|
1 #include <stdio.h> |
|
2 #include <stdlib.h> |
|
3 #include <string.h> |
|
4 |
|
5 #include "cpu.h" |
|
6 #include "exec-all.h" |
|
7 #include "gdbstub.h" |
|
8 #include "helpers.h" |
|
9 #include "qemu-common.h" |
|
10 |
|
11 static uint32_t cortexa8_cp15_c0_c1[8] = |
|
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 }; |
|
13 |
|
14 static uint32_t cortexa8_cp15_c0_c2[8] = |
|
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 }; |
|
16 |
|
17 static uint32_t mpcore_cp15_c0_c1[8] = |
|
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 }; |
|
19 |
|
20 static uint32_t mpcore_cp15_c0_c2[8] = |
|
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 }; |
|
22 |
|
23 static uint32_t arm1136_cp15_c0_c1[8] = |
|
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 }; |
|
25 |
|
26 static uint32_t arm1136_cp15_c0_c2[8] = |
|
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 }; |
|
28 |
|
29 static uint32_t cpu_arm_find_by_name(const char *name); |
|
30 |
|
31 static inline void set_feature(CPUARMState *env, int feature) |
|
32 { |
|
33 env->features |= 1u << feature; |
|
34 } |
|
35 |
|
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id) |
|
37 { |
|
38 env->cp15.c0_cpuid = id; |
|
39 switch (id) { |
|
40 case ARM_CPUID_ARM926: |
|
41 set_feature(env, ARM_FEATURE_VFP); |
|
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090; |
|
43 env->cp15.c0_cachetype = 0x1dd20d2; |
|
44 env->cp15.c1_sys = 0x00090078; |
|
45 break; |
|
46 case ARM_CPUID_ARM946: |
|
47 set_feature(env, ARM_FEATURE_MPU); |
|
48 env->cp15.c0_cachetype = 0x0f004006; |
|
49 env->cp15.c1_sys = 0x00000078; |
|
50 break; |
|
51 case ARM_CPUID_ARM1026: |
|
52 set_feature(env, ARM_FEATURE_VFP); |
|
53 set_feature(env, ARM_FEATURE_AUXCR); |
|
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0; |
|
55 env->cp15.c0_cachetype = 0x1dd20d2; |
|
56 env->cp15.c1_sys = 0x00090078; |
|
57 break; |
|
58 case ARM_CPUID_ARM1136_R2: |
|
59 case ARM_CPUID_ARM1136: |
|
60 set_feature(env, ARM_FEATURE_V6); |
|
61 set_feature(env, ARM_FEATURE_VFP); |
|
62 set_feature(env, ARM_FEATURE_AUXCR); |
|
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; |
|
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; |
|
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; |
|
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t)); |
|
67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t)); |
|
68 env->cp15.c0_cachetype = 0x1dd20d2; |
|
69 break; |
|
70 case ARM_CPUID_ARM11MPCORE: |
|
71 set_feature(env, ARM_FEATURE_V6); |
|
72 set_feature(env, ARM_FEATURE_V6K); |
|
73 set_feature(env, ARM_FEATURE_VFP); |
|
74 set_feature(env, ARM_FEATURE_AUXCR); |
|
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; |
|
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; |
|
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; |
|
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t)); |
|
79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t)); |
|
80 env->cp15.c0_cachetype = 0x1dd20d2; |
|
81 break; |
|
82 case ARM_CPUID_CORTEXA8: |
|
83 set_feature(env, ARM_FEATURE_V6); |
|
84 set_feature(env, ARM_FEATURE_V6K); |
|
85 set_feature(env, ARM_FEATURE_V7); |
|
86 set_feature(env, ARM_FEATURE_AUXCR); |
|
87 set_feature(env, ARM_FEATURE_THUMB2); |
|
88 set_feature(env, ARM_FEATURE_VFP); |
|
89 set_feature(env, ARM_FEATURE_VFP3); |
|
90 set_feature(env, ARM_FEATURE_NEON); |
|
91 set_feature(env, ARM_FEATURE_THUMB2EE); |
|
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0; |
|
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; |
|
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100; |
|
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t)); |
|
96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t)); |
|
97 env->cp15.c0_cachetype = 0x82048004; |
|
98 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3; |
|
99 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */ |
|
100 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */ |
|
101 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */ |
|
102 break; |
|
103 case ARM_CPUID_CORTEXM3: |
|
104 set_feature(env, ARM_FEATURE_V6); |
|
105 set_feature(env, ARM_FEATURE_THUMB2); |
|
106 set_feature(env, ARM_FEATURE_V7); |
|
107 set_feature(env, ARM_FEATURE_M); |
|
108 set_feature(env, ARM_FEATURE_DIV); |
|
109 break; |
|
110 case ARM_CPUID_ANY: /* For userspace emulation. */ |
|
111 set_feature(env, ARM_FEATURE_V6); |
|
112 set_feature(env, ARM_FEATURE_V6K); |
|
113 set_feature(env, ARM_FEATURE_V7); |
|
114 set_feature(env, ARM_FEATURE_THUMB2); |
|
115 set_feature(env, ARM_FEATURE_VFP); |
|
116 set_feature(env, ARM_FEATURE_VFP3); |
|
117 set_feature(env, ARM_FEATURE_NEON); |
|
118 set_feature(env, ARM_FEATURE_THUMB2EE); |
|
119 set_feature(env, ARM_FEATURE_DIV); |
|
120 set_feature(env, ARM_FEATURE_FP16); |
|
121 set_feature(env, ARM_FEATURE_THUMB2EE); |
|
122 break; |
|
123 case ARM_CPUID_TI915T: |
|
124 case ARM_CPUID_TI925T: |
|
125 set_feature(env, ARM_FEATURE_OMAPCP); |
|
126 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */ |
|
127 env->cp15.c0_cachetype = 0x5109149; |
|
128 env->cp15.c1_sys = 0x00000070; |
|
129 env->cp15.c15_i_max = 0x000; |
|
130 env->cp15.c15_i_min = 0xff0; |
|
131 break; |
|
132 case ARM_CPUID_PXA250: |
|
133 case ARM_CPUID_PXA255: |
|
134 case ARM_CPUID_PXA260: |
|
135 case ARM_CPUID_PXA261: |
|
136 case ARM_CPUID_PXA262: |
|
137 set_feature(env, ARM_FEATURE_XSCALE); |
|
138 /* JTAG_ID is ((id << 28) | 0x09265013) */ |
|
139 env->cp15.c0_cachetype = 0xd172172; |
|
140 env->cp15.c1_sys = 0x00000078; |
|
141 break; |
|
142 case ARM_CPUID_PXA270_A0: |
|
143 case ARM_CPUID_PXA270_A1: |
|
144 case ARM_CPUID_PXA270_B0: |
|
145 case ARM_CPUID_PXA270_B1: |
|
146 case ARM_CPUID_PXA270_C0: |
|
147 case ARM_CPUID_PXA270_C5: |
|
148 set_feature(env, ARM_FEATURE_XSCALE); |
|
149 /* JTAG_ID is ((id << 28) | 0x09265013) */ |
|
150 set_feature(env, ARM_FEATURE_IWMMXT); |
|
151 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; |
|
152 env->cp15.c0_cachetype = 0xd172172; |
|
153 env->cp15.c1_sys = 0x00000078; |
|
154 break; |
|
155 default: |
|
156 cpu_abort(env, "Bad CPU ID: %x\n", id); |
|
157 break; |
|
158 } |
|
159 } |
|
160 |
|
161 void cpu_reset(CPUARMState *env) |
|
162 { |
|
163 uint32_t id; |
|
164 id = env->cp15.c0_cpuid; |
|
165 memset(env, 0, offsetof(CPUARMState, breakpoints)); |
|
166 if (id) |
|
167 cpu_reset_model_id(env, id); |
|
168 #if defined (CONFIG_USER_ONLY) |
|
169 env->uncached_cpsr = ARM_CPU_MODE_USR; |
|
170 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; |
|
171 #else |
|
172 /* SVC mode with interrupts disabled. */ |
|
173 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; |
|
174 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is |
|
175 clear at reset. */ |
|
176 if (IS_M(env)) |
|
177 env->uncached_cpsr &= ~CPSR_I; |
|
178 env->vfp.xregs[ARM_VFP_FPEXC] = 0; |
|
179 env->cp15.c2_base_mask = 0xffffc000u; |
|
180 #endif |
|
181 env->regs[15] = 0; |
|
182 tlb_flush(env, 1); |
|
183 arm_cpu_reset_dev(env); |
|
184 } |
|
185 |
|
186 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg) |
|
187 { |
|
188 int nregs; |
|
189 |
|
190 /* VFP data registers are always little-endian. */ |
|
191 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
|
192 if (reg < nregs) { |
|
193 stfq_le_p(buf, env->vfp.regs[reg]); |
|
194 return 8; |
|
195 } |
|
196 if (arm_feature(env, ARM_FEATURE_NEON)) { |
|
197 /* Aliases for Q regs. */ |
|
198 nregs += 16; |
|
199 if (reg < nregs) { |
|
200 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
|
201 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
|
202 return 16; |
|
203 } |
|
204 } |
|
205 switch (reg - nregs) { |
|
206 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
|
207 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; |
|
208 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
|
209 } |
|
210 return 0; |
|
211 } |
|
212 |
|
213 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg) |
|
214 { |
|
215 int nregs; |
|
216 |
|
217 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
|
218 if (reg < nregs) { |
|
219 env->vfp.regs[reg] = ldfq_le_p(buf); |
|
220 return 8; |
|
221 } |
|
222 if (arm_feature(env, ARM_FEATURE_NEON)) { |
|
223 nregs += 16; |
|
224 if (reg < nregs) { |
|
225 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
|
226 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
|
227 return 16; |
|
228 } |
|
229 } |
|
230 switch (reg - nregs) { |
|
231 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
|
232 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; |
|
233 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4; |
|
234 } |
|
235 return 0; |
|
236 } |
|
237 |
|
238 CPUARMState *cpu_arm_init(const char *cpu_model, void *dev) |
|
239 { |
|
240 CPUARMState *env; |
|
241 uint32_t id; |
|
242 static int inited = 0; |
|
243 |
|
244 id = cpu_arm_find_by_name(cpu_model); |
|
245 if (id == 0) |
|
246 return NULL; |
|
247 env = qemu_mallocz(sizeof(CPUARMState)); |
|
248 if (!env) |
|
249 return NULL; |
|
250 cpu_exec_init(env); |
|
251 if (!inited) { |
|
252 inited = 1; |
|
253 arm_translate_init(); |
|
254 } |
|
255 |
|
256 env->cpu_model_str = cpu_model; |
|
257 env->cp15.c0_cpuid = id; |
|
258 env->qdev = dev; |
|
259 cpu_reset(env); |
|
260 if (arm_feature(env, ARM_FEATURE_NEON)) { |
|
261 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
|
262 51, "arm-neon.xml", 0); |
|
263 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
|
264 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
|
265 35, "arm-vfp3.xml", 0); |
|
266 } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
|
267 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, |
|
268 19, "arm-vfp.xml", 0); |
|
269 } |
|
270 return env; |
|
271 } |
|
272 |
|
273 struct arm_cpu_t { |
|
274 uint32_t id; |
|
275 const char *name; |
|
276 }; |
|
277 |
|
278 static const struct arm_cpu_t arm_cpu_names[] = { |
|
279 { ARM_CPUID_ARM926, "arm926"}, |
|
280 { ARM_CPUID_ARM946, "arm946"}, |
|
281 { ARM_CPUID_ARM1026, "arm1026"}, |
|
282 { ARM_CPUID_ARM1136, "arm1136"}, |
|
283 { ARM_CPUID_ARM1136_R2, "arm1136-r2"}, |
|
284 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"}, |
|
