++); |
|
519 |
|
520 tp->t_state = TCPS_SYN_SENT; |
|
521 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; |
|
522 tp->iss = tcp_iss; |
|
523 tcp_iss += TCP_ISSINCR/2; |
|
524 tcp_sendseqinit(tp); |
|
525 tcp_output(tp); |
|
526 } |
|
527 |
|
528 /* |
|
529 * Attach a TCPCB to a socket. |
|
530 */ |
|
531 int |
|
532 tcp_attach(so) |
|
533 struct socket *so; |
|
534 { |
|
535 if ((so->so_tcpcb = tcp_newtcpcb(so)) == NULL) |
|
536 return -1; |
|
537 |
|
538 insque(so, &tcb); |
|
539 |
|
540 return 0; |
|
541 } |
|
542 |
|
543 /* |
|
544 * Set the socket's type of service field |
|
545 */ |
|
546 static const struct tos_t tcptos[] = { |
|
547 {0, 20, IPTOS_THROUGHPUT, 0}, /* ftp data */ |
|
548 {21, 21, IPTOS_LOWDELAY, EMU_FTP}, /* ftp control */ |
|
549 {0, 23, IPTOS_LOWDELAY, 0}, /* telnet */ |
|
550 {0, 80, IPTOS_THROUGHPUT, 0}, /* WWW */ |
|
551 {0, 513, IPTOS_LOWDELAY, EMU_RLOGIN|EMU_NOCONNECT}, /* rlogin */ |
|
552 {0, 514, IPTOS_LOWDELAY, EMU_RSH|EMU_NOCONNECT}, /* shell */ |
|
553 {0, 544, IPTOS_LOWDELAY, EMU_KSH}, /* kshell */ |
|
554 {0, 543, IPTOS_LOWDELAY, 0}, /* klogin */ |
|
555 {0, 6667, IPTOS_THROUGHPUT, EMU_IRC}, /* IRC */ |
|
556 {0, 6668, IPTOS_THROUGHPUT, EMU_IRC}, /* IRC undernet */ |
|
557 {0, 7070, IPTOS_LOWDELAY, EMU_REALAUDIO }, /* RealAudio control */ |
|
558 {0, 113, IPTOS_LOWDELAY, EMU_IDENT }, /* identd protocol */ |
|
559 {0, 0, 0, 0} |
|
560 }; |
|
561 |
|
562 #ifdef CONFIG_QEMU |
|
563 static |
|
564 #endif |
|
565 struct emu_t *tcpemu = 0; |
|
566 |
|
567 /* |
|
568 * Return TOS according to the above table |
|
569 */ |
|
570 u_int8_t |
|
571 tcp_tos(so) |
|
572 struct socket *so; |
|
573 { |
|
574 int i = 0; |
|
575 struct emu_t *emup; |
|
576 |
|
577 while(tcptos[i].tos) { |
|
578 if ((tcptos[i].fport && (ntohs(so->so_fport) == tcptos[i].fport)) || |
|
579 (tcptos[i].lport && (ntohs(so->so_lport) == tcptos[i].lport))) { |
|
580 so->so_emu = tcptos[i].emu; |
|
581 return tcptos[i].tos; |
|
582 } |
|
583 i++; |
|
584 } |
|
585 |
|
586 /* Nope, lets see if there's a user-added one */ |
|
587 for (emup = tcpemu; emup; emup = emup->next) { |
|
588 if ((emup->fport && (ntohs(so->so_fport) == emup->fport)) || |
|
589 (emup->lport && (ntohs(so->so_lport) == emup->lport))) { |
|
590 so->so_emu = emup->emu; |
|
591 return emup->tos; |
|
592 } |
|
593 } |
|
594 |
|
595 return 0; |
|
596 } |
|
597 |
|
598 #if 0 |
|
599 int do_echo = -1; |
|
600 #endif |
|
601 |
|
602 /* |
|
603 * Emulate programs that try and connect to us |
|
604 * This includes ftp (the data connection is |
|
605 * initiated by the server) and IRC (DCC CHAT and |
|
606 * DCC SEND) for now |
|
607 * |
|
608 * NOTE: It's possible to crash SLiRP by sending it |
|
609 * unstandard strings to emulate... if this is a problem, |
|
610 * more checks are needed here |
|
611 * |
|
612 * XXX Assumes the whole command came in one packet |
|
613 * |
|
614 * XXX Some ftp clients will have their TOS set to |
|
615 * LOWDELAY and so Nagel will kick in. Because of this, |
|
616 * we'll get the first letter, followed by the rest, so |
|
617 * we simply scan for ORT instead of PORT... |
|
