|
1 /* |
|
2 * PowerPC emulation helpers for qemu. |
|
3 * |
|
4 * Copyright (c) 2003-2007 Jocelyn Mayer |
|
5 * |
|
6 * This library is free software; you can redistribute it and/or |
|
7 * modify it under the terms of the GNU Lesser General Public |
|
8 * License as published by the Free Software Foundation; either |
|
9 * version 2 of the License, or (at your option) any later version. |
|
10 * |
|
11 * This library is distributed in the hope that it will be useful, |
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
14 * Lesser General Public License for more details. |
|
15 * |
|
16 * You should have received a copy of the GNU Lesser General Public |
|
17 * License along with this library; if not, write to the Free Software |
|
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
19 */ |
|
20 #include "exec.h" |
|
21 #include "host-utils.h" |
|
22 #include "helper.h" |
|
23 |
|
24 #include "helper_regs.h" |
|
25 |
|
26 //#define DEBUG_OP |
|
27 //#define DEBUG_EXCEPTIONS |
|
28 //#define DEBUG_SOFTWARE_TLB |
|
29 |
|
30 /*****************************************************************************/ |
|
31 /* Exceptions processing helpers */ |
|
32 |
|
33 void helper_raise_exception_err (uint32_t exception, uint32_t error_code) |
|
34 { |
|
35 #if 0 |
|
36 printf("Raise exception %3x code : %d\n", exception, error_code); |
|
37 #endif |
|
38 env->exception_index = exception; |
|
39 env->error_code = error_code; |
|
40 cpu_loop_exit(); |
|
41 } |
|
42 |
|
43 void helper_raise_exception (uint32_t exception) |
|
44 { |
|
45 helper_raise_exception_err(exception, 0); |
|
46 } |
|
47 |
|
48 /*****************************************************************************/ |
|
49 /* Registers load and stores */ |
|
50 target_ulong helper_load_cr (void) |
|
51 { |
|
52 return (env->crf[0] << 28) | |
|
53 (env->crf[1] << 24) | |
|
54 (env->crf[2] << 20) | |
|
55 (env->crf[3] << 16) | |
|
56 (env->crf[4] << 12) | |
|
57 (env->crf[5] << 8) | |
|
58 (env->crf[6] << 4) | |
|
59 (env->crf[7] << 0); |
|
60 } |
|
61 |
|
62 void helper_store_cr (target_ulong val, uint32_t mask) |
|
63 { |
|
64 int i, sh; |
|
65 |
|
66 for (i = 0, sh = 7; i < 8; i++, sh--) { |
|
67 if (mask & (1 << sh)) |
|
68 env->crf[i] = (val >> (sh * 4)) & 0xFUL; |
|
69 } |
|
70 } |
|
71 |
|
72 /*****************************************************************************/ |
|
73 /* SPR accesses */ |
|
74 void helper_load_dump_spr (uint32_t sprn) |
|
75 { |
|
76 if (loglevel != 0) { |
|
77 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
|
78 sprn, sprn, env->spr[sprn]); |
|
79 } |
|
80 } |
|
81 |
|
82 void helper_store_dump_spr (uint32_t sprn) |
|
83 { |
|
84 if (loglevel != 0) { |
|
85 fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n", |
|
86 sprn, sprn, env->spr[sprn]); |
|
87 } |
|
88 } |
|
89 |
|
90 target_ulong helper_load_tbl (void) |
|
91 { |
|
92 return cpu_ppc_load_tbl(env); |
|
93 } |
|
94 |
|
95 target_ulong helper_load_tbu (void) |
|
96 { |
|
97 return cpu_ppc_load_tbu(env); |
|
98 } |
|
99 |
|
100 target_ulong helper_load_atbl (void) |
|
101 { |
|
102 return cpu_ppc_load_atbl(env); |
|
103 } |
|
104 |
|
105 target_ulong helper_load_atbu (void) |
|
106 { |
|
107 return cpu_ppc_load_atbu(env); |
|
108 } |
|
109 |
|
110 target_ulong helper_load_601_rtcl (void) |
|
111 { |
|
112 return cpu_ppc601_load_rtcl(env); |
|
113 } |
|
114 |
|
115 target_ulong helper_load_601_rtcu (void) |
|
116 { |
|
117 return cpu_ppc601_load_rtcu(env); |
|
118 } |
|
119 |
|
120 #if !defined(CONFIG_USER_ONLY) |
|
121 #if defined (TARGET_PPC64) |
|
122 void helper_store_asr (target_ulong val) |
|
123 { |
|
124 ppc_store_asr(env, val); |
|