285 { ARM_CPUID_CORTEXM3, "cortex-m3"}, |
|
286 { ARM_CPUID_CORTEXA8, "cortex-a8"}, |
|
287 { ARM_CPUID_TI925T, "ti925t" }, |
|
288 { ARM_CPUID_PXA250, "pxa250" }, |
|
289 { ARM_CPUID_PXA255, "pxa255" }, |
|
290 { ARM_CPUID_PXA260, "pxa260" }, |
|
291 { ARM_CPUID_PXA261, "pxa261" }, |
|
292 { ARM_CPUID_PXA262, "pxa262" }, |
|
293 { ARM_CPUID_PXA270, "pxa270" }, |
|
294 { ARM_CPUID_PXA270_A0, "pxa270-a0" }, |
|
295 { ARM_CPUID_PXA270_A1, "pxa270-a1" }, |
|
296 { ARM_CPUID_PXA270_B0, "pxa270-b0" }, |
|
297 { ARM_CPUID_PXA270_B1, "pxa270-b1" }, |
|
298 { ARM_CPUID_PXA270_C0, "pxa270-c0" }, |
|
299 { ARM_CPUID_PXA270_C5, "pxa270-c5" }, |
|
300 { ARM_CPUID_ANY, "any"}, |
|
301 { 0, NULL} |
|
302 }; |
|
303 |
|
304 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) |
|
305 { |
|
306 int i; |
|
307 |
|
308 (*cpu_fprintf)(f, "Available CPUs:\n"); |
|
309 for (i = 0; arm_cpu_names[i].name; i++) { |
|
310 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name); |
|
311 } |
|
312 } |
|
313 |
|
314 /* return 0 if not found */ |
|
315 static uint32_t cpu_arm_find_by_name(const char *name) |
|
316 { |
|
317 int i; |
|
318 uint32_t id; |
|
319 |
|
320 id = 0; |
|
321 for (i = 0; arm_cpu_names[i].name; i++) { |
|
322 if (strcmp(name, arm_cpu_names[i].name) == 0) { |
|
323 id = arm_cpu_names[i].id; |
|
324 break; |
|
325 } |
|
326 } |
|
327 return id; |
|
328 } |
|
329 |
|
330 void cpu_arm_close(CPUARMState *env) |
|
331 { |
|
332 free(env); |
|
333 } |
|
334 |
|
335 uint32_t cpsr_read(CPUARMState *env) |
|
336 { |
|
337 int ZF; |
|
338 ZF = (env->ZF == 0); |
|
339 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
|
340 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
|
341 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
|
342 | ((env->condexec_bits & 0xfc) << 8) |
|
343 | (env->GE << 16); |
|
344 } |
|
345 |
|
346 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
|
347 { |
|
348 if (mask & CPSR_NZCV) { |
|
349 env->ZF = (~val) & CPSR_Z; |
|
350 env->NF = val; |
|
351 env->CF = (val >> 29) & 1; |
|
352 env->VF = (val << 3) & 0x80000000; |
|
353 } |
|
354 if (mask & CPSR_Q) |
|
355 env->QF = ((val & CPSR_Q) != 0); |
|
356 if (mask & CPSR_T) |
|
357 env->thumb = ((val & CPSR_T) != 0); |
|
358 if (mask & CPSR_IT_0_1) { |
|
359 env->condexec_bits &= ~3; |
|
360 env->condexec_bits |= (val >> 25) & 3; |
|
361 } |
|
362 if (mask & CPSR_IT_2_7) { |
|
363 env->condexec_bits &= 3; |
|
364 env->condexec_bits |= (val >> 8) & 0xfc; |
|
365 } |
|
366 if (mask & CPSR_GE) { |
|
367 env->GE = (val >> 16) & 0xf; |
|
368 } |
|
369 |
|
370 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
|
371 switch_mode(env, val & CPSR_M); |
|
372 } |
|
373 mask &= ~CACHED_CPSR_BITS; |
|
374 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
|
375 } |
|
376 |
|
377 /* Sign/zero extend */ |
|
378 uint32_t HELPER(sxtb16)(uint32_t x) |
|
379 { |
|
380 uint32_t res; |
|
381 res = (uint16_t)(int8_t)x; |
|
382 res |= (uint32_t)(int8_t)(x >> 16) << 16; |
|
383 return res; |
|
384 } |
|
385 |
|
386 uint32_t HELPER(uxtb16)(uint32_t x) |
|
387 { |
|
388 uint32_t res; |
|
389 res = (uint16_t)(uint8_t)x; |
|
390 res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
|
391 return res; |
|
392 } |
|
393 |
|
394 uint32_t HELPER(clz)(uint32_t x) |
|
395 { |
|
396 int count; |
|
397 for (count = 32; x; count--) |
|
398 x >>= 1; |
|
399 return count; |
|
400 } |
|
401 |
|
402 int32_t HELPER(sdiv)(int32_t num, int32_t den) |
|
403 { |
|
404 if (den == 0) |
|
405 return 0; |
|
406 return num / den; |
|
407 } |
|
408 |
|
409 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
|
410 { |
|
411 if (den == 0) |
|
412 return 0; |
|
413 return num / den; |
|
414 } |
|
415 |
|
416 uint32_t HELPER(rbit)(uint32_t x) |
|
417 { |
|
418 x = ((x & 0xff000000) >> 24) |
|
419 | ((x & 0x00ff0000) >> 8) |
|
420 | ((x & 0x0000ff00) << 8) |
|
421 | ((x & 0x000000ff) << 24); |
|
422 x = ((x & 0xf0f0f0f0) >> 4) |
|
423 | ((x & 0x0f0f0f0f) << 4); |
|
424 x = ((x & 0x88888888) >> 3) |
|
425 | ((x & 0x44444444) >> 1) |
|
426 | ((x & 0x22222222) << 1) |
|
427 | ((x & 0x11111111) << 3); |
|
428 return x; |
|
429 } |
|
430 |
|
431 uint32_t HELPER(abs)(uint32_t x) |
|
432 { |
|
433 return ((int32_t)x < 0) ? -x : x; |
|
434 } |
|
435 |
|
436 #if defined(CONFIG_USER_ONLY) |
|
437 |
|
438 void do_interrupt (CPUState *env) |
|
439 { |
|
440 env->exception_index = -1; |
|
441 } |
|
442 |
|
443 /* Structure used to record exclusive memory locations. */ |
|
444 typedef struct mmon_state { |
|
445 struct mmon_state *next; |
|
446 CPUARMState *cpu_env; |
|
447 uint32_t addr; |
|
448 } mmon_state; |
|
449 |
|
450 /* Chain of current locks. */ |
|
451 static mmon_state* mmon_head = NULL; |
|
452 |
|
453 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw, |
|
454 int mmu_idx, int is_softmmu) |
|
455 { |
|
456 if (rw == 2) { |
|
457 env->exception_index = EXCP_PREFETCH_ABORT; |
|
458 env->cp15.c6_insn = address; |
|
459 } else { |
|
460 env->exception_index = EXCP_DATA_ABORT; |
|
461 env->cp15.c6_data = address; |
|
462 } |
|
463 return 1; |
|
464 } |
|
465 |
|
466 static void allocate_mmon_state(CPUState *env) |
|
467 { |
|
468 env->mmon_entry = malloc(sizeof (mmon_state)); |
|
469 if (!env->mmon_entry) |
|
470 abort(); |
|
471 memset (env->mmon_entry, 0, sizeof (mmon_state)); |
|
472 env->mmon_entry->cpu_env = env; |
|
473 mmon_head = env->mmon_entry; |
|
474 } |
|
475 |
|
476 /* Flush any monitor locks for the specified address. */ |
|
477 static void flush_mmon(uint32_t addr) |
|
478 { |
|
479 mmon_state *mon; |
|
480 |
|
481 for (mon = mmon_head; mon; mon = mon->next) |
|
482 { |
|
483 if (mon->addr != addr) |
|
484 continue; |
|
485 |
|
486 mon->addr = 0; |
|
487 break; |
|
488 } |
|
489 } |
|
490 |
|
491 /* Mark an address for exclusive access. */ |
|
492 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr) |
|
493 { |
|
494 if (!env->mmon_entry) |
|
495 allocate_mmon_state(env); |
|
496 /* Clear any previous locks. */ |
|
497 flush_mmon(addr); |
|
498 env->mmon_entry->addr = addr; |
|
499 } |
|
500 |
|
501 /* Test if an exclusive address is still exclusive. Returns zero |
|
502 if the address is still exclusive. */ |
|
503 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr) |
|
504 { |
|
505 int res; |
|
506 |
|
507 if (!env->mmon_entry) |
|
508 return 1; |
|
509 if (env->mmon_entry->addr == addr) |
|
510 res = 0; |
|
511 else |
|
512 res = 1; |
|
513 flush_mmon(addr); |
|
514 return res; |
|
515 } |
|
516 |
|
517 void HELPER(clrex)(CPUState *env) |
|
518 { |
|
519 if (!(env->mmon_entry && env->mmon_entry->addr)) |
|
520 return; |
|
521 flush_mmon(env->mmon_entry->addr); |
|
522 } |
|
523 |
|
524 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) |
|
525 { |
|
526 return addr; |
|
527 } |
|
528 |
|
529 /* These should probably raise undefined insn exceptions. */ |
|
530 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val) |
|
531 { |
|
532 int op1 = (insn >> 8) & 0xf; |
|
533 cpu_abort(env, "cp%i insn %08x\n", op1, insn); |
|
534 return; |
|
535 } |
|
536 |
|
537 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn) |
|
538 { |
|
539 int op1 = (insn >> 8) & 0xf; |
|
540 cpu_abort(env, "cp%i insn %08x\n", op1, insn); |
|
541 return 0; |
|
542 } |
|
543 |
|
544 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val) |
|
545 { |
|
546 cpu_abort(env, "cp15 insn %08x\n", insn); |
|
547 } |
|
548 |
|
549 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn) |
|
550 { |
|
551 cpu_abort(env, "cp15 insn %08x\n", insn); |
|
552 return 0; |
|
553 } |
|
554 |
|
555 /* These should probably raise undefined insn exceptions. */ |
|
556 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val) |
|
557 { |
|
558 cpu_abort(env, "v7m_mrs %d\n", reg); |
|
559 } |
|
560 |
|
561 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg) |
|
562 { |
|
563 cpu_abort(env, "v7m_mrs %d\n", reg); |
|
564 return 0; |
|
565 } |
|
566 |
|
567 void switch_mode(CPUState *env, int mode) |
|
568 { |
|
569 if (mode != ARM_CPU_MODE_USR) |
|
570 cpu_abort(env, "Tried to switch out of user mode\n"); |
|
571 } |
|
572 |
|
573 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val) |
|
574 { |
|
575 cpu_abort(env, "banked r13 write\n"); |
|
576 } |
|
577 |
|
578 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode) |
|
579 { |
|
580 cpu_abort(env, "banked r13 read\n"); |
|
581 return 0; |
|
582 } |
|
583 |
|
584 #else |
|
585 |
|
586 extern int semihosting_enabled; |
|
587 |
|
588 /* Map CPU modes onto saved register banks. */ |
|
589 static inline int bank_number (int mode) |
|
590 { |
|
591 switch (mode) { |
|
592 case ARM_CPU_MODE_USR: |
|
593 case ARM_CPU_MODE_SYS: |
|
594 return 0; |
|
595 case ARM_CPU_MODE_SVC: |
|
596 return 1; |
|
597 case ARM_CPU_MODE_ABT: |
|
598 return 2; |
|
599 case ARM_CPU_MODE_UND: |
|
600 return 3; |
|
601 case ARM_CPU_MODE_IRQ: |
|
602 return 4; |
|
603 case ARM_CPU_MODE_FIQ: |
|
604 return 5; |
|
605 } |
|
606 cpu_abort(cpu_single_env, "Bad mode %x\n", mode); |
|
607 return -1; |
|
608 } |
|
609 |
|
610 void switch_mode(CPUState *env, int mode) |
|
611 { |
|
612 int old_mode; |
|
613 int i; |
|
614 |
|
615 old_mode = env->uncached_cpsr & CPSR_M; |
|
616 if (mode == old_mode) |
|
617 return; |
|
618 |
|
619 if (old_mode == ARM_CPU_MODE_FIQ) { |
|
620 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
|
621 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
|
622 } else if (mode == ARM_CPU_MODE_FIQ) { |
|
623 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
|
624 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
|
625 } |
|
626 |
|
627 i = bank_number(old_mode); |
|
628 env->banked_r13[i] = env->regs[13]; |
|
629 env->banked_r14[i] = env->regs[14]; |
|
630 env->banked_spsr[i] = env->spsr; |
|
631 |
|
632 i = bank_number(mode); |
|
633 env->regs[13] = env->banked_r13[i]; |
|
634 env->regs[14] = env->banked_r14[i]; |
|
635 env->spsr = env->banked_spsr[i]; |
|
636 } |
|
637 |
|
638 static void v7m_push(CPUARMState *env, uint32_t val) |
|
639 { |
|
640 env->regs[13] -= 4; |
|
641 stl_phys(env->regs[13], val); |
|
642 } |
|
643 |
|
644 static uint32_t v7m_pop(CPUARMState *env) |
|
645 { |
|
646 uint32_t val; |
|
647 val = ldl_phys(env->regs[13]); |
|
648 env->regs[13] += 4; |