618 * DCC doesn't have this problem because there's other stuff |
|
619 * in the packet before the DCC command. |
|
620 * |
|
621 * Return 1 if the mbuf m is still valid and should be |
|
622 * sbappend()ed |
|
623 * |
|
624 * NOTE: if you return 0 you MUST m_free() the mbuf! |
|
625 */ |
|
626 int |
|
627 tcp_emu(so, m) |
|
628 struct socket *so; |
|
629 struct mbuf *m; |
|
630 { |
|
631 u_int n1, n2, n3, n4, n5, n6; |
|
632 char buff[257]; |
|
633 u_int32_t laddr; |
|
634 u_int lport; |
|
635 char *bptr; |
|
636 |
|
637 DEBUG_CALL("tcp_emu"); |
|
638 DEBUG_ARG("so = %lx", (long)so); |
|
639 DEBUG_ARG("m = %lx", (long)m); |
|
640 |
|
641 switch(so->so_emu) { |
|
642 int x, i; |
|
643 |
|
644 case EMU_IDENT: |
|
645 /* |
|
646 * Identification protocol as per rfc-1413 |
|
647 */ |
|
648 |
|
649 { |
|
650 struct socket *tmpso; |
|
651 struct sockaddr_in addr; |
|
652 socklen_t addrlen = sizeof(struct sockaddr_in); |
|
653 struct sbuf *so_rcv = &so->so_rcv; |
|
654 |
|
655 memcpy(so_rcv->sb_wptr, m->m_data, m->m_len); |
|
656 so_rcv->sb_wptr += m->m_len; |
|
657 so_rcv->sb_rptr += m->m_len; |
|
658 m->m_data[m->m_len] = 0; /* NULL terminate */ |
|
659 if (strchr(m->m_data, '\r') || strchr(m->m_data, '\n')) { |
|
660 if (sscanf(so_rcv->sb_data, "%u%*[ ,]%u", &n1, &n2) == 2) { |
|
661 HTONS(n1); |
|
662 HTONS(n2); |
|
663 /* n2 is the one on our host */ |
|
664 for (tmpso = tcb.so_next; tmpso != &tcb; tmpso = tmpso->so_next) { |
|
665 if (tmpso->so_laddr.s_addr == so->so_laddr.s_addr && |
|
666 tmpso->so_lport == n2 && |
|
667 tmpso->so_faddr.s_addr == so->so_faddr.s_addr && |
|
668 tmpso->so_fport == n1) { |
|
669 if (getsockname(tmpso->s, |
|
670 (struct sockaddr *)&addr, &addrlen) == 0) |
|
671 n2 = ntohs(addr.sin_port); |
|
672 break; |
|
673 } |
|
674 } |
|
675 } |
|
676 so_rcv->sb_cc = snprintf(so_rcv->sb_data, |
|
677 so_rcv->sb_datalen, |
|
678 "%d,%d\r\n", n1, n2); |
|
679 so_rcv->sb_rptr = so_rcv->sb_data; |
|
680 so_rcv->sb_wptr = so_rcv->sb_data + so_rcv->sb_cc; |
|
681 } |
|
682 m_free(m); |
|
683 return 0; |
|
684 } |
|
685 |
|
686 #if 0 |
|
687 case EMU_RLOGIN: |
|
688 /* |
|
689 * Rlogin emulation |
|
690 * First we accumulate all the initial option negotiation, |
|
691 * then fork_exec() rlogin according to the options |
|
692 */ |
|
693 { |
|
694 int i, i2, n; |
|
695 char *ptr; |
|
696 char args[100]; |
|
697 char term[100]; |
|
698 struct sbuf *so_snd = &so->so_snd; |
|
699 struct sbuf *so_rcv = &so->so_rcv; |
|
700 |
|
701 /* First check if they have a priveladged port, or too much data has arrived */ |
|
702 if (ntohs(so->so_lport) > 1023 || ntohs(so->so_lport) < 512 || |
|
703 (m->m_len + so_rcv->sb_wptr) > (so_rcv->sb_data + so_rcv->sb_datalen)) { |
|
704 memcpy(so_snd->sb_wptr, "Permission denied\n", 18); |
|
705 so_snd->sb_wptr += 18; |
|
706 so_snd->sb_cc += 18; |
|
707 tcp_sockclosed(sototcpcb(so)); |
|
708 m_free(m); |
|
709 return 0; |
|
710 } |
|
711 |
|
712 /* Append the current data */ |
|
713 memcpy(so_rcv->sb_wptr, m->m_data, m->m_len); |
|
714 so_rcv->sb_wptr += m->m_len; |
|
715 so_rcv->sb_rptr += m->m_len; |
|
716 m_free(m); |
|
717 |
|
718 /* |
