symbian-qemu-0.9.1-12/qemu-symbian-svp/target-i386/exec.h
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  *  i386 execution defines
       
     3  *
       
     4  *  Copyright (c) 2003 Fabrice Bellard
       
     5  *
       
     6  * This library is free software; you can redistribute it and/or
       
     7  * modify it under the terms of the GNU Lesser General Public
       
     8  * License as published by the Free Software Foundation; either
       
     9  * version 2 of the License, or (at your option) any later version.
       
    10  *
       
    11  * This library is distributed in the hope that it will be useful,
       
    12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
       
    14  * Lesser General Public License for more details.
       
    15  *
       
    16  * You should have received a copy of the GNU Lesser General Public
       
    17  * License along with this library; if not, write to the Free Software
       
    18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
       
    19  */
       
    20 #include "config.h"
       
    21 #include "dyngen-exec.h"
       
    22 
       
    23 /* XXX: factorize this mess */
       
    24 #ifdef TARGET_X86_64
       
    25 #define TARGET_LONG_BITS 64
       
    26 #else
       
    27 #define TARGET_LONG_BITS 32
       
    28 #endif
       
    29 
       
    30 #include "cpu-defs.h"
       
    31 
       
    32 register struct CPUX86State *env asm(AREG0);
       
    33 
       
    34 #include "qemu-log.h"
       
    35 
       
    36 #define EAX (env->regs[R_EAX])
       
    37 #define ECX (env->regs[R_ECX])
       
    38 #define EDX (env->regs[R_EDX])
       
    39 #define EBX (env->regs[R_EBX])
       
    40 #define ESP (env->regs[R_ESP])
       
    41 #define EBP (env->regs[R_EBP])
       
    42 #define ESI (env->regs[R_ESI])
       
    43 #define EDI (env->regs[R_EDI])
       
    44 #define EIP (env->eip)
       
    45 #define DF  (env->df)
       
    46 
       
    47 #define CC_SRC (env->cc_src)
       
    48 #define CC_DST (env->cc_dst)
       
    49 #define CC_OP  (env->cc_op)
       
    50 
       
    51 /* float macros */
       
    52 #define FT0    (env->ft0)
       
    53 #define ST0    (env->fpregs[env->fpstt].d)
       
    54 #define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
       
    55 #define ST1    ST(1)
       
    56 
       
    57 #include "cpu.h"
       
    58 #include "exec-all.h"
       
    59 
       
    60 /* op_helper.c */
       
    61 void do_interrupt(int intno, int is_int, int error_code,
       
    62                   target_ulong next_eip, int is_hw);
       
    63 void do_interrupt_user(int intno, int is_int, int error_code,
       
    64                        target_ulong next_eip);
       
    65 void raise_exception_err(int exception_index, int error_code);
       
    66 void raise_exception(int exception_index);
       
    67 void do_smm_enter(void);
       
    68 
       
    69 /* n must be a constant to be efficient */
       
    70 static inline target_long lshift(target_long x, int n)
       
    71 {
       
    72     if (n >= 0)
       
    73         return x << n;
       
    74     else
       
    75         return x >> (-n);
       
    76 }
       
    77 
       
    78 #include "helper.h"
       
    79 
       
    80 static inline void svm_check_intercept(uint32_t type)
       
    81 {
       
    82     helper_svm_check_intercept_param(type, 0);
       
    83 }
       
    84 
       
    85 #if !defined(CONFIG_USER_ONLY)
       
    86 
       
    87 #include "softmmu_exec.h"
       
    88 
       
    89 #endif /* !defined(CONFIG_USER_ONLY) */
       
    90 
       
    91 #ifdef USE_X86LDOUBLE
       
    92 /* use long double functions */
       
    93 #define floatx_to_int32 floatx80_to_int32
       
    94 #define floatx_to_int64 floatx80_to_int64
       
    95 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
       
    96 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
       
    97 #define int32_to_floatx int32_to_floatx80
       
    98 #define int64_to_floatx int64_to_floatx80
       
    99 #define float32_to_floatx float32_to_floatx80
       
   100 #define float64_to_floatx float64_to_floatx80
       
   101 #define floatx_to_float32 floatx80_to_float32
       
   102 #define floatx_to_float64 floatx80_to_float64
       
   103 #define floatx_abs floatx80_abs
       
   104 #define floatx_chs floatx80_chs
       
   105 #define floatx_round_to_int floatx80_round_to_int
       
   106 #define floatx_compare floatx80_compare
       
   107 #define floatx_compare_quiet floatx80_compare_quiet
       
   108 #else
       
   109 #define floatx_to_int32 float64_to_int32
       
   110 #define floatx_to_int64 float64_to_int64
       
   111 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
       
   112 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
       
   113 #define int32_to_floatx int32_to_float64
       
   114 #define int64_to_floatx int64_to_float64
       
   115 #define float32_to_floatx float32_to_float64
       
   116 #define float64_to_floatx(x, e) (x)
       