|
649 return val; |
|
650 } |
|
651 |
|
652 /* Switch to V7M main or process stack pointer. */ |
|
653 static void switch_v7m_sp(CPUARMState *env, int process) |
|
654 { |
|
655 uint32_t tmp; |
|
656 if (env->v7m.current_sp != process) { |
|
657 tmp = env->v7m.other_sp; |
|
658 env->v7m.other_sp = env->regs[13]; |
|
659 env->regs[13] = tmp; |
|
660 env->v7m.current_sp = process; |
|
661 } |
|
662 } |
|
663 |
|
664 static void do_v7m_exception_exit(CPUARMState *env) |
|
665 { |
|
666 uint32_t type; |
|
667 uint32_t xpsr; |
|
668 |
|
669 type = env->regs[15]; |
|
670 if (env->v7m.exception != 0) |
|
671 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception); |
|
672 |
|
673 /* Switch to the target stack. */ |
|
674 switch_v7m_sp(env, (type & 4) != 0); |
|
675 /* Pop registers. */ |
|
676 env->regs[0] = v7m_pop(env); |
|
677 env->regs[1] = v7m_pop(env); |
|
678 env->regs[2] = v7m_pop(env); |
|
679 env->regs[3] = v7m_pop(env); |
|
680 env->regs[12] = v7m_pop(env); |
|
681 env->regs[14] = v7m_pop(env); |
|
682 env->regs[15] = v7m_pop(env); |
|
683 xpsr = v7m_pop(env); |
|
684 xpsr_write(env, xpsr, 0xfffffdff); |
|
685 /* Undo stack alignment. */ |
|
686 if (xpsr & 0x200) |
|
687 env->regs[13] |= 4; |
|
688 /* ??? The exception return type specifies Thread/Handler mode. However |
|
689 this is also implied by the xPSR value. Not sure what to do |
|
690 if there is a mismatch. */ |
|
691 /* ??? Likewise for mismatches between the CONTROL register and the stack |
|
692 pointer. */ |
|
693 } |
|
694 |
|
695 void do_interrupt_v7m(CPUARMState *env) |
|
696 { |
|
697 uint32_t xpsr = xpsr_read(env); |
|
698 uint32_t lr; |
|
699 uint32_t addr; |
|
700 |
|
701 lr = 0xfffffff1; |
|
702 if (env->v7m.current_sp) |
|
703 lr |= 4; |
|
704 if (env->v7m.exception == 0) |
|
705 lr |= 8; |
|
706 |
|
707 /* For exceptions we just mark as pending on the NVIC, and let that |
|
708 handle it. */ |
|
709 /* TODO: Need to escalate if the current priority is higher than the |
|
710 one we're raising. */ |
|
711 switch (env->exception_index) { |
|
712 case EXCP_UDEF: |
|
713 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE); |
|
714 return; |
|
715 case EXCP_SWI: |
|
716 env->regs[15] += 2; |
|
717 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC); |
|
718 return; |
|
719 case EXCP_PREFETCH_ABORT: |
|
720 case EXCP_DATA_ABORT: |
|
721 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM); |
|
722 return; |
|
723 case EXCP_BKPT: |
|
724 if (semihosting_enabled) { |
|
725 int nr; |
|
726 nr = lduw_code(env->regs[15]) & 0xff; |
|
727 if (nr == 0xab) { |
|
728 env->regs[15] += 2; |
|
729 env->regs[0] = do_arm_semihosting(env); |
|
730 return; |
|
731 } |
|
732 } |
|
733 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG); |
|
734 return; |
|
735 case EXCP_IRQ: |
|
736 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic); |
|
737 break; |
|
738 case EXCP_EXCEPTION_EXIT: |
|
739 do_v7m_exception_exit(env); |
|
740 return; |
|
741 default: |
|
742 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
|
743 return; /* Never happens. Keep compiler happy. */ |
|
744 } |
|
745 |
|
746 /* Align stack pointer. */ |
|
747 /* ??? Should only do this if Configuration Control Register |
|
748 STACKALIGN bit is set. */ |
|
749 if (env->regs[13] & 4) { |
|
750 env->regs[13] -= 4; |
|
751 xpsr |= 0x200; |
|
752 } |
|
753 /* Switch to the handler mode. */ |
|
754 v7m_push(env, xpsr); |
|
755 v7m_push(env, env->regs[15]); |
|
756 v7m_push(env, env->regs[14]); |
|
757 v7m_push(env, env->regs[12]); |
|
758 v7m_push(env, env->regs[3]); |
|
759 v7m_push(env, env->regs[2]); |
|
760 v7m_push(env, env->regs[1]); |
|
761 v7m_push(env, env->regs[0]); |
|
762 switch_v7m_sp(env, 0); |
|
763 env->uncached_cpsr &= ~CPSR_IT; |
|
764 env->regs[14] = lr; |
|
765 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); |
|
766 env->regs[15] = addr & 0xfffffffe; |
|
767 env->thumb = addr & 1; |
|
768 } |
|
769 |
|
770 /* Handle a CPU exception. */ |
|
771 void do_interrupt(CPUARMState *env) |
|
772 { |
|
773 uint32_t addr; |
|
774 uint32_t mask; |
|
775 int new_mode; |
|
776 uint32_t offset; |
|
777 |
|
778 if (IS_M(env)) { |
|
779 do_interrupt_v7m(env); |
|
780 return; |
|
781 } |
|
782 /* TODO: Vectored interrupt controller. */ |
|
783 switch (env->exception_index) { |
|
784 case EXCP_UDEF: |
|
785 new_mode = ARM_CPU_MODE_UND; |
|
786 addr = 0x04; |
|
787 mask = CPSR_I; |
|
788 if (env->thumb) |
|
789 offset = 2; |
|
790 else |
|
791 offset = 4; |
|
792 break; |
|
793 case EXCP_SWI: |
|
794 if (semihosting_enabled) { |
|
795 /* Check for semihosting interrupt. */ |
|
796 if (env->thumb) { |
|
797 mask = lduw_code(env->regs[15] - 2) & 0xff; |
|
798 } else { |
|
799 mask = ldl_code(env->regs[15] - 4) & 0xffffff; |
|
800 } |
|
801 /* Only intercept calls from privileged modes, to provide some |
|
802 semblance of security. */ |
|
803 if (((mask == 0x123456 && !env->thumb) |
|
804 || (mask == 0xab && env->thumb)) |
|
805 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
|
806 env->regs[0] = do_arm_semihosting(env); |
|
807 return; |
|
808 } |
|
809 } |
|
810 new_mode = ARM_CPU_MODE_SVC; |
|
811 addr = 0x08; |
|
812 mask = CPSR_I; |
|
813 /* The PC already points to the next instruction. */ |
|
814 offset = 0; |
|
815 break; |
|
816 case EXCP_BKPT: |
|
817 /* See if this is a semihosting syscall. */ |
|
818 if (env->thumb && semihosting_enabled) { |
|
819 mask = lduw_code(env->regs[15]) & 0xff; |
|
820 if (mask == 0xab |
|
821 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
|
822 env->regs[15] += 2; |
|
823 env->regs[0] = do_arm_semihosting(env); |
|
824 return; |
|
825 } |
|
826 } |
|
827 /* Fall through to prefetch abort. */ |
|
828 case EXCP_PREFETCH_ABORT: |
|
829 new_mode = ARM_CPU_MODE_ABT; |
|
830 addr = 0x0c; |
|
831 mask = CPSR_A | CPSR_I; |
|
832 offset = 4; |
|
833 break; |
|
834 case EXCP_DATA_ABORT: |
|
835 new_mode = ARM_CPU_MODE_ABT; |
|
836 addr = 0x10; |
|
837 mask = CPSR_A | CPSR_I; |
|
838 offset = 8; |
|
839 break; |
|
840 case EXCP_IRQ: |
|
841 new_mode = ARM_CPU_MODE_IRQ; |
|
842 addr = 0x18; |
|
843 /* Disable IRQ and imprecise data aborts. */ |
|
844 mask = CPSR_A | CPSR_I; |
|
845 offset = 4; |
|
846 break; |
|
847 case EXCP_FIQ: |
|
848 new_mode = ARM_CPU_MODE_FIQ; |
|
849 addr = 0x1c; |
|
850 /* Disable FIQ, IRQ and imprecise data aborts. */ |
|
851 mask = CPSR_A | CPSR_I | CPSR_F; |
|
852 offset = 4; |
|
853 break; |
|
854 default: |
|
855 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
|
856 return; /* Never happens. Keep compiler happy. */ |
|
857 } |
|
858 /* High vectors. */ |
|
859 if (env->cp15.c1_sys & (1 << 13)) { |
|
860 addr += 0xffff0000; |
|
861 } else { |
|
862 addr += env->cp15.c12_vbar; |
|
863 } |
|
864 switch_mode (env, new_mode); |
|
865 env->spsr = cpsr_read(env); |
|
866 /* Clear IT bits. */ |
|
867 env->condexec_bits = 0; |
|
868 /* Switch to the new mode, and switch to Arm mode. */ |
|
869 /* ??? Thumb interrupt handlers not implemented. */ |
|
870 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
|
871 env->uncached_cpsr |= mask; |
|
872 env->thumb = 0; |
|
873 env->regs[14] = env->regs[15] + offset; |
|
874 env->regs[15] = addr; |
|
875 env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
|
876 } |
|
877 |
|
878 /* Check section/page access permissions. |
|
879 Returns the page protection flags, or zero if the access is not |
|
880 permitted. */ |
|
881 static inline int check_ap(CPUState *env, int ap, int domain, int access_type, |
|
882 int is_user) |
|
883 { |
|
884 int prot_ro; |
|
885 |
|
886 if (domain == 3) |
|
887 return PAGE_READ | PAGE_WRITE; |
|
888 |
|
889 if (access_type == 1) |
|
890 prot_ro = 0; |
|
891 else |
|
892 prot_ro = PAGE_READ; |
|
893 |
|
894 switch (ap) { |
|
895 case 0: |
|
896 if (access_type == 1) |
|
897 return 0; |
|
898 switch ((env->cp15.c1_sys >> 8) & 3) { |
|
899 case 1: |
|
900 return is_user ? 0 : PAGE_READ; |
|
901 case 2: |
|
902 return PAGE_READ; |
|
903 default: |
|
904 return 0; |
|
905 } |
|
906 case 1: |
|
907 return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
|
908 case 2: |
|
909 if (is_user) |
|
910 return prot_ro; |
|
911 else |
|
912 return PAGE_READ | PAGE_WRITE; |
|
913 case 3: |
|
914 return PAGE_READ | PAGE_WRITE; |
|
915 case 4: /* Reserved. */ |
|
916 return 0; |
|
917 case 5: |
|
918 return is_user ? 0 : prot_ro; |
|
919 case 6: |
|
920 return prot_ro; |
|
921 case 7: |
|
922 if (!arm_feature (env, ARM_FEATURE_V7)) |
|
923 return 0; |
|
924 return prot_ro; |
|
925 default: |
|
926 abort(); |
|
927 } |
|
928 } |
|
929 |
|
930 static uint32_t get_level1_table_address(CPUState *env, uint32_t address) |
|
931 { |
|
932 uint32_t table; |
|
933 |
|
934 if (address & env->cp15.c2_mask) |
|
935 table = env->cp15.c2_base1 & 0xffffc000; |
|
936 else |
|
937 table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
|
938 |
|
939 table |= (address >> 18) & 0x3ffc; |
|
940 return table; |
|
941 } |
|
942 |
|
943 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type, |
|
944 int is_user, uint32_t *phys_ptr, int *prot) |
|
945 { |
|
946 int code; |
|
947 uint32_t table; |
|
948 uint32_t desc; |
|
949 int type; |
|
950 int ap; |
|
951 int domain; |
|
952 uint32_t phys_addr; |
|
953 |
|
954 /* Pagetable walk. */ |
|
955 /* Lookup l1 descriptor. */ |
|
956 table = get_level1_table_address(env, address); |
|
957 desc = ldl_phys(table); |
|
958 type = (desc & 3); |
|
959 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3; |
|
960 if (type == 0) { |
|
961 /* Section translation fault. */ |
|
962 code = 5; |
|
963 goto do_fault; |
|
964 } |
|
965 if (domain == 0 || domain == 2) { |
|
966 if (type == 2) |
|
967 code = 9; /* Section domain fault. */ |
|
968 else |
|
969 code = 11; /* Page domain fault. */ |
|
970 goto do_fault; |
|
971 } |
|
972 if (type == 2) { |
|
973 /* 1Mb section. */ |
|
974 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
|
975 ap = (desc >> 10) & 3; |
|
976 code = 13; |
|
977 } else { |
|
978 /* Lookup l2 entry. */ |
|
979 if (type == 1) { |
|
980 /* Coarse pagetable. */ |
|
981 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
|
982 } else { |
|
983 /* Fine pagetable. */ |
|