|
719 * Check if we have all the initial options, |
|
720 * and build argument list to rlogin while we're here |
|
721 */ |
|
722 n = 0; |
|
723 ptr = so_rcv->sb_data; |
|
724 args[0] = 0; |
|
725 term[0] = 0; |
|
726 while (ptr < so_rcv->sb_wptr) { |
|
727 if (*ptr++ == 0) { |
|
728 n++; |
|
729 if (n == 2) { |
|
730 sprintf(args, "rlogin -l %s %s", |
|
731 ptr, inet_ntoa(so->so_faddr)); |
|
732 } else if (n == 3) { |
|
733 i2 = so_rcv->sb_wptr - ptr; |
|
734 for (i = 0; i < i2; i++) { |
|
735 if (ptr[i] == '/') { |
|
736 ptr[i] = 0; |
|
737 #ifdef HAVE_SETENV |
|
738 sprintf(term, "%s", ptr); |
|
739 #else |
|
740 sprintf(term, "TERM=%s", ptr); |
|
741 #endif |
|
742 ptr[i] = '/'; |
|
743 break; |
|
744 } |
|
745 } |
|
746 } |
|
747 } |
|
748 } |
|
749 |
|
750 if (n != 4) |
|
751 return 0; |
|
752 |
|
753 /* We have it, set our term variable and fork_exec() */ |
|
754 #ifdef HAVE_SETENV |
|
755 setenv("TERM", term, 1); |
|
756 #else |
|
757 putenv(term); |
|
758 #endif |
|
759 fork_exec(so, args, 2); |
|
760 term[0] = 0; |
|
761 so->so_emu = 0; |
|
762 |
|
763 /* And finally, send the client a 0 character */ |
|
764 so_snd->sb_wptr[0] = 0; |
|
765 so_snd->sb_wptr++; |
|
766 so_snd->sb_cc++; |
|
767 |
|
768 return 0; |
|
769 } |
|
770 |
|
771 case EMU_RSH: |
|
772 /* |
|
773 * rsh emulation |
|
774 * First we accumulate all the initial option negotiation, |
|
775 * then rsh_exec() rsh according to the options |
|
776 */ |
|
777 { |
|
778 int n; |
|
779 char *ptr; |
|
780 char *user; |
|
781 char *args; |
|
782 struct sbuf *so_snd = &so->so_snd; |
|
783 struct sbuf *so_rcv = &so->so_rcv; |
|
784 |
|
785 /* First check if they have a priveladged port, or too much data has arrived */ |
|
786 if (ntohs(so->so_lport) > 1023 || ntohs(so->so_lport) < 512 || |
|
787 (m->m_len + so_rcv->sb_wptr) > (so_rcv->sb_data + so_rcv->sb_datalen)) { |
|
788 memcpy(so_snd->sb_wptr, "Permission denied\n", 18); |
|
789 so_snd->sb_wptr += 18; |
|
790 so_snd->sb_cc += 18; |
|
791 tcp_sockclosed(sototcpcb(so)); |
|
792 m_free(m); |
|
793 return 0; |
|
794 } |
|
795 |
|
796 /* Append the current data */ |
|
797 memcpy(so_rcv->sb_wptr, m->m_data, m->m_len); |
|
798 so_rcv->sb_wptr += m->m_len; |
|
799 so_rcv->sb_rptr += m->m_len; |
|
800 m_free(m); |
|
801 |
|
802 /* |
|
803 * Check if we have all the initial options, |
|
804 * and build argument list to rlogin while we're here |
|
805 */ |
|
806 n = 0; |
|
807 ptr = so_rcv->sb_data; |
|
808 user=""; |
|
809 args=""; |
|
810 if (so->extra==NULL) { |
|
811 struct socket *ns; |
|
812 struct tcpcb* tp; |
|
813 int port=atoi(ptr); |
|
814 if (port <= 0) return 0; |
|
815 if (port > 1023 || port < 512) { |
|
816 memcpy(so_snd->sb_wptr, "Permission denied\n", 18); |
|
817 so_snd->sb_wptr += 18; |
|
818 so_snd->sb_cc += 18; |
|
819 tcp_sockclosed(sototcpcb(so)); |
|
820 return 0; |
|
821 } |
|
822 if ((ns=socreate()) == NULL) |
|
823 return 0; |
|
824 if (tcp_attach(ns)<0) { |
|
825 free(ns); |
|
826 return 0; |
|
827 } |
|
828 |
|
829 ns->so_laddr=so->so_laddr; |
|
830 ns->so_lport=htons(port); |
|
831 |
|
832 (void) tcp_mss(sototcpcb(ns), 0); |
|
833 |