   117 #define floatx_to_float32 float64_to_float32
       
   118 #define floatx_to_float64(x, e) (x)
       
   119 #define floatx_abs float64_abs
       
   120 #define floatx_chs float64_chs
       
   121 #define floatx_round_to_int float64_round_to_int
       
   122 #define floatx_compare float64_compare
       
   123 #define floatx_compare_quiet float64_compare_quiet
       
   124 #endif
       
   125 
       
   126 #define RC_MASK         0xc00
       
   127 #define RC_NEAR		0x000
       
   128 #define RC_DOWN		0x400
       
   129 #define RC_UP		0x800
       
   130 #define RC_CHOP		0xc00
       
   131 
       
   132 #define MAXTAN 9223372036854775808.0
       
   133 
       
   134 #ifdef USE_X86LDOUBLE
       
   135 
       
   136 /* only for x86 */
       
   137 typedef union {
       
   138     long double d;
       
   139     struct {
       
   140         unsigned long long lower;
       
   141         unsigned short upper;
       
   142     } l;
       
   143 } CPU86_LDoubleU;
       
   144 
       
   145 /* the following deal with x86 long double-precision numbers */
       
   146 #define MAXEXPD 0x7fff
       
   147 #define EXPBIAS 16383
       
   148 #define EXPD(fp)	(fp.l.upper & 0x7fff)
       
   149 #define SIGND(fp)	((fp.l.upper) & 0x8000)
       
   150 #define MANTD(fp)       (fp.l.lower)
       
   151 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
       
   152 
       
   153 #else
       
   154 
       
   155 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
       
   156 typedef union {
       
   157     double d;
       
   158 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
       
   159     struct {
       
   160         uint32_t lower;
       
   161         int32_t upper;
       
   162     } l;
       
   163 #else
       
   164     struct {
       
   165         int32_t upper;
       
   166         uint32_t lower;
       
   167     } l;
       
   168 #endif
       
   169 #ifndef __arm__
       
   170     int64_t ll;
       
   171 #endif
       
   172 } CPU86_LDoubleU;
       
   173 
       
   174 /* the following deal with IEEE double-precision numbers */
       
   175 #define MAXEXPD 0x7ff
       
   176 #define EXPBIAS 1023
       
   177 #define EXPD(fp)	(((fp.l.upper) >> 20) & 0x7FF)
       
   178 #define SIGND(fp)	((fp.l.upper) & 0x80000000)
       
   179 #ifdef __arm__
       
   180 #define MANTD(fp)	(fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
       
   181 #else
       
   182 #define MANTD(fp)	(fp.ll & ((1LL << 52) - 1))
       
   183 #endif
       
   184 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
       
   185 #endif
       
   186 
       
   187 static inline void fpush(void)
       
   188 {
       
   189     env->fpstt = (env->fpstt - 1) & 7;
       
   190     env->fptags[env->fpstt] = 0; /* validate stack entry */
       
   191 }
       
   192 
       
   193 static inline void fpop(void)
       
   194 {
       
   195     env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
       
   196     env->fpstt = (env->fpstt + 1) & 7;
       
   197 }
       
   198 
       
   199 #ifndef USE_X86LDOUBLE
       
   200 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
       
   201 {
       
   202     CPU86_LDoubleU temp;
       
   203     int upper, e;
       
   204     uint64_t ll;
       
   205 
       
   206     /* mantissa */
       
   207     upper = lduw(ptr + 8);
       
   208     /* XXX: handle overflow ? */
       
   209     e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
       
   210     e |= (upper >> 4) & 0x800; /* sign */
       
   211     ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
       
   212 #ifdef __arm__
       
   213     temp.l.upper = (e << 20) | (ll >> 32);
       
   214     temp.l.lower = ll;
       
   215 #else
       
   216     temp.ll = ll | ((uint64_t)e << 52);
       
   217 #endif
       
   218     return temp.d;
       
   219 }
       
   220 
       
   221 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
       
   222 {
       
   223     CPU86_LDoubleU temp;
       
   224     int e;
       
   225 
       
   226     temp.d = f;
       
   227     /* mantissa */
       
   228     stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
       
   229     /* exponent + sign */
       
   230     e = EXPD(temp) - EXPBIAS + 16383;
       
   231     e |= SIGND(temp) >> 16;
       
   232     stw(ptr + 8, e);
       
   233 }
       
   234 #else
       
   235 
       
   236 /* we use memory access macros */
       
   237 
       
   238 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
       
   239 {
       
   240     CPU86_LDoubleU temp;
       
   241 
       
   242     temp.l.lower = ldq(ptr);
       