984 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
|
985 } |
|
986 desc = ldl_phys(table); |
|
987 switch (desc & 3) { |
|
988 case 0: /* Page translation fault. */ |
|
989 code = 7; |
|
990 goto do_fault; |
|
991 case 1: /* 64k page. */ |
|
992 phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
|
993 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
|
994 break; |
|
995 case 2: /* 4k page. */ |
|
996 phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
|
997 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
|
998 break; |
|
999 case 3: /* 1k page. */ |
|
1000 if (type == 1) { |
|
1001 if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
|
1002 phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
|
1003 } else { |
|
1004 /* Page translation fault. */ |
|
1005 code = 7; |
|
1006 goto do_fault; |
|
1007 } |
|
1008 } else { |
|
1009 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
|
1010 } |
|
1011 ap = (desc >> 4) & 3; |
|
1012 break; |
|
1013 default: |
|
1014 /* Never happens, but compiler isn't smart enough to tell. */ |
|
1015 abort(); |
|
1016 } |
|
1017 code = 15; |
|
1018 } |
|
1019 *prot = check_ap(env, ap, domain, access_type, is_user); |
|
1020 if (!*prot) { |
|
1021 /* Access permission fault. */ |
|
1022 goto do_fault; |
|
1023 } |
|
1024 *phys_ptr = phys_addr; |
|
1025 return 0; |
|
1026 do_fault: |
|
1027 return code | (domain << 4); |
|
1028 } |
|
1029 |
|
1030 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type, |
|
1031 int is_user, uint32_t *phys_ptr, int *prot) |
|
1032 { |
|
1033 int code; |
|
1034 uint32_t table; |
|
1035 uint32_t desc; |
|
1036 uint32_t xn; |
|
1037 int type; |
|
1038 int ap; |
|
1039 int domain; |
|
1040 uint32_t phys_addr; |
|
1041 |
|
1042 /* Pagetable walk. */ |
|
1043 /* Lookup l1 descriptor. */ |
|
1044 table = get_level1_table_address(env, address); |
|
1045 desc = ldl_phys(table); |
|
1046 type = (desc & 3); |
|
1047 if (type == 0) { |
|
1048 /* Section translation fault. */ |
|
1049 code = 5; |
|
1050 domain = 0; |
|
1051 goto do_fault; |
|
1052 } else if (type == 2 && (desc & (1 << 18))) { |
|
1053 /* Supersection. */ |
|
1054 domain = 0; |
|
1055 } else { |
|
1056 /* Section or page. */ |
|
1057 domain = (desc >> 4) & 0x1e; |
|
1058 } |
|
1059 domain = (env->cp15.c3 >> domain) & 3; |
|
1060 if (domain == 0 || domain == 2) { |
|
1061 if (type == 2) |
|
1062 code = 9; /* Section domain fault. */ |
|
1063 else |
|
1064 code = 11; /* Page domain fault. */ |
|
1065 goto do_fault; |
|
1066 } |
|
1067 if (type == 2) { |
|
1068 if (desc & (1 << 18)) { |
|
1069 /* Supersection. */ |
|
1070 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
|
1071 } else { |
|
1072 /* Section. */ |
|
1073 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
|
1074 } |
|
1075 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
|
1076 xn = desc & (1 << 4); |
|
1077 code = 13; |
|
1078 } else { |
|
1079 /* Lookup l2 entry. */ |
|
1080 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
|
1081 desc = ldl_phys(table); |
|
1082 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
|
1083 switch (desc & 3) { |
|
1084 case 0: /* Page translation fault. */ |
|
1085 code = 7; |
|
1086 goto do_fault; |
|
1087 case 1: /* 64k page. */ |
|
1088 phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
|
1089 xn = desc & (1 << 15); |
|
1090 break; |
|
1091 case 2: case 3: /* 4k page. */ |
|
1092 phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
|
1093 xn = desc & 1; |
|
1094 break; |
|
1095 default: |
|
1096 /* Never happens, but compiler isn't smart enough to tell. */ |
|
1097 abort(); |
|
1098 } |
|
1099 code = 15; |
|
1100 } |
|
1101 if (xn && access_type == 2) |
|
1102 goto do_fault; |
|
1103 |
|
1104 /* The simplified model uses AP[0] as an access control bit. */ |
|
1105 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { |
|
1106 /* Access flag fault. */ |
|
1107 code = (code == 15) ? 6 : 3; |
|
1108 goto do_fault; |
|
1109 } |
|
1110 *prot = check_ap(env, ap, domain, access_type, is_user); |
|
1111 if (!*prot) { |
|
1112 /* Access permission fault. */ |
|
1113 goto do_fault; |
|
1114 } |
|
1115 *phys_ptr = phys_addr; |
|
1116 return 0; |
|
1117 do_fault: |
|
1118 return code | (domain << 4); |
|
1119 } |
|
1120 |
|
1121 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type, |
|
1122 int is_user, uint32_t *phys_ptr, int *prot) |
|
1123 { |
|
1124 int n; |
|
1125 uint32_t mask; |
|
1126 uint32_t base; |
|
1127 |
|
1128 *phys_ptr = address; |
|
1129 for (n = 7; n >= 0; n--) { |
|
1130 base = env->cp15.c6_region[n]; |
|
1131 if ((base & 1) == 0) |
|
1132 continue; |
|
1133 mask = 1 << ((base >> 1) & 0x1f); |
|
1134 /* Keep this shift separate from the above to avoid an |
|
1135 (undefined) << 32. */ |
|
1136 mask = (mask << 1) - 1; |
|
1137 if (((base ^ address) & ~mask) == 0) |
|
1138 break; |
|
1139 } |
|
1140 if (n < 0) |
|
1141 return 2; |
|
1142 |
|
1143 if (access_type == 2) { |
|
1144 mask = env->cp15.c5_insn; |
|
1145 } else { |
|
1146 mask = env->cp15.c5_data; |
|
1147 } |
|
1148 mask = (mask >> (n * 4)) & 0xf; |
|
1149 switch (mask) { |
|
1150 case 0: |
|
1151 return 1; |
|
1152 case 1: |
|
1153 if (is_user) |
|
1154 return 1; |
|
1155 *prot = PAGE_READ | PAGE_WRITE; |
|
1156 break; |
|
1157 case 2: |
|
1158 *prot = PAGE_READ; |
|
1159 if (!is_user) |
|
1160 *prot |= PAGE_WRITE; |
|
1161 break; |
|
1162 case 3: |
|
1163 *prot = PAGE_READ | PAGE_WRITE; |
|
1164 break; |
|
1165 case 5: |
|
1166 if (is_user) |
|
1167 return 1; |
|
1168 *prot = PAGE_READ; |
|
1169 break; |
|
1170 case 6: |
|
1171 *prot = PAGE_READ; |
|
1172 break; |
|
1173 default: |
|
1174 /* Bad permission. */ |
|
1175 return 1; |
|
1176 } |
|
1177 return 0; |
|
1178 } |
|
1179 |
|
1180 static inline int get_phys_addr(CPUState *env, uint32_t address, |
|
1181 int access_type, int is_user, |
|
1182 uint32_t *phys_ptr, int *prot) |
|
1183 { |
|
1184 /* Fast Context Switch Extension. */ |
|
1185 if (address < 0x02000000) |
|
1186 address += env->cp15.c13_fcse; |
|
1187 |
|
1188 if ((env->cp15.c1_sys & 1) == 0) { |
|
1189 /* MMU/MPU disabled. */ |
|
1190 *phys_ptr = address; |
|
1191 *prot = PAGE_READ | PAGE_WRITE; |
|
1192 return 0; |
|
1193 } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
|
1194 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
|
1195 prot); |
|
1196 } else if (env->cp15.c1_sys & (1 << 23)) { |
|
1197 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
|
1198 prot); |
|
1199 } else { |
|
1200 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
|
1201 prot); |
|
1202 } |
|
1203 } |
|
1204 |
|
1205 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, |
|
1206 int access_type, int mmu_idx, int is_softmmu) |
|
1207 { |
|
1208 uint32_t phys_addr; |
|
1209 int prot; |
|
1210 int ret, is_user; |
|
1211 |
|
1212 is_user = mmu_idx == MMU_USER_IDX; |
|
1213 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot); |
|
1214 if (ret == 0) { |
|
1215 /* Map a single [sub]page. */ |
|
1216 phys_addr &= ~(uint32_t)0x3ff; |
|
1217 address &= ~(uint32_t)0x3ff; |
|
1218 return tlb_set_page (env, address, phys_addr, prot, mmu_idx, |
|
1219 is_softmmu); |
|
1220 } |
|
1221 |
|
1222 if (access_type == 2) { |
|
1223 env->cp15.c5_insn = ret; |
|
1224 env->cp15.c6_insn = address; |
|
1225 env->exception_index = EXCP_PREFETCH_ABORT; |
|
1226 } else { |
|
1227 env->cp15.c5_data = ret; |
|
1228 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
|
1229 env->cp15.c5_data |= (1 << 11); |
|
1230 env->cp15.c6_data = address; |
|
1231 env->exception_index = EXCP_DATA_ABORT; |
|
1232 } |
|
1233 return 1; |
|
1234 } |
|
1235 |
|
1236 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) |
|
1237 { |
|
1238 uint32_t phys_addr; |
|
1239 int prot; |
|
1240 int ret; |
|
1241 |
|
1242 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot); |
|
1243 |
|
1244 if (ret != 0) |
|
1245 return -1; |
|
1246 |
|
1247 return phys_addr; |
|
1248 } |
|
1249 |
|
1250 /* Not really implemented. Need to figure out a sane way of doing this. |
|
1251 Maybe add generic watchpoint support and use that. */ |
|
1252 |
|
1253 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr) |
|
1254 { |
|
1255 env->mmon_addr = addr; |
|
1256 } |
|
1257 |
|
1258 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr) |
|
1259 { |
|
1260 return (env->mmon_addr != addr); |
|
1261 } |
|
1262 |
|
1263 void HELPER(clrex)(CPUState *env) |
|
1264 { |
|
1265 env->mmon_addr = -1; |
|
1266 } |
|
1267 |
|
1268 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val) |
|
1269 { |
|
1270 int cp_num = (insn >> 8) & 0xf; |
|
1271 int cp_info = (insn >> 5) & 7; |
|
1272 int src = (insn >> 16) & 0xf; |
|
1273 int operand = insn & 0xf; |
|
1274 |
|
1275 if (env->cp[cp_num].cp_write) |
|
1276 env->cp[cp_num].cp_write(env->cp[cp_num].opaque, |
|
1277 cp_info, src, operand, val); |
|
1278 } |
|
1279 |
|
1280 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn) |
|
1281 { |
|
1282 int cp_num = (insn >> 8) & 0xf; |
|
1283 int cp_info = (insn >> 5) & 7; |
|
1284 int dest = (insn >> 16) & 0xf; |
|
1285 int operand = insn & 0xf; |
|
1286 |
|
1287 if (env->cp[cp_num].cp_read) |
|
1288 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque, |
|
1289 cp_info, dest, operand); |
|
1290 return 0; |
|
1291 } |
|
1292 |
|
1293 /* Return basic MPU access permission bits. */ |
|
1294 static uint32_t simple_mpu_ap_bits(uint32_t val) |
|
1295 { |
|
1296 uint32_t ret; |
|
1297 uint32_t mask; |
|
1298 int i; |
|
1299 ret = 0; |
|
1300 mask = 3; |
|
1301 for (i = 0; i < 16; i += 2) { |
|
1302 ret |= (val >> i) & mask; |
|
1303 mask <<= 2; |
|
1304 } |
|
1305 return ret; |
|
1306 } |
|
1307 |
|
1308 /* Pad basic MPU access permission bits to extended format. */ |
|
1309 static uint32_t extended_mpu_ap_bits(uint32_t val) |
|
1310 { |
|
1311 uint32_t ret; |
|
1312 uint32_t mask; |
|
1313 int i; |
|
1314 ret = 0; |
|
1315 mask = 3; |
|
1316 for (i = 0; i < 16; i += 2) { |
|
1317 ret |= (val & mask) << i; |
|
1318 mask <<= 2; |
|
1319 } |
|
1320 return ret; |
|
1321 } |
|
1322 |
|
1323 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val) |
|
1324 { |
|
1325 int op1; |
|
1326 int op2; |
|
1327 int crm; |
|
1328 |
|
1329 op1 = (insn >> 21) & 7; |
|
1330 op2 = (insn >> 5) & 7; |