|
834 ns->so_faddr=so->so_faddr; |
|
835 ns->so_fport=htons(IPPORT_RESERVED-1); /* Use a fake port. */ |
|
836 |
|
837 if (ns->so_faddr.s_addr == 0 || |
|
838 ns->so_faddr.s_addr == loopback_addr.s_addr) |
|
839 ns->so_faddr = alias_addr; |
|
840 |
|
841 ns->so_iptos = tcp_tos(ns); |
|
842 tp = sototcpcb(ns); |
|
843 |
|
844 tcp_template(tp); |
|
845 |
|
846 /* Compute window scaling to request. */ |
|
847 /* while (tp->request_r_scale < TCP_MAX_WINSHIFT && |
|
848 * (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.sb_hiwat) |
|
849 * tp->request_r_scale++; |
|
850 */ |
|
851 |
|
852 /*soisfconnecting(ns);*/ |
|
853 |
|
854 STAT(tcpstat.tcps_connattempt++); |
|
855 |
|
856 tp->t_state = TCPS_SYN_SENT; |
|
857 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; |
|
858 tp->iss = tcp_iss; |
|
859 tcp_iss += TCP_ISSINCR/2; |
|
860 tcp_sendseqinit(tp); |
|
861 tcp_output(tp); |
|
862 so->extra=ns; |
|
863 } |
|
864 while (ptr < so_rcv->sb_wptr) { |
|
865 if (*ptr++ == 0) { |
|
866 n++; |
|
867 if (n == 2) { |
|
868 user=ptr; |
|
869 } else if (n == 3) { |
|
870 args=ptr; |
|
871 } |
|
872 } |
|
873 } |
|
874 |
|
875 if (n != 4) |
|
876 return 0; |
|
877 |
|
878 rsh_exec(so,so->extra, user, inet_ntoa(so->so_faddr), args); |
|
879 so->so_emu = 0; |
|
880 so->extra=NULL; |
|
881 |
|
882 /* And finally, send the client a 0 character */ |
|
883 so_snd->sb_wptr[0] = 0; |
|
884 so_snd->sb_wptr++; |
|
885 so_snd->sb_cc++; |
|
886 |
|
887 return 0; |
|
888 } |
|
889 |
|
890 case EMU_CTL: |
|
891 { |
|
892 int num; |
|
893 struct sbuf *so_snd = &so->so_snd; |
|
894 struct sbuf *so_rcv = &so->so_rcv; |
|
895 |
|
896 /* |
|
897 * If there is binary data here, we save it in so->so_m |
|
898 */ |
|
899 if (!so->so_m) { |
|
900 int rxlen; |
|
901 char *rxdata; |
|
902 rxdata=mtod(m, char *); |
|
903 for (rxlen=m->m_len; rxlen; rxlen--) { |
|
904 if (*rxdata++ & 0x80) { |
|
905 so->so_m = m; |
|
906 return 0; |
|
907 } |
|
908 } |
|
909 } /* if(so->so_m==NULL) */ |
|
910 |
|
911 /* |
|
912 * Append the line |
|
913 */ |
|
914 sbappendsb(so_rcv, m); |
|
915 |
|
916 /* To avoid going over the edge of the buffer, we reset it */ |
|
917 if (so_snd->sb_cc == 0) |
|
918 so_snd->sb_wptr = so_snd->sb_rptr = so_snd->sb_data; |
|
919 |
|
920 /* |
|
921 * A bit of a hack: |
|
922 * If the first packet we get here is 1 byte long, then it |
|
923 * was done in telnet character mode, therefore we must echo |
|
924 * the characters as they come. Otherwise, we echo nothing, |
|
925 * because in linemode, the line is already echoed |
|
926 * XXX two or more control connections won't work |
|
927 */ |
|
928 if (do_echo == -1) { |
|
929 if (m->m_len == 1) do_echo = 1; |
|
930 else do_echo = 0; |
|
931 } |
|
932 if (do_echo) { |
|
933 sbappendsb(so_snd, m); |
|
934 m_free(m); |
|
935 tcp_output(sototcpcb(so)); /* XXX */ |
|
936 } else |
|
937 m_free(m); |
|
938 |
|
939 num = 0; |
|
940 while (num < so->so_rcv.sb_cc) { |
|
941 if (*(so->so_rcv.sb_rptr + num) == '\n' || |
|
942 *(so->so_rcv.sb_rptr + num) == '\r') { |
|
943 int n; |
|
944 |
|
945 *(so_rcv->sb_rptr + num) = 0; |
|