   243     temp.l.upper = lduw(ptr + 8);
       
   244     return temp.d;
       
   245 }
       
   246 
       
   247 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
       
   248 {
       
   249     CPU86_LDoubleU temp;
       
   250 
       
   251     temp.d = f;
       
   252     stq(ptr, temp.l.lower);
       
   253     stw(ptr + 8, temp.l.upper);
       
   254 }
       
   255 
       
   256 #endif /* USE_X86LDOUBLE */
       
   257 
       
   258 #define FPUS_IE (1 << 0)
       
   259 #define FPUS_DE (1 << 1)
       
   260 #define FPUS_ZE (1 << 2)
       
   261 #define FPUS_OE (1 << 3)
       
   262 #define FPUS_UE (1 << 4)
       
   263 #define FPUS_PE (1 << 5)
       
   264 #define FPUS_SF (1 << 6)
       
   265 #define FPUS_SE (1 << 7)
       
   266 #define FPUS_B  (1 << 15)
       
   267 
       
   268 #define FPUC_EM 0x3f
       
   269 
       
   270 static inline uint32_t compute_eflags(void)
       
   271 {
       
   272     return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
       
   273 }
       
   274 
       
   275 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
       
   276 static inline void load_eflags(int eflags, int update_mask)
       
   277 {
       
   278     CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
       
   279     DF = 1 - (2 * ((eflags >> 10) & 1));
       
   280     env->eflags = (env->eflags & ~update_mask) |
       
   281         (eflags & update_mask) | 0x2;
       
   282 }
       
   283 
       
   284 static inline void env_to_regs(void)
       
   285 {
       
   286 #ifdef reg_EAX
       
   287     EAX = env->regs[R_EAX];
       
   288 #endif
       
   289 #ifdef reg_ECX
       
   290     ECX = env->regs[R_ECX];
       
   291 #endif
       
   292 #ifdef reg_EDX
       
   293     EDX = env->regs[R_EDX];
       
   294 #endif
       
   295 #ifdef reg_EBX
       
   296     EBX = env->regs[R_EBX];
       
   297 #endif
       
   298 #ifdef reg_ESP
       
   299     ESP = env->regs[R_ESP];
       
   300 #endif
       
   301 #ifdef reg_EBP
       
   302     EBP = env->regs[R_EBP];
       
   303 #endif
       
   304 #ifdef reg_ESI
       
   305     ESI = env->regs[R_ESI];
       
   306 #endif
       
   307 #ifdef reg_EDI
       
   308     EDI = env->regs[R_EDI];
       
   309 #endif
       
   310 }
       
   311 
       
   312 static inline void regs_to_env(void)
       
   313 {
       
   314 #ifdef reg_EAX
       
   315     env->regs[R_EAX] = EAX;
       
   316 #endif
       
   317 #ifdef reg_ECX
       
   318     env->regs[R_ECX] = ECX;
       
   319 #endif
       
   320 #ifdef reg_EDX
       
   321     env->regs[R_EDX] = EDX;
       
   322 #endif
       
   323 #ifdef reg_EBX
       
   324     env->regs[R_EBX] = EBX;
       
   325 #endif
       
   326 #ifdef reg_ESP
       
   327     env->regs[R_ESP] = ESP;
       
   328 #endif
       
   329 #ifdef reg_EBP
       
   330     env->regs[R_EBP] = EBP;
       
   331 #endif
       
   332 #ifdef reg_ESI
       
   333     env->regs[R_ESI] = ESI;
       
   334 #endif
       
   335 #ifdef reg_EDI
       
   336     env->regs[R_EDI] = EDI;
       
   337 #endif
       
   338 }
       
   339 
       
   340 static inline int cpu_halted(CPUState *env) {
       
   341     /* handle exit of HALTED state */
       
   342     if (!env->halted)
       
   343         return 0;
       
   344     /* disable halt condition */
       
   345     if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
       
   346          (env->eflags & IF_MASK)) ||
       
   347         (env->interrupt_request & CPU_INTERRUPT_NMI)) {
       
   348         env->halted = 0;
       
   349         return 0;
       
   350     }
       
   351     return EXCP_HALTED;
       
   352 }
       
   353 
       
   354 /* load efer and update the corresponding hflags. XXX: do consistency
       
   355    checks with cpuid bits ? */
       
   356 static inline void cpu_load_efer(CPUState *env, uint64_t val)
       
   357 {
       
   358     env->efer = val;
       
   359     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
       
   360     if (env->efer & MSR_EFER_LMA)
       
   361         env->hflags |= HF_LMA_MASK;
       
   362     if (env->efer & MSR_EFER_SVME)
       
   363         env->hflags |= HF_SVME_MASK;
       
   364 }