|
1331 crm = insn & 0xf; |
|
1332 switch ((insn >> 16) & 0xf) { |
|
1333 case 0: |
|
1334 /* ID codes. */ |
|
1335 if (arm_feature(env, ARM_FEATURE_XSCALE)) |
|
1336 break; |
|
1337 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1338 break; |
|
1339 if (arm_feature(env, ARM_FEATURE_V7) |
|
1340 && op1 == 2 && crm == 0 && op2 == 0) { |
|
1341 env->cp15.c0_cssel = val & 0xf; |
|
1342 break; |
|
1343 } |
|
1344 goto bad_reg; |
|
1345 case 1: /* System configuration. */ |
|
1346 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1347 op2 = 0; |
|
1348 switch (op2) { |
|
1349 case 0: |
|
1350 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) |
|
1351 env->cp15.c1_sys = val; |
|
1352 /* ??? Lots of these bits are not implemented. */ |
|
1353 /* This may enable/disable the MMU, so do a TLB flush. */ |
|
1354 tlb_flush(env, 1); |
|
1355 break; |
|
1356 case 1: /* Auxiliary cotrol register. */ |
|
1357 if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
|
1358 env->cp15.c1_xscaleauxcr = val; |
|
1359 break; |
|
1360 } |
|
1361 /* Not implemented. */ |
|
1362 break; |
|
1363 case 2: |
|
1364 if (arm_feature(env, ARM_FEATURE_XSCALE)) |
|
1365 goto bad_reg; |
|
1366 if (env->cp15.c1_coproc != val) { |
|
1367 env->cp15.c1_coproc = val; |
|
1368 /* ??? Is this safe when called from within a TB? */ |
|
1369 tb_flush(env); |
|
1370 } |
|
1371 break; |
|
1372 default: |
|
1373 goto bad_reg; |
|
1374 } |
|
1375 break; |
|
1376 case 2: /* MMU Page table control / MPU cache control. */ |
|
1377 if (arm_feature(env, ARM_FEATURE_MPU)) { |
|
1378 switch (op2) { |
|
1379 case 0: |
|
1380 env->cp15.c2_data = val; |
|
1381 break; |
|
1382 case 1: |
|
1383 env->cp15.c2_insn = val; |
|
1384 break; |
|
1385 default: |
|
1386 goto bad_reg; |
|
1387 } |
|
1388 } else { |
|
1389 switch (op2) { |
|
1390 case 0: |
|
1391 env->cp15.c2_base0 = val; |
|
1392 break; |
|
1393 case 1: |
|
1394 env->cp15.c2_base1 = val; |
|
1395 break; |
|
1396 case 2: |
|
1397 val &= 7; |
|
1398 env->cp15.c2_control = val; |
|
1399 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val); |
|
1400 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val); |
|
1401 break; |
|
1402 default: |
|
1403 goto bad_reg; |
|
1404 } |
|
1405 } |
|
1406 break; |
|
1407 case 3: /* MMU Domain access control / MPU write buffer control. */ |
|
1408 env->cp15.c3 = val; |
|
1409 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
|
1410 break; |
|
1411 case 4: /* Reserved. */ |
|
1412 goto bad_reg; |
|
1413 case 5: /* MMU Fault status / MPU access permission. */ |
|
1414 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1415 op2 = 0; |
|
1416 switch (op2) { |
|
1417 case 0: |
|
1418 if (arm_feature(env, ARM_FEATURE_MPU)) |
|
1419 val = extended_mpu_ap_bits(val); |
|
1420 env->cp15.c5_data = val; |
|
1421 break; |
|
1422 case 1: |
|
1423 if (arm_feature(env, ARM_FEATURE_MPU)) |
|
1424 val = extended_mpu_ap_bits(val); |
|
1425 env->cp15.c5_insn = val; |
|
1426 break; |
|
1427 case 2: |
|
1428 if (!arm_feature(env, ARM_FEATURE_MPU)) |
|
1429 goto bad_reg; |
|
1430 env->cp15.c5_data = val; |
|
1431 break; |
|
1432 case 3: |
|
1433 if (!arm_feature(env, ARM_FEATURE_MPU)) |
|
1434 goto bad_reg; |
|
1435 env->cp15.c5_insn = val; |
|
1436 break; |
|
1437 default: |
|
1438 goto bad_reg; |
|
1439 } |
|
1440 break; |
|
1441 case 6: /* MMU Fault address / MPU base/size. */ |
|
1442 if (arm_feature(env, ARM_FEATURE_MPU)) { |
|
1443 if (crm >= 8) |
|
1444 goto bad_reg; |
|
1445 env->cp15.c6_region[crm] = val; |
|
1446 } else { |
|
1447 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1448 op2 = 0; |
|
1449 switch (op2) { |
|
1450 case 0: |
|
1451 env->cp15.c6_data = val; |
|
1452 break; |
|
1453 case 1: /* ??? This is WFAR on armv6 */ |
|
1454 case 2: |
|
1455 env->cp15.c6_insn = val; |
|
1456 break; |
|
1457 default: |
|
1458 goto bad_reg; |
|
1459 } |
|
1460 } |
|
1461 break; |
|
1462 case 7: /* Cache control. */ |
|
1463 env->cp15.c15_i_max = 0x000; |
|
1464 env->cp15.c15_i_min = 0xff0; |
|
1465 /* No cache, so nothing to do. */ |
|
1466 /* ??? MPCore has VA to PA translation functions. */ |
|
1467 break; |
|
1468 case 8: /* MMU TLB control. */ |
|
1469 switch (op2) { |
|
1470 case 0: /* Invalidate all. */ |
|
1471 tlb_flush(env, 0); |
|
1472 break; |
|
1473 case 1: /* Invalidate single TLB entry. */ |
|
1474 #if 0 |
|
1475 /* ??? This is wrong for large pages and sections. */ |
|
1476 /* As an ugly hack to make linux work we always flush a 4K |
|
1477 pages. */ |
|
1478 val &= 0xfffff000; |
|
1479 tlb_flush_page(env, val); |
|
1480 tlb_flush_page(env, val + 0x400); |
|
1481 tlb_flush_page(env, val + 0x800); |
|
1482 tlb_flush_page(env, val + 0xc00); |
|
1483 #else |
|
1484 tlb_flush(env, 1); |
|
1485 #endif |
|
1486 break; |
|
1487 case 2: /* Invalidate on ASID. */ |
|
1488 tlb_flush(env, val == 0); |
|
1489 break; |
|
1490 case 3: /* Invalidate single entry on MVA. */ |
|
1491 /* ??? This is like case 1, but ignores ASID. */ |
|
1492 tlb_flush(env, 1); |
|
1493 break; |
|
1494 default: |
|
1495 goto bad_reg; |
|
1496 } |
|
1497 break; |
|
1498 case 9: |
|
1499 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1500 break; |
|
1501 switch (crm) { |
|
1502 case 0: /* Cache lockdown. */ |
|
1503 switch (op1) { |
|
1504 case 0: /* L1 cache. */ |
|
1505 switch (op2) { |
|
1506 case 0: |
|
1507 env->cp15.c9_data = val; |
|
1508 break; |
|
1509 case 1: |
|
1510 env->cp15.c9_insn = val; |
|
1511 break; |
|
1512 default: |
|
1513 goto bad_reg; |
|
1514 } |
|
1515 break; |
|
1516 case 1: /* L2 cache. */ |
|
1517 /* Ignore writes to L2 lockdown/auxiliary registers. */ |
|
1518 break; |
|
1519 default: |
|
1520 goto bad_reg; |
|
1521 } |
|
1522 break; |
|
1523 case 1: /* TCM memory region registers. */ |
|
1524 /* Not implemented. */ |
|
1525 goto bad_reg; |
|
1526 default: |
|
1527 goto bad_reg; |
|
1528 } |
|
1529 break; |
|
1530 case 10: /* MMU TLB lockdown. */ |
|
1531 /* ??? TLB lockdown not implemented. */ |
|
1532 break; |
|
1533 case 12: /* Security extensions. */ |
|
1534 /* This should probably be v6Z, and is technically optional on v7 |
|
1535 cores. We only implement "non-secure" mode. */ |
|
1536 if (!arm_feature(env, ARM_FEATURE_V7)) |
|
1537 goto bad_reg; |
|
1538 if (crm != 0 || op2 != 0) |
|
1539 goto bad_reg; |
|
1540 env->cp15.c12_vbar = val & 0xffffffe0u; |
|
1541 break; |
|
1542 case 13: /* Process ID. */ |
|
1543 switch (op2) { |
|
1544 case 0: |
|
1545 /* Unlike real hardware the qemu TLB uses virtual addresses, |
|
1546 not modified virtual addresses, so this causes a TLB flush. |
|
1547 */ |
|
1548 if (env->cp15.c13_fcse != val) |
|
1549 tlb_flush(env, 1); |
|
1550 env->cp15.c13_fcse = val; |
|
1551 break; |
|
1552 case 1: |
|
1553 /* This changes the ASID, so do a TLB flush. */ |
|
1554 if (env->cp15.c13_context != val |
|
1555 && !arm_feature(env, ARM_FEATURE_MPU)) |
|
1556 tlb_flush(env, 0); |
|
1557 env->cp15.c13_context = val; |
|
1558 break; |
|
1559 case 2: |
|
1560 env->cp15.c13_tls1 = val; |
|
1561 break; |
|
1562 case 3: |
|
1563 env->cp15.c13_tls2 = val; |
|
1564 break; |
|
1565 case 4: |
|
1566 env->cp15.c13_tls3 = val; |
|
1567 break; |
|
1568 default: |
|
1569 goto bad_reg; |
|
1570 } |
|
1571 break; |
|
1572 case 14: /* Reserved. */ |
|
1573 goto bad_reg; |
|
1574 case 15: /* Implementation specific. */ |
|
1575 if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
|
1576 if (op2 == 0 && crm == 1) { |
|
1577 if (env->cp15.c15_cpar != (val & 0x3fff)) { |
|
1578 /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
|
1579 tb_flush(env); |
|
1580 env->cp15.c15_cpar = val & 0x3fff; |
|
1581 } |
|
1582 break; |
|
1583 } |
|
1584 goto bad_reg; |
|
1585 } |
|
1586 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
|
1587 switch (crm) { |
|
1588 case 0: |
|
1589 break; |
|
1590 case 1: /* Set TI925T configuration. */ |
|
1591 env->cp15.c15_ticonfig = val & 0xe7; |
|
1592 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ |
|
1593 ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
|
1594 break; |
|
1595 case 2: /* Set I_max. */ |
|
1596 env->cp15.c15_i_max = val; |
|
1597 break; |
|
1598 case 3: /* Set I_min. */ |
|
1599 env->cp15.c15_i_min = val; |
|
1600 break; |
|
1601 case 4: /* Set thread-ID. */ |
|
1602 env->cp15.c15_threadid = val & 0xffff; |
|
1603 break; |
|
1604 case 8: /* Wait-for-interrupt (deprecated). */ |
|
1605 cpu_interrupt(env, CPU_INTERRUPT_HALT); |
|
1606 break; |
|
1607 default: |
|
1608 goto bad_reg; |
|
1609 } |
|
1610 } |
|
1611 break; |
|
1612 } |
|
1613 return; |
|
1614 bad_reg: |
|
1615 /* ??? For debugging only. Should raise illegal instruction exception. */ |
|
1616 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", |
|
1617 (insn >> 16) & 0xf, crm, op1, op2); |
|
1618 } |
|
1619 |
|
1620 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn) |
|
1621 { |
|
1622 int op1; |
|
1623 int op2; |
|
1624 int crm; |
|
1625 |
|
1626 op1 = (insn >> 21) & 7; |
|
1627 op2 = (insn >> 5) & 7; |
|
1628 crm = insn & 0xf; |
|
1629 switch ((insn >> 16) & 0xf) { |
|
1630 case 0: /* ID codes. */ |
|
1631 switch (op1) { |
|
1632 case 0: |
|
1633 switch (crm) { |
|
1634 case 0: |
|
1635 switch (op2) { |
|
1636 case 0: /* Device ID. */ |
|
1637 return env->cp15.c0_cpuid; |
|
1638 case 1: /* Cache Type. */ |
|
1639 return env->cp15.c0_cachetype; |
|
1640 case 2: /* TCM status. */ |
|
1641 return 0; |
|
1642 case 3: /* TLB type register. */ |
|
1643 return 0; /* No lockable TLB entries. */ |
|
1644 case 5: /* CPU ID */ |
|
1645 return env->cpu_index; |
|
1646 default: |
|
1647 goto bad_reg; |
|
1648 } |
|
1649 case 1: |
|
1650 if (!arm_feature(env, ARM_FEATURE_V6)) |
|
1651 goto bad_reg; |
|
1652 return env->cp15.c0_c1[op2]; |
|
1653 case 2: |
|
1654 if (!arm_feature(env, ARM_FEATURE_V6)) |
|
1655 goto bad_reg; |
|
1656 return env->cp15.c0_c2[op2]; |
|
1657 case 3: case 4: case 5: case 6: case 7: |
|
1658 return 0; |
|
1659 default: |
|
1660 goto bad_reg; |
|
1661 } |
|
1662 case 1: |
|
1663 /* These registers aren't documented on arm11 cores. However |
|
1664 Linux looks at them anyway. */ |
|
1665 if (!arm_feature(env, ARM_FEATURE_V6)) |
|
1666 goto bad_reg; |
|
1667 if (crm != 0) |
|
1668 goto bad_reg; |
|
1669 if (!arm_feature(env, ARM_FEATURE_V7)) |