946 if (ctl_password && !ctl_password_ok) { |
|
947 /* Need a password */ |
|
948 if (sscanf(so_rcv->sb_rptr, "pass %256s", buff) == 1) { |
|
949 if (strcmp(buff, ctl_password) == 0) { |
|
950 ctl_password_ok = 1; |
|
951 n = sprintf(so_snd->sb_wptr, |
|
952 "Password OK.\r\n"); |
|
953 goto do_prompt; |
|
954 } |
|
955 } |
|
956 n = sprintf(so_snd->sb_wptr, |
|
957 "Error: Password required, log on with \"pass PASSWORD\"\r\n"); |
|
958 goto do_prompt; |
|
959 } |
|
960 cfg_quitting = 0; |
|
961 n = do_config(so_rcv->sb_rptr, so, PRN_SPRINTF); |
|
962 if (!cfg_quitting) { |
|
963 /* Register the printed data */ |
|
964 do_prompt: |
|
965 so_snd->sb_cc += n; |
|
966 so_snd->sb_wptr += n; |
|
967 /* Add prompt */ |
|
968 n = sprintf(so_snd->sb_wptr, "Slirp> "); |
|
969 so_snd->sb_cc += n; |
|
970 so_snd->sb_wptr += n; |
|
971 } |
|
972 /* Drop so_rcv data */ |
|
973 so_rcv->sb_cc = 0; |
|
974 so_rcv->sb_wptr = so_rcv->sb_rptr = so_rcv->sb_data; |
|
975 tcp_output(sototcpcb(so)); /* Send the reply */ |
|
976 } |
|
977 num++; |
|
978 } |
|
979 return 0; |
|
980 } |
|
981 #endif |
|
982 case EMU_FTP: /* ftp */ |
|
983 *(m->m_data+m->m_len) = 0; /* NULL terminate for strstr */ |
|
984 if ((bptr = (char *)strstr(m->m_data, "ORT")) != NULL) { |
|
985 /* |
|
986 * Need to emulate the PORT command |
|
987 */ |
|
988 x = sscanf(bptr, "ORT %u,%u,%u,%u,%u,%u\r\n%256[^\177]", |
|
989 &n1, &n2, &n3, &n4, &n5, &n6, buff); |
|
990 if (x < 6) |
|
991 return 1; |
|
992 |
|
993 laddr = htonl((n1 << 24) | (n2 << 16) | (n3 << 8) | (n4)); |
|
994 lport = htons((n5 << 8) | (n6)); |
|
995 |
|
996 if ((so = solisten(0, laddr, lport, SS_FACCEPTONCE)) == NULL) |
|
997 return 1; |
|
998 |
|
999 n6 = ntohs(so->so_fport); |
|
1000 |
|
1001 n5 = (n6 >> 8) & 0xff; |
|
1002 n6 &= 0xff; |
|
1003 |
|
1004 laddr = ntohl(so->so_faddr.s_addr); |
|
1005 |
|
1006 n1 = ((laddr >> 24) & 0xff); |
|
1007 n2 = ((laddr >> 16) & 0xff); |
|
1008 n3 = ((laddr >> 8) & 0xff); |
|
1009 n4 = (laddr & 0xff); |
|
1010 |
|
1011 m->m_len = bptr - m->m_data; /* Adjust length */ |
|
1012 m->m_len += snprintf(bptr, m->m_hdr.mh_size - m->m_len, |
|
1013 "ORT %d,%d,%d,%d,%d,%d\r\n%s", |
|
1014 n1, n2, n3, n4, n5, n6, x==7?buff:""); |
|
1015 return 1; |
|
1016 } else if ((bptr = (char *)strstr(m->m_data, "27 Entering")) != NULL) { |
|
1017 /* |
|
1018 * Need to emulate the PASV response |
|
1019 */ |
|
1020 x = sscanf(bptr, "27 Entering Passive Mode (%u,%u,%u,%u,%u,%u)\r\n%256[^\177]", |
|
1021 &n1, &n2, &n3, &n4, &n5, &n6, buff); |
|
1022 if (x < 6) |
|
1023 return 1; |
|
1024 |
|
1025 laddr = htonl((n1 << 24) | (n2 << 16) | (n3 << 8) | (n4)); |
|
1026 lport = htons((n5 << 8) | (n6)); |
|
1027 |
|
1028 if ((so = solisten(0, laddr, lport, SS_FACCEPTONCE)) == NULL) |
|
1029 return 1; |
|
1030 |
|
1031 n6 = ntohs(so->so_fport); |
|
1032 |
|
1033 n5 = (n6 >> 8) & 0xff; |
|
1034 n6 &= 0xff; |
|
1035 |
|
1036 laddr = ntohl(so->so_faddr.s_addr); |
|
1037 |
|
1038 n1 = ((laddr >> 24) & 0xff); |
|
1039 n2 = ((laddr >> 16) & 0xff); |
|
1040 n3 = ((laddr >> 8) & 0xff); |
|
1041 n4 = (laddr & 0xff); |
|
1042 |
|
1043 m->m_len = bptr - m->m_data; /* Adjust length */ |