|
1670 return 0; |
|
1671 |
|
1672 switch (op2) { |
|
1673 case 0: |
|
1674 return env->cp15.c0_ccsid[env->cp15.c0_cssel]; |
|
1675 case 1: |
|
1676 return env->cp15.c0_clid; |
|
1677 case 7: |
|
1678 return 0; |
|
1679 } |
|
1680 goto bad_reg; |
|
1681 case 2: |
|
1682 if (op2 != 0 || crm != 0) |
|
1683 goto bad_reg; |
|
1684 return env->cp15.c0_cssel; |
|
1685 default: |
|
1686 goto bad_reg; |
|
1687 } |
|
1688 case 1: /* System configuration. */ |
|
1689 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1690 op2 = 0; |
|
1691 switch (op2) { |
|
1692 case 0: /* Control register. */ |
|
1693 return env->cp15.c1_sys; |
|
1694 case 1: /* Auxiliary control register. */ |
|
1695 if (arm_feature(env, ARM_FEATURE_XSCALE)) |
|
1696 return env->cp15.c1_xscaleauxcr; |
|
1697 if (!arm_feature(env, ARM_FEATURE_AUXCR)) |
|
1698 goto bad_reg; |
|
1699 switch (ARM_CPUID(env)) { |
|
1700 case ARM_CPUID_ARM1026: |
|
1701 return 1; |
|
1702 case ARM_CPUID_ARM1136: |
|
1703 case ARM_CPUID_ARM1136_R2: |
|
1704 return 7; |
|
1705 case ARM_CPUID_ARM11MPCORE: |
|
1706 return 1; |
|
1707 case ARM_CPUID_CORTEXA8: |
|
1708 return 0; |
|
1709 default: |
|
1710 goto bad_reg; |
|
1711 } |
|
1712 case 2: /* Coprocessor access register. */ |
|
1713 if (arm_feature(env, ARM_FEATURE_XSCALE)) |
|
1714 goto bad_reg; |
|
1715 return env->cp15.c1_coproc; |
|
1716 default: |
|
1717 goto bad_reg; |
|
1718 } |
|
1719 case 2: /* MMU Page table control / MPU cache control. */ |
|
1720 if (arm_feature(env, ARM_FEATURE_MPU)) { |
|
1721 switch (op2) { |
|
1722 case 0: |
|
1723 return env->cp15.c2_data; |
|
1724 break; |
|
1725 case 1: |
|
1726 return env->cp15.c2_insn; |
|
1727 break; |
|
1728 default: |
|
1729 goto bad_reg; |
|
1730 } |
|
1731 } else { |
|
1732 switch (op2) { |
|
1733 case 0: |
|
1734 return env->cp15.c2_base0; |
|
1735 case 1: |
|
1736 return env->cp15.c2_base1; |
|
1737 case 2: |
|
1738 return env->cp15.c2_control; |
|
1739 default: |
|
1740 goto bad_reg; |
|
1741 } |
|
1742 } |
|
1743 case 3: /* MMU Domain access control / MPU write buffer control. */ |
|
1744 return env->cp15.c3; |
|
1745 case 4: /* Reserved. */ |
|
1746 goto bad_reg; |
|
1747 case 5: /* MMU Fault status / MPU access permission. */ |
|
1748 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1749 op2 = 0; |
|
1750 switch (op2) { |
|
1751 case 0: |
|
1752 if (arm_feature(env, ARM_FEATURE_MPU)) |
|
1753 return simple_mpu_ap_bits(env->cp15.c5_data); |
|
1754 return env->cp15.c5_data; |
|
1755 case 1: |
|
1756 if (arm_feature(env, ARM_FEATURE_MPU)) |
|
1757 return simple_mpu_ap_bits(env->cp15.c5_data); |
|
1758 return env->cp15.c5_insn; |
|
1759 case 2: |
|
1760 if (!arm_feature(env, ARM_FEATURE_MPU)) |
|
1761 goto bad_reg; |
|
1762 return env->cp15.c5_data; |
|
1763 case 3: |
|
1764 if (!arm_feature(env, ARM_FEATURE_MPU)) |
|
1765 goto bad_reg; |
|
1766 return env->cp15.c5_insn; |
|
1767 default: |
|
1768 goto bad_reg; |
|
1769 } |
|
1770 case 6: /* MMU Fault address. */ |
|
1771 if (arm_feature(env, ARM_FEATURE_MPU)) { |
|
1772 if (crm >= 8) |
|
1773 goto bad_reg; |
|
1774 return env->cp15.c6_region[crm]; |
|
1775 } else { |
|
1776 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1777 op2 = 0; |
|
1778 switch (op2) { |
|
1779 case 0: |
|
1780 return env->cp15.c6_data; |
|
1781 case 1: |
|
1782 if (arm_feature(env, ARM_FEATURE_V6)) { |
|
1783 /* Watchpoint Fault Adrress. */ |
|
1784 return 0; /* Not implemented. */ |
|
1785 } else { |
|
1786 /* Instruction Fault Adrress. */ |
|
1787 /* Arm9 doesn't have an IFAR, but implementing it anyway |
|
1788 shouldn't do any harm. */ |
|
1789 return env->cp15.c6_insn; |
|
1790 } |
|
1791 case 2: |
|
1792 if (arm_feature(env, ARM_FEATURE_V6)) { |
|
1793 /* Instruction Fault Adrress. */ |
|
1794 return env->cp15.c6_insn; |
|
1795 } else { |
|
1796 goto bad_reg; |
|
1797 } |
|
1798 default: |
|
1799 goto bad_reg; |
|
1800 } |
|
1801 } |
|
1802 case 7: /* Cache control. */ |
|
1803 /* FIXME: Should only clear Z flag if destination is r15. */ |
|
1804 env->ZF = 0; |
|
1805 return 0; |
|
1806 case 8: /* MMU TLB control. */ |
|
1807 goto bad_reg; |
|
1808 case 9: /* Cache lockdown. */ |
|
1809 switch (op1) { |
|
1810 case 0: /* L1 cache. */ |
|
1811 if (arm_feature(env, ARM_FEATURE_OMAPCP)) |
|
1812 return 0; |
|
1813 switch (op2) { |
|
1814 case 0: |
|
1815 return env->cp15.c9_data; |
|
1816 case 1: |
|
1817 return env->cp15.c9_insn; |
|
1818 default: |
|
1819 goto bad_reg; |
|
1820 } |
|
1821 case 1: /* L2 cache */ |
|
1822 if (crm != 0) |
|
1823 goto bad_reg; |
|
1824 /* L2 Lockdown and Auxiliary control. */ |
|
1825 return 0; |
|
1826 default: |
|
1827 goto bad_reg; |
|
1828 } |
|
1829 case 10: /* MMU TLB lockdown. */ |
|
1830 /* ??? TLB lockdown not implemented. */ |
|
1831 return 0; |
|
1832 case 11: /* TCM DMA control. */ |
|
1833 goto bad_reg; |
|
1834 case 12: /* Security extensions. */ |
|
1835 /* This should probably be v6Z, and is technically optional on v7 |
|
1836 cores. We only implement "non-secure" mode. */ |
|
1837 if (!arm_feature(env, ARM_FEATURE_V7)) |
|
1838 goto bad_reg; |
|
1839 if (crm != 0 || op2 != 0) |
|
1840 goto bad_reg; |
|
1841 return env->cp15.c12_vbar; |
|
1842 case 13: /* Process ID. */ |
|
1843 switch (op2) { |
|
1844 case 0: |
|
1845 return env->cp15.c13_fcse; |
|
1846 case 1: |
|
1847 return env->cp15.c13_context; |
|
1848 case 2: |
|
1849 return env->cp15.c13_tls1; |
|
1850 case 3: |
|
1851 return env->cp15.c13_tls2; |
|
1852 case 4: |
|
1853 return env->cp15.c13_tls3; |
|
1854 default: |
|
1855 goto bad_reg; |
|
1856 } |
|
1857 case 14: /* Reserved. */ |
|
1858 goto bad_reg; |
|
1859 case 15: /* Implementation specific. */ |
|
1860 if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
|
1861 if (op2 == 0 && crm == 1) |
|
1862 return env->cp15.c15_cpar; |
|
1863 |
|
1864 goto bad_reg; |
|
1865 } |
|
1866 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
|
1867 switch (crm) { |
|
1868 case 0: |
|
1869 return 0; |
|
1870 case 1: /* Read TI925T configuration. */ |
|
1871 return env->cp15.c15_ticonfig; |
|
1872 case 2: /* Read I_max. */ |
|
1873 return env->cp15.c15_i_max; |
|
1874 case 3: /* Read I_min. */ |
|
1875 return env->cp15.c15_i_min; |
|
1876 case 4: /* Read thread-ID. */ |
|
1877 return env->cp15.c15_threadid; |
|
1878 case 8: /* TI925T_status */ |
|
1879 return 0; |
|
1880 } |
|
1881 /* TODO: Peripheral port remap register: |
|
1882 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt |
|
1883 * controller base address at $rn & ~0xfff and map size of |
|
1884 * 0x200 << ($rn & 0xfff), when MMU is off. */ |
|
1885 goto bad_reg; |
|
1886 } |
|
1887 return 0; |
|
1888 } |
|
1889 bad_reg: |
|
1890 /* ??? For debugging only. Should raise illegal instruction exception. */ |
|
1891 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n", |
|
1892 (insn >> 16) & 0xf, crm, op1, op2); |
|
1893 return 0; |
|
1894 } |
|
1895 |
|
1896 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val) |
|
1897 { |
|
1898 env->banked_r13[bank_number(mode)] = val; |
|
1899 } |
|
1900 |
|
1901 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode) |
|
1902 { |
|
1903 return env->banked_r13[bank_number(mode)]; |
|
1904 } |
|
1905 |
|
1906 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg) |
|
1907 { |
|
1908 switch (reg) { |
|
1909 case 0: /* APSR */ |
|
1910 return xpsr_read(env) & 0xf8000000; |
|
1911 case 1: /* IAPSR */ |
|
1912 return xpsr_read(env) & 0xf80001ff; |
|
1913 case 2: /* EAPSR */ |
|
1914 return xpsr_read(env) & 0xff00fc00; |
|
1915 case 3: /* xPSR */ |
|
1916 return xpsr_read(env) & 0xff00fdff; |
|
1917 case 5: /* IPSR */ |
|
1918 return xpsr_read(env) & 0x000001ff; |
|
1919 case 6: /* EPSR */ |
|
1920 return xpsr_read(env) & 0x0700fc00; |
|
1921 case 7: /* IEPSR */ |
|
1922 return xpsr_read(env) & 0x0700edff; |
|
1923 case 8: /* MSP */ |
|
1924 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
|
1925 case 9: /* PSP */ |
|
1926 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
|
1927 case 16: /* PRIMASK */ |
|
1928 return (env->uncached_cpsr & CPSR_I) != 0; |
|
1929 case 17: /* FAULTMASK */ |
|
1930 return (env->uncached_cpsr & CPSR_F) != 0; |
|
1931 case 18: /* BASEPRI */ |
|
1932 case 19: /* BASEPRI_MAX */ |
|
1933 return env->v7m.basepri; |
|
1934 case 20: /* CONTROL */ |
|
1935 return env->v7m.control; |
|
1936 default: |
|
1937 /* ??? For debugging only. */ |
|
1938 cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
|
1939 return 0; |
|
1940 } |
|
1941 } |
|
1942 |
|
1943 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val) |
|
1944 { |
|
1945 switch (reg) { |
|
1946 case 0: /* APSR */ |
|
1947 xpsr_write(env, val, 0xf8000000); |
|
1948 break; |
|
1949 case 1: /* IAPSR */ |
|
1950 xpsr_write(env, val, 0xf8000000); |
|
1951 break; |
|
1952 case 2: /* EAPSR */ |
|
1953 xpsr_write(env, val, 0xfe00fc00); |
|
1954 break; |
|
1955 case 3: /* xPSR */ |
|
1956 xpsr_write(env, val, 0xfe00fc00); |
|
1957 break; |
|
1958 case 5: /* IPSR */ |
|
1959 /* IPSR bits are readonly. */ |
|
1960 break; |
|
1961 case 6: /* EPSR */ |
|
1962 xpsr_write(env, val, 0x0600fc00); |
|
1963 break; |
|
1964 case 7: /* IEPSR */ |
|
1965 xpsr_write(env, val, 0x0600fc00); |
|
1966 break; |
|
1967 case 8: /* MSP */ |
|
1968 if (env->v7m.current_sp) |
|
1969 env->v7m.other_sp = val; |
|
1970 else |
|
1971 env->regs[13] = val; |
|
1972 break; |
|
1973 case 9: /* PSP */ |
|
1974 if (env->v7m.current_sp) |
|
1975 env->regs[13] = val; |
|
1976 else |
|
1977 env->v7m.other_sp = val; |
|
1978 break; |
|
1979 case 16: /* PRIMASK */ |
|
1980 if (val & 1) |
|
1981 env->uncached_cpsr |= CPSR_I; |
|
1982 else |
|
1983 env->uncached_cpsr &= ~CPSR_I; |
|
1984 break; |
|
1985 case 17: /* FAULTMASK */ |
|
1986 if (val & 1) |
|
1987 env->uncached_cpsr |= CPSR_F; |
|
1988 else |
|
1989 env->uncached_cpsr &= ~CPSR_F; |
|
1990 break; |
|
1991 case 18: /* BASEPRI */ |
|
1992 env->v7m.basepri = val & 0xff; |
|
1993 break; |
|
1994 case 19: /* BASEPRI_MAX */ |
|
1995 val &= 0xff; |
|
1996 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
|
1997 env->v7m.basepri = val; |
|
1998 break; |
|
1999 case 20: /* CONTROL */ |
|
2000 env->v7m.control = val & 3; |
|
2001 switch_v7m_sp(env, (val & 2) != 0); |