|
1044 m->m_len += snprintf(bptr, m->m_hdr.mh_size - m->m_len, |
|
1045 "27 Entering Passive Mode (%d,%d,%d,%d,%d,%d)\r\n%s", |
|
1046 n1, n2, n3, n4, n5, n6, x==7?buff:""); |
|
1047 |
|
1048 return 1; |
|
1049 } |
|
1050 |
|
1051 return 1; |
|
1052 |
|
1053 case EMU_KSH: |
|
1054 /* |
|
1055 * The kshell (Kerberos rsh) and shell services both pass |
|
1056 * a local port port number to carry signals to the server |
|
1057 * and stderr to the client. It is passed at the beginning |
|
1058 * of the connection as a NUL-terminated decimal ASCII string. |
|
1059 */ |
|
1060 so->so_emu = 0; |
|
1061 for (lport = 0, i = 0; i < m->m_len-1; ++i) { |
|
1062 if (m->m_data[i] < '0' || m->m_data[i] > '9') |
|
1063 return 1; /* invalid number */ |
|
1064 lport *= 10; |
|
1065 lport += m->m_data[i] - '0'; |
|
1066 } |
|
1067 if (m->m_data[m->m_len-1] == '\0' && lport != 0 && |
|
1068 (so = solisten(0, so->so_laddr.s_addr, htons(lport), SS_FACCEPTONCE)) != NULL) |
|
1069 m->m_len = snprintf(m->m_data, m->m_hdr.mh_size, "%d", |
|
1070 ntohs(so->so_fport)) + 1; |
|
1071 return 1; |
|
1072 |
|
1073 case EMU_IRC: |
|
1074 /* |
|
1075 * Need to emulate DCC CHAT, DCC SEND and DCC MOVE |
|
1076 */ |
|
1077 *(m->m_data+m->m_len) = 0; /* NULL terminate the string for strstr */ |
|
1078 if ((bptr = (char *)strstr(m->m_data, "DCC")) == NULL) |
|
1079 return 1; |
|
1080 |
|
1081 /* The %256s is for the broken mIRC */ |
|
1082 if (sscanf(bptr, "DCC CHAT %256s %u %u", buff, &laddr, &lport) == 3) { |
|
1083 if ((so = solisten(0, htonl(laddr), htons(lport), SS_FACCEPTONCE)) == NULL) |
|
1084 return 1; |
|
1085 |
|
1086 m->m_len = bptr - m->m_data; /* Adjust length */ |
|
1087 m->m_len += snprintf(bptr, m->m_hdr.mh_size, |
|
1088 "DCC CHAT chat %lu %u%c\n", |
|
1089 (unsigned long)ntohl(so->so_faddr.s_addr), |
|
1090 ntohs(so->so_fport), 1); |
|
1091 } else if (sscanf(bptr, "DCC SEND %256s %u %u %u", buff, &laddr, &lport, &n1) == 4) { |
|
1092 if ((so = solisten(0, htonl(laddr), htons(lport), SS_FACCEPTONCE)) == NULL) |
|
1093 return 1; |
|
1094 |
|
1095 m->m_len = bptr - m->m_data; /* Adjust length */ |
|
1096 m->m_len += snprintf(bptr, m->m_hdr.mh_size, |
|
1097 "DCC SEND %s %lu %u %u%c\n", buff, |
|
1098 (unsigned long)ntohl(so->so_faddr.s_addr), |
|
1099 ntohs(so->so_fport), n1, 1); |
|
1100 } else if (sscanf(bptr, "DCC MOVE %256s %u %u %u", buff, &laddr, &lport, &n1) == 4) { |
|
1101 if ((so = solisten(0, htonl(laddr), htons(lport), SS_FACCEPTONCE)) == NULL) |
|
1102 return 1; |
|
1103 |
|
1104 m->m_len = bptr - m->m_data; /* Adjust length */ |
|
1105 m->m_len += snprintf(bptr, m->m_hdr.mh_size, |
|
1106 "DCC MOVE %s %lu %u %u%c\n", buff, |
|
1107 (unsigned long)ntohl(so->so_faddr.s_addr), |
|
1108 ntohs(so->so_fport), n1, 1); |
|
1109 } |
|
1110 return 1; |
|
1111 |
|
1112 case EMU_REALAUDIO: |
|
1113 /* |
|
1114 * RealAudio emulation - JP. We must try to parse the incoming |
|
1115 * data and try to find the two characters that contain the |
|
1116 * port number. Then we redirect an udp port and replace the |
|
1117 * number with the real port we got. |
|
1118 * |
|
1119 * The 1.0 beta versions of the player are not supported |
|
1120 * any more. |
|
1121 * |
|
1122 * A typical packet for player version 1.0 (release version): |
|
1123 * |
|
1124 * 0000:50 4E 41 00 05 |
|
1125 * 0000:00 01 00 02 1B D7 00 00 67 E6 6C DC 63 00 12 50 .....×..gælÜc..P |
|
1126 * 0010:4E 43 4C 49 45 4E 54 20 31 30 31 20 41 4C 50 48 NCLIENT 101 ALPH |
|
1127 * 0020:41 6C 00 00 52 00 17 72 61 66 69 6C 65 73 2F 76 Al..R..rafiles/v |
|
1128 * 0030:6F 61 2F 65 6E 67 6C 69 73 68 5F 2E 72 61 79 42 oa/english_.rayB |
|
1129 * |
|
1130 * Now the port number 0x1BD7 is found at offset 0x04 of the |
|
1131 * Now the port number 0x1BD7 is found at offset 0x04 of the |
|
1132 * second packet. This time we received five bytes first and |
|
1133 * then the rest. You never know how many bytes you get. |
|
1134 * |
|
1135 * A typical packet for player version 2.0 (beta): |
|
1136 * |
|
1137 * 0000:50 4E 41 00 06 00 02 00 00 00 01 00 02 1B C1 00 PNA...........Á. |
|
1138 * 0010:00 67 75 78 F5 63 00 0A 57 69 6E 32 2E 30 2E 30 .guxõc..Win2.0.0 |
|
1139 * 0020:2E 35 6C 00 00 52 00 1C 72 61 66 69 6C 65 73 2F .5l..R..rafiles/ |
|
1140 * 0030:77 65 62 73 69 74 65 2F 32 30 72 65 6C 65 61 73 website/20releas |
|
1141 * 0040:65 2E 72 61 79 53 00 00 06 36 42 e.rayS...6B |
|
1142 * |
|
1143 * Port number 0x1BC1 is found at offset 0x0d. |
|
1144 * |
|
1145 * This is just a horrible switch statement. Variable ra tells |
|
1146 * us where we're going. |
|
1147 */ |
|
1148 |
|
1149 bptr = m->m_data; |
|
1150 while (bptr < m->m_data + m->m_len) { |
|
1151 u_short p; |
|
1152 static int ra = 0; |
|
1153 char ra_tbl[4]; |
|
1154 |
|
1155 ra_tbl[0] = 0x50; |
|
1156 ra_tbl[1] = 0x4e; |
|
1157 ra_tbl[2] = 0x41; |
|
1158 ra_tbl[3] = 0; |
|
1159 |
|
1160 switch (ra) { |
|
1161 case 0: |
|
1162 case 2: |
|
1163 case 3: |
|
1164 if (*bptr++ != ra_tbl[ra]) { |
|
1165 ra = 0; |
|
1166 continue; |
|
1167 } |
|
1168 break; |
|
1169 |
|
1170 case 1: |
|
1171 /* |
|
1172 * We may get 0x50 several times, ignore them |
|
1173 */ |
|
1174 if (*bptr == 0x50) { |
|
1175 ra = 1; |
|
1176 bptr++; |
|
1177 continue; |
|
1178 } else if (*bptr++ != ra_tbl[ra]) { |
|
1179 ra = 0; |
|
1180 continue; |
|
1181 } |
|
1182 break; |
|
1183 |
|
1184 case 4: |
|
1185 /* |
|
1186 * skip version number |
|
1187 */ |
|
1188 bptr++; |
|
1189 break; |
|
1190 |
|
1191 case 5: |
|
1192 /* |
|
1193 * The difference between versions 1.0 and |
|
1194 * 2.0 is here. For future versions of |
|
1195 * the player this may need to be modified. |
|
1196 */ |
|
1197 if (*(bptr + 1) == 0x02) |
|
1198 bptr += 8; |
|
1199 else |
|
1200 bptr += 4; |
|
1201 break; |
|
1202 |
|
1203 case 6: |
|
1204 /* This is the field containing the port |
|
1205 * number that RA-player is listening to. |
|
1206 */ |
|
1207 lport = (((u_char*)bptr)[0] << 8) |
|
1208 + ((u_char *)bptr)[1]; |
|
1209 if (lport < 6970) |
|
1210 lport += 256; /* don't know why */ |
|
1211 if (lport < 6970 || lport > 7170) |
|
1212 return 1; /* failed */ |
|
1213 |
|
1214 /* try to get udp port between 6970 - 7170 */ |
|
1215 for (p = 6970; p < 7071; p++) { |
|
1216 if (udp_listen( htons(p), |
|
1217 so->so_laddr.s_addr, |