|
2002 break; |
|
2003 default: |
|
2004 /* ??? For debugging only. */ |
|
2005 cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
|
2006 return; |
|
2007 } |
|
2008 } |
|
2009 |
|
2010 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, |
|
2011 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, |
|
2012 void *opaque) |
|
2013 { |
|
2014 if (cpnum < 0 || cpnum > 14) { |
|
2015 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum); |
|
2016 return; |
|
2017 } |
|
2018 |
|
2019 env->cp[cpnum].cp_read = cp_read; |
|
2020 env->cp[cpnum].cp_write = cp_write; |
|
2021 env->cp[cpnum].opaque = opaque; |
|
2022 } |
|
2023 |
|
2024 #endif |
|
2025 |
|
2026 /* Note that signed overflow is undefined in C. The following routines are |
|
2027 careful to use unsigned types where modulo arithmetic is required. |
|
2028 Failure to do so _will_ break on newer gcc. */ |
|
2029 |
|
2030 /* Signed saturating arithmetic. */ |
|
2031 |
|
2032 /* Perform 16-bit signed saturating addition. */ |
|
2033 static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
|
2034 { |
|
2035 uint16_t res; |
|
2036 |
|
2037 res = a + b; |
|
2038 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
|
2039 if (a & 0x8000) |
|
2040 res = 0x8000; |
|
2041 else |
|
2042 res = 0x7fff; |
|
2043 } |
|
2044 return res; |
|
2045 } |
|
2046 |
|
2047 /* Perform 8-bit signed saturating addition. */ |
|
2048 static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
|
2049 { |
|
2050 uint8_t res; |
|
2051 |
|
2052 res = a + b; |
|
2053 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
|
2054 if (a & 0x80) |
|
2055 res = 0x80; |
|
2056 else |
|
2057 res = 0x7f; |
|
2058 } |
|
2059 return res; |
|
2060 } |
|
2061 |
|
2062 /* Perform 16-bit signed saturating subtraction. */ |
|
2063 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
|
2064 { |
|
2065 uint16_t res; |
|
2066 |
|
2067 res = a - b; |
|
2068 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
|
2069 if (a & 0x8000) |
|
2070 res = 0x8000; |
|
2071 else |
|
2072 res = 0x7fff; |
|
2073 } |
|
2074 return res; |
|
2075 } |
|
2076 |
|
2077 /* Perform 8-bit signed saturating subtraction. */ |
|
2078 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
|
2079 { |
|
2080 uint8_t res; |
|
2081 |
|
2082 res = a - b; |
|
2083 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
|
2084 if (a & 0x80) |
|
2085 res = 0x80; |
|
2086 else |
|
2087 res = 0x7f; |
|
2088 } |
|
2089 return res; |
|
2090 } |
|
2091 |
|
2092 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
|
2093 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
|
2094 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
|
2095 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
|
2096 #define PFX q |
|
2097 |
|
2098 #include "op_addsub.h" |
|
2099 |
|
2100 /* Unsigned saturating arithmetic. */ |
|
2101 static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
|
2102 { |
|
2103 uint16_t res; |
|
2104 res = a + b; |
|
2105 if (res < a) |
|
2106 res = 0xffff; |
|
2107 return res; |
|
2108 } |
|
2109 |
|
2110 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
|
2111 { |
|
2112 if (a < b) |
|
2113 return a - b; |
|
2114 else |
|
2115 return 0; |
|
2116 } |
|
2117 |
|
2118 static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
|
2119 { |
|
2120 uint8_t res; |
|
2121 res = a + b; |
|
2122 if (res < a) |
|
2123 res = 0xff; |
|
2124 return res; |
|
2125 } |
|
2126 |
|
2127 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
|
2128 { |
|
2129 if (a < b) |
|
2130 return a - b; |
|
2131 else |
|
2132 return 0; |
|
2133 } |
|
2134 |
|
2135 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
|
2136 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
|
2137 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
|
2138 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
|
2139 #define PFX uq |
|
2140 |
|
2141 #include "op_addsub.h" |
|
2142 |
|
2143 /* Signed modulo arithmetic. */ |
|
2144 #define SARITH16(a, b, n, op) do { \ |
|
2145 int32_t sum; \ |
|
2146 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \ |
|
2147 RESULT(sum, n, 16); \ |
|
2148 if (sum >= 0) \ |
|
2149 ge |= 3 << (n * 2); \ |
|
2150 } while(0) |
|
2151 |
|
2152 #define SARITH8(a, b, n, op) do { \ |
|
2153 int32_t sum; \ |
|
2154 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \ |
|
2155 RESULT(sum, n, 8); \ |
|
2156 if (sum >= 0) \ |
|
2157 ge |= 1 << n; \ |
|
2158 } while(0) |
|
2159 |
|
2160 |
|
2161 #define ADD16(a, b, n) SARITH16(a, b, n, +) |
|
2162 #define SUB16(a, b, n) SARITH16(a, b, n, -) |
|
2163 #define ADD8(a, b, n) SARITH8(a, b, n, +) |
|
2164 #define SUB8(a, b, n) SARITH8(a, b, n, -) |
|
2165 #define PFX s |
|
2166 #define ARITH_GE |
|
2167 |
|
2168 #include "op_addsub.h" |
|
2169 |
|
2170 /* Unsigned modulo arithmetic. */ |
|
2171 #define ADD16(a, b, n) do { \ |
|
2172 uint32_t sum; \ |
|
2173 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
|
2174 RESULT(sum, n, 16); \ |
|
2175 if ((sum >> 16) == 1) \ |
|
2176 ge |= 3 << (n * 2); \ |
|
2177 } while(0) |
|
2178 |
|
2179 #define ADD8(a, b, n) do { \ |
|
2180 uint32_t sum; \ |
|
2181 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
|
2182 RESULT(sum, n, 8); \ |
|
2183 if ((sum >> 8) == 1) \ |
|
2184 ge |= 1 << n; \ |
|
2185 } while(0) |
|
2186 |
|
2187 #define SUB16(a, b, n) do { \ |
|
2188 uint32_t sum; \ |
|
2189 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
|
2190 RESULT(sum, n, 16); \ |
|
2191 if ((sum >> 16) == 0) \ |
|
2192 ge |= 3 << (n * 2); \ |
|
2193 } while(0) |
|
2194 |
|
2195 #define SUB8(a, b, n) do { \ |
|
2196 uint32_t sum; \ |
|
2197 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
|
2198 RESULT(sum, n, 8); \ |
|
2199 if ((sum >> 8) == 0) \ |
|
2200 ge |= 1 << n; \ |
|
2201 } while(0) |
|
2202 |
|
2203 #define PFX u |
|
2204 #define ARITH_GE |
|
2205 |
|
2206 #include "op_addsub.h" |
|
2207 |
|
2208 /* Halved signed arithmetic. */ |
|
2209 #define ADD16(a, b, n) \ |
|
2210 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
|
2211 #define SUB16(a, b, n) \ |
|
2212 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
|
2213 #define ADD8(a, b, n) \ |
|
2214 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
|
2215 #define SUB8(a, b, n) \ |
|
2216 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
|
2217 #define PFX sh |
|
2218 |
|
2219 #include "op_addsub.h" |
|
2220 |
|
2221 /* Halved unsigned arithmetic. */ |
|
2222 #define ADD16(a, b, n) \ |
|
2223 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
|
2224 #define SUB16(a, b, n) \ |
|
2225 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
|
2226 #define ADD8(a, b, n) \ |
|
2227 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
|
2228 #define SUB8(a, b, n) \ |
|
2229 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
|
2230 #define PFX uh |
|
2231 |
|
2232 #include "op_addsub.h" |
|
2233 |
|
2234 static inline uint8_t do_usad(uint8_t a, uint8_t b) |
|
2235 { |
|
2236 if (a > b) |
|
2237 return a - b; |
|
2238 else |
|
2239 return b - a; |
|
2240 } |
|
2241 |
|
2242 /* Unsigned sum of absolute byte differences. */ |
|
2243 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
|
2244 { |
|
2245 uint32_t sum; |
|
2246 sum = do_usad(a, b); |
|
2247 sum += do_usad(a >> 8, b >> 8); |
|
2248 sum += do_usad(a >> 16, b >>16); |
|
2249 sum += do_usad(a >> 24, b >> 24); |
|
2250 return sum; |
|
2251 } |
|
2252 |
|
2253 /* For ARMv6 SEL instruction. */ |
|
2254 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
|
2255 { |
|
2256 uint32_t mask; |
|
2257 |
|
2258 mask = 0; |
|
2259 if (flags & 1) |
|
2260 mask |= 0xff; |
|
2261 if (flags & 2) |
|
2262 mask |= 0xff00; |
|
2263 if (flags & 4) |
|
2264 mask |= 0xff0000; |
|
2265 if (flags & 8) |
|
2266 mask |= 0xff000000; |
|
2267 return (a & mask) | (b & ~mask); |
|
2268 } |
|
2269 |
|
2270 uint32_t HELPER(logicq_cc)(uint64_t val) |
|
2271 { |
|
2272 return (val >> 32) | (val != 0); |
|
2273 } |
|
2274 |
|
2275 /* VFP support. We follow the convention used for VFP instrunctions: |
|
2276 Single precition routines have a "s" suffix, double precision a |
|
2277 "d" suffix. */ |
|
2278 |
|
2279 /* Convert host exception flags to vfp form. */ |
|
2280 static inline int vfp_exceptbits_from_host(int host_bits) |
|
2281 { |
|
2282 int target_bits = 0; |
|
2283 |
|
2284 if (host_bits & float_flag_invalid) |
|
2285 target_bits |= 1; |
|
2286 if (host_bits & float_flag_divbyzero) |
|
2287 target_bits |= 2; |
|
2288 if (host_bits & float_flag_overflow) |
|
2289 target_bits |= 4; |
|
2290 if (host_bits & float_flag_underflow) |
|
2291 target_bits |= 8; |
|
2292 if (host_bits & float_flag_inexact) |
|
2293 target_bits |= 0x10; |
|
2294 return target_bits; |
|
2295 } |
|
2296 |
|
2297 uint32_t HELPER(vfp_get_fpscr)(CPUState *env) |
|
2298 { |
|
2299 int i; |
|
2300 uint32_t fpscr; |
|
2301 |
|
2302 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) |
|
2303 | (env->vfp.vec_len << 16) |
|
2304 | (env->vfp.vec_stride << 20); |
|
2305 i = get_float_exception_flags(&env->vfp.fp_status); |
|
2306 fpscr |= vfp_exceptbits_from_host(i); |
|
2307 return fpscr; |
|
2308 } |
|
2309 |
|
2310 /* Convert vfp exception flags to target form. */ |
|
2311 static inline int vfp_exceptbits_to_host(int target_bits) |
|
2312 { |
|
2313 int host_bits = 0; |
|
2314 |
|
2315 if (target_bits & 1) |
|
2316 host_bits |= float_flag_invalid; |
|
2317 if (target_bits & 2) |
|
2318 host_bits |= float_flag_divbyzero; |
|
2319 if (target_bits & 4) |
|
2320 host_bits |= float_flag_overflow; |
|
2321 if (target_bits & 8) |
|
2322 host_bits |= float_flag_underflow; |
|
2323 if (target_bits & 0x10) |
|
2324 host_bits |= float_flag_inexact; |
|
2325 return host_bits; |
|
2326 } |
|
2327 |
|
2328 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val) |
|
2329 { |
|
2330 int i; |
|
2331 uint32_t changed; |
|
2332 |
|
2333 changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
|
2334 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); |
|
2335 env->vfp.vec_len = (val >> 16) & 7; |
|
2336 env->vfp.vec_stride = (val >> 20) & 3; |
|
2337 |
|
2338 changed ^= val; |
|
2339 if (changed & (3 << 22)) { |
|
2340 i = (val >> 22) & 3; |
|
2341 switch (i) { |
|
2342 case 0: |
|