|
1218 htons(lport), |
|
1219 SS_FACCEPTONCE)) { |
|
1220 break; |
|
1221 } |
|
1222 } |
|
1223 if (p == 7071) |
|
1224 p = 0; |
|
1225 *(u_char *)bptr++ = (p >> 8) & 0xff; |
|
1226 *(u_char *)bptr++ = p & 0xff; |
|
1227 ra = 0; |
|
1228 return 1; /* port redirected, we're done */ |
|
1229 break; |
|
1230 |
|
1231 default: |
|
1232 ra = 0; |
|
1233 } |
|
1234 ra++; |
|
1235 } |
|
1236 return 1; |
|
1237 |
|
1238 default: |
|
1239 /* Ooops, not emulated, won't call tcp_emu again */ |
|
1240 so->so_emu = 0; |
|
1241 return 1; |
|
1242 } |
|
1243 } |
|
1244 |
|
1245 /* |
|
1246 * Do misc. config of SLiRP while its running. |
|
1247 * Return 0 if this connections is to be closed, 1 otherwise, |
|
1248 * return 2 if this is a command-line connection |
|
1249 */ |
|
1250 int |
|
1251 tcp_ctl(so) |
|
1252 struct socket *so; |
|
1253 { |
|
1254 struct sbuf *sb = &so->so_snd; |
|
1255 int command; |
|
1256 struct ex_list *ex_ptr; |
|
1257 int do_pty; |
|
1258 // struct socket *tmpso; |
|
1259 |
|
1260 DEBUG_CALL("tcp_ctl"); |
|
1261 DEBUG_ARG("so = %lx", (long )so); |
|
1262 |
|
1263 #if 0 |
|
1264 /* |
|
1265 * Check if they're authorised |
|
1266 */ |
|
1267 if (ctl_addr.s_addr && (ctl_addr.s_addr == -1 || (so->so_laddr.s_addr != ctl_addr.s_addr))) { |
|
1268 sb->sb_cc = sprintf(sb->sb_wptr,"Error: Permission denied.\r\n"); |
|
1269 sb->sb_wptr += sb->sb_cc; |
|
1270 return 0; |
|
1271 } |
|
1272 #endif |
|
1273 command = (ntohl(so->so_faddr.s_addr) & 0xff); |
|
1274 |
|
1275 switch(command) { |
|
1276 default: /* Check for exec's */ |
|
1277 |
|
1278 /* |
|
1279 * Check if it's pty_exec |
|
1280 */ |
|
1281 for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
|
1282 if (ex_ptr->ex_fport == so->so_fport && |
|
1283 command == ex_ptr->ex_addr) { |
|
1284 do_pty = ex_ptr->ex_pty; |
|
1285 goto do_exec; |
|
1286 } |
|
1287 } |
|
1288 |
|
1289 /* |
|
1290 * Nothing bound.. |
|
1291 */ |
|
1292 /* tcp_fconnect(so); */ |
|
1293 |
|
1294 /* FALLTHROUGH */ |
|
1295 case CTL_ALIAS: |
|
1296 sb->sb_cc = snprintf(sb->sb_wptr, sb->sb_datalen - (sb->sb_wptr - sb->sb_data), |
|
1297 "Error: No application configured.\r\n"); |
|
1298 sb->sb_wptr += sb->sb_cc; |
|
1299 return(0); |
|
1300 |
|
1301 do_exec: |
|
1302 DEBUG_MISC((dfd, " executing %s \n",ex_ptr->ex_exec)); |
|
1303 return(fork_exec(so, ex_ptr->ex_exec, do_pty)); |
|
1304 |
|
1305 #if 0 |
|
1306 case CTL_CMD: |
|
1307 for (tmpso = tcb.so_next; tmpso != &tcb; tmpso = tmpso->so_next) { |
|
1308 if (tmpso->so_emu == EMU_CTL && |
|
1309 !(tmpso->so_tcpcb? |
|
1310 (tmpso->so_tcpcb->t_state & (TCPS_TIME_WAIT|TCPS_LAST_ACK)) |
|
1311 :0)) { |
|
1312 /* Ooops, control connection already active */ |
|
1313 sb->sb_cc = sprintf(sb->sb_wptr,"Sorry, already connected.\r\n"); |
|
1314 sb->sb_wptr += sb->sb_cc; |
|
1315 return 0; |
|
1316 } |
|
1317 } |
|
1318 so->so_emu = EMU_CTL; |
|
1319 ctl_password_ok = 0; |
|
1320 sb->sb_cc = sprintf(sb->sb_wptr, "Slirp command-line ready (type \"help\" for help).\r\nSlirp> "); |
|
1321 sb->sb_wptr += sb->sb_cc; |
|
1322 do_echo=-1; |
|
1323 return(2); |
|
1324 #endif |
|
1325 } |
|
1326 } |