2343 i = float_round_nearest_even; |
|
2344 break; |
|
2345 case 1: |
|
2346 i = float_round_up; |
|
2347 break; |
|
2348 case 2: |
|
2349 i = float_round_down; |
|
2350 break; |
|
2351 case 3: |
|
2352 i = float_round_to_zero; |
|
2353 break; |
|
2354 } |
|
2355 set_float_rounding_mode(i, &env->vfp.fp_status); |
|
2356 } |
|
2357 if (changed & (1 << 24)) |
|
2358 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
|
2359 if (changed & (1 << 25)) |
|
2360 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
|
2361 |
|
2362 i = vfp_exceptbits_to_host((val >> 8) & 0x1f); |
|
2363 set_float_exception_flags(i, &env->vfp.fp_status); |
|
2364 } |
|
2365 |
|
2366 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
|
2367 |
|
2368 #define VFP_BINOP(name) \ |
|
2369 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \ |
|
2370 { \ |
|
2371 return float32_ ## name (a, b, &env->vfp.fp_status); \ |
|
2372 } \ |
|
2373 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \ |
|
2374 { \ |
|
2375 return float64_ ## name (a, b, &env->vfp.fp_status); \ |
|
2376 } |
|
2377 VFP_BINOP(add) |
|
2378 VFP_BINOP(sub) |
|
2379 VFP_BINOP(mul) |
|
2380 VFP_BINOP(div) |
|
2381 #undef VFP_BINOP |
|
2382 |
|
2383 float32 VFP_HELPER(neg, s)(float32 a) |
|
2384 { |
|
2385 return float32_chs(a); |
|
2386 } |
|
2387 |
|
2388 float64 VFP_HELPER(neg, d)(float64 a) |
|
2389 { |
|
2390 return float64_chs(a); |
|
2391 } |
|
2392 |
|
2393 float32 VFP_HELPER(abs, s)(float32 a) |
|
2394 { |
|
2395 return float32_abs(a); |
|
2396 } |
|
2397 |
|
2398 float64 VFP_HELPER(abs, d)(float64 a) |
|
2399 { |
|
2400 return float64_abs(a); |
|
2401 } |
|
2402 |
|
2403 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env) |
|
2404 { |
|
2405 return float32_sqrt(a, &env->vfp.fp_status); |
|
2406 } |
|
2407 |
|
2408 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env) |
|
2409 { |
|
2410 return float64_sqrt(a, &env->vfp.fp_status); |
|
2411 } |
|
2412 |
|
2413 /* XXX: check quiet/signaling case */ |
|
2414 #define DO_VFP_cmp(p, type) \ |
|
2415 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \ |
|
2416 { \ |
|
2417 uint32_t flags; \ |
|
2418 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
|
2419 case 0: flags = 0x6; break; \ |
|
2420 case -1: flags = 0x8; break; \ |
|
2421 case 1: flags = 0x2; break; \ |
|
2422 default: case 2: flags = 0x3; break; \ |
|
2423 } \ |
|
2424 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
|
2425 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
|
2426 } \ |
|
2427 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \ |
|
2428 { \ |
|
2429 uint32_t flags; \ |
|
2430 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
|
2431 case 0: flags = 0x6; break; \ |
|
2432 case -1: flags = 0x8; break; \ |
|
2433 case 1: flags = 0x2; break; \ |
|
2434 default: case 2: flags = 0x3; break; \ |
|
2435 } \ |
|
2436 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
|
2437 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
|
2438 } |
|
2439 DO_VFP_cmp(s, float32) |
|
2440 DO_VFP_cmp(d, float64) |
|
2441 #undef DO_VFP_cmp |
|
2442 |
|
2443 /* Helper routines to perform bitwise copies between float and int. */ |
|
2444 static inline float32 vfp_itos(uint32_t i) |
|
2445 { |
|
2446 union { |
|
2447 uint32_t i; |
|
2448 float32 s; |
|
2449 } v; |
|
2450 |
|
2451 v.i = i; |
|
2452 return v.s; |
|
2453 } |
|
2454 |
|
2455 static inline uint32_t vfp_stoi(float32 s) |
|
2456 { |
|
2457 union { |
|
2458 uint32_t i; |
|
2459 float32 s; |
|
2460 } v; |
|
2461 |
|
2462 v.s = s; |
|
2463 return v.i; |
|
2464 } |
|
2465 |
|
2466 static inline float64 vfp_itod(uint64_t i) |
|
2467 { |
|
2468 union { |
|
2469 uint64_t i; |
|
2470 float64 d; |
|
2471 } v; |
|
2472 |
|
2473 v.i = i; |
|
2474 return v.d; |
|
2475 } |
|
2476 |
|
2477 static inline uint64_t vfp_dtoi(float64 d) |
|
2478 { |
|
2479 union { |
|
2480 uint64_t i; |
|
2481 float64 d; |
|
2482 } v; |
|
2483 |
|
2484 v.d = d; |
|
2485 return v.i; |
|
2486 } |
|
2487 |
|
2488 /* Integer to float conversion. */ |
|
2489 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env) |
|
2490 { |
|
2491 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status); |
|
2492 } |
|
2493 |
|
2494 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env) |
|
2495 { |
|
2496 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status); |
|
2497 } |
|
2498 |
|
2499 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env) |
|
2500 { |
|
2501 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status); |
|
2502 } |
|
2503 |
|
2504 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env) |
|
2505 { |
|
2506 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status); |
|
2507 } |
|
2508 |
|
2509 /* Float to integer conversion. */ |
|
2510 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env) |
|
2511 { |
|
2512 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status)); |
|
2513 } |
|
2514 |
|
2515 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env) |
|
2516 { |
|
2517 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status)); |
|
2518 } |
|
2519 |
|
2520 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env) |
|
2521 { |
|
2522 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status)); |
|
2523 } |
|
2524 |
|
2525 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env) |
|
2526 { |
|
2527 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status)); |
|
2528 } |
|
2529 |
|
2530 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env) |
|
2531 { |
|
2532 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status)); |
|
2533 } |
|
2534 |
|
2535 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env) |
|
2536 { |
|
2537 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status)); |
|
2538 } |
|
2539 |
|
2540 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env) |
|
2541 { |
|
2542 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status)); |
|
2543 } |
|
2544 |
|
2545 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env) |
|
2546 { |
|
2547 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status)); |
|
2548 } |
|
2549 |
|
2550 /* floating point conversion */ |
|
2551 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env) |
|
2552 { |
|
2553 return float32_to_float64(x, &env->vfp.fp_status); |
|
2554 } |
|
2555 |
|
2556 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env) |
|
2557 { |
|
2558 return float64_to_float32(x, &env->vfp.fp_status); |
|
2559 } |
|
2560 |
|
2561 /* VFP3 fixed point conversion. */ |
|
2562 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \ |
|
2563 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \ |
|
2564 { \ |
|
2565 ftype tmp; \ |
|
2566 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \ |
|
2567 &env->vfp.fp_status); \ |
|
2568 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \ |
|
2569 } \ |
|
2570 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \ |
|
2571 { \ |
|
2572 ftype tmp; \ |
|
2573 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \ |
|
2574 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \ |
|
2575 &env->vfp.fp_status)); \ |
|
2576 } |
|
2577 |
|
2578 VFP_CONV_FIX(sh, d, float64, int16, ) |
|
2579 VFP_CONV_FIX(sl, d, float64, int32, ) |
|
2580 VFP_CONV_FIX(uh, d, float64, uint16, u) |
|
2581 VFP_CONV_FIX(ul, d, float64, uint32, u) |
|
2582 VFP_CONV_FIX(sh, s, float32, int16, ) |
|
2583 VFP_CONV_FIX(sl, s, float32, int32, ) |
|
2584 VFP_CONV_FIX(uh, s, float32, uint16, u) |
|
2585 VFP_CONV_FIX(ul, s, float32, uint32, u) |
|
2586 #undef VFP_CONV_FIX |
|
2587 |
|
2588 /* Half precision conversions. */ |
|
2589 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env) |
|
2590 { |
|
2591 float_status *s = &env->vfp.fp_status; |
|
2592 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
|
2593 return float16_to_float32(a, ieee, s); |
|
2594 } |
|
2595 |
|
2596 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env) |
|
2597 { |
|
2598 float_status *s = &env->vfp.fp_status; |
|
2599 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
|
2600 return float32_to_float16(a, ieee, s); |
|
2601 } |
|
2602 |
|
2603 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env) |
|
2604 { |
|
2605 float_status *s = &env->vfp.fp_status; |
|
2606 float32 two = int32_to_float32(2, s); |
|
2607 return float32_sub(two, float32_mul(a, b, s), s); |
|
2608 } |
|
2609 |
|
2610 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env) |
|
2611 { |
|
2612 float_status *s = &env->vfp.fp_status; |
|
2613 float32 three = int32_to_float32(3, s); |
|
2614 return float32_sub(three, float32_mul(a, b, s), s); |
|
2615 } |
|
2616 |
|
2617 /* NEON helpers. */ |
|
2618 |
|
2619 /* TODO: The architecture specifies the value that the estimate functions |
|
2620 should return. We return the exact reciprocal/root instead. */ |
|
2621 float32 HELPER(recpe_f32)(float32 a, CPUState *env) |
|
2622 { |
|
2623 float_status *s = &env->vfp.fp_status; |
|
2624 float32 one = int32_to_float32(1, s); |
|
2625 return float32_div(one, a, s); |
|
2626 } |
|
2627 |
|
2628 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env) |
|
2629 { |
|
2630 float_status *s = &env->vfp.fp_status; |
|
2631 float32 one = int32_to_float32(1, s); |
|
2632 return float32_div(one, float32_sqrt(a, s), s); |
|
2633 } |
|
2634 |
|
2635 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env) |
|
2636 { |
|
2637 float_status *s = &env->vfp.fp_status; |
|
2638 float32 tmp; |
|
2639 tmp = int32_to_float32(a, s); |
|
2640 tmp = float32_scalbn(tmp, -32, s); |
|
2641 tmp = helper_recpe_f32(tmp, env); |
|
2642 tmp = float32_scalbn(tmp, 31, s); |
|
2643 return float32_to_int32(tmp, s); |
|
2644 } |
|
2645 |
|
2646 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env) |
|
2647 { |
|
2648 float_status *s = &env->vfp.fp_status; |
|
2649 float32 tmp; |
|
2650 tmp = int32_to_float32(a, s); |
|
2651 tmp = float32_scalbn(tmp, -32, s); |
|
2652 tmp = helper_rsqrte_f32(tmp, env); |
|
2653 tmp = float32_scalbn(tmp, 31, s); |
|
2654 return float32_to_int32(tmp, s); |
|
2655 } |
|
2656 |
|
2657 void HELPER(set_teecr)(CPUState *env, uint32_t val) |
|
2658 { |
|
2659 val &= 1; |
|
2660 if (env->teecr != val) { |
|
2661 env->teecr = val; |
|
2662 tb_flush(env); |
|
2663 } |
|
2664 } |