125 } |
|
126 #endif |
|
127 |
|
128 void helper_store_sdr1 (target_ulong val) |
|
129 { |
|
130 ppc_store_sdr1(env, val); |
|
131 } |
|
132 |
|
133 void helper_store_tbl (target_ulong val) |
|
134 { |
|
135 cpu_ppc_store_tbl(env, val); |
|
136 } |
|
137 |
|
138 void helper_store_tbu (target_ulong val) |
|
139 { |
|
140 cpu_ppc_store_tbu(env, val); |
|
141 } |
|
142 |
|
143 void helper_store_atbl (target_ulong val) |
|
144 { |
|
145 cpu_ppc_store_atbl(env, val); |
|
146 } |
|
147 |
|
148 void helper_store_atbu (target_ulong val) |
|
149 { |
|
150 cpu_ppc_store_atbu(env, val); |
|
151 } |
|
152 |
|
153 void helper_store_601_rtcl (target_ulong val) |
|
154 { |
|
155 cpu_ppc601_store_rtcl(env, val); |
|
156 } |
|
157 |
|
158 void helper_store_601_rtcu (target_ulong val) |
|
159 { |
|
160 cpu_ppc601_store_rtcu(env, val); |
|
161 } |
|
162 |
|
163 target_ulong helper_load_decr (void) |
|
164 { |
|
165 return cpu_ppc_load_decr(env); |
|
166 } |
|
167 |
|
168 void helper_store_decr (target_ulong val) |
|
169 { |
|
170 cpu_ppc_store_decr(env, val); |
|
171 } |
|
172 |
|
173 void helper_store_hid0_601 (target_ulong val) |
|
174 { |
|
175 target_ulong hid0; |
|
176 |
|
177 hid0 = env->spr[SPR_HID0]; |
|
178 if ((val ^ hid0) & 0x00000008) { |
|
179 /* Change current endianness */ |
|
180 env->hflags &= ~(1 << MSR_LE); |
|
181 env->hflags_nmsr &= ~(1 << MSR_LE); |
|
182 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); |
|
183 env->hflags |= env->hflags_nmsr; |
|
184 if (loglevel != 0) { |
|
185 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n", |
|
186 __func__, val & 0x8 ? 'l' : 'b', env->hflags); |
|
187 } |
|
188 } |
|
189 env->spr[SPR_HID0] = (uint32_t)val; |
|
190 } |
|
191 |
|
192 void helper_store_403_pbr (uint32_t num, target_ulong value) |
|
193 { |
|
194 if (likely(env->pb[num] != value)) { |
|
195 env->pb[num] = value; |
|
196 /* Should be optimized */ |
|
197 tlb_flush(env, 1); |
|
198 } |
|
199 } |
|
200 |
|
201 target_ulong helper_load_40x_pit (void) |
|
202 { |
|
203 return load_40x_pit(env); |
|
204 } |
|
205 |
|
206 void helper_store_40x_pit (target_ulong val) |
|
207 { |
|
208 store_40x_pit(env, val); |
|
209 } |
|
210 |
|
211 void helper_store_40x_dbcr0 (target_ulong val) |
|
212 { |
|
213 store_40x_dbcr0(env, val); |
|
214 } |
|
215 |
|
216 void helper_store_40x_sler (target_ulong val) |
|
217 { |
|
218 store_40x_sler(env, val); |
|
219 } |
|
220 |
|
221 void helper_store_booke_tcr (target_ulong val) |
|
222 { |
|
223 store_booke_tcr(env, val); |
|
224 } |
|
225 |
|
226 void helper_store_booke_tsr (target_ulong val) |
|
227 { |
|
228 store_booke_tsr(env, val); |
|
229 } |
|
230 |
|
231 void helper_store_ibatu (uint32_t nr, target_ulong val) |
|
232 { |
|
233 ppc_store_ibatu(env, nr, val); |
|
234 } |
|
235 |
|
236 void helper_store_ibatl (uint32_t nr, target_ulong val) |
|
237 { |
|
238 ppc_store_ibatl(env, nr, val); |
|
239 } |
|
240 |
|
241 void helper_store_dbatu (uint32_t nr, target_ulong val) |
|
242 { |
|
243 ppc_store_dbatu(env, nr, val); |
|
244 } |
|
245 |
|
246 void helper_store_dbatl (uint32_t nr, target_ulong val) |
|
247 { |
|
248 ppc_store_dbatl(env, nr, val); |
|
249 } |
|
250 |
|
251 void helper_store_601_batl (uint32_t nr, target_ulong val) |
|
252 { |
|
253 ppc_store_ibatl_601(env, nr, val); |
|
254 } |
|
255 |
|
256 void helper_store_601_batu (uint32_t nr, target_ulong val) |
|
257 { |
|
258 ppc_store_ibatu_601(env, nr, val); |
|
259 } |
|
260 #endif |
|
261 |
|
262 /*****************************************************************************/ |
|
263 /* Memory load and stores */ |
|
264 |
|
265 static always_inline target_ulong addr_add(target_ulong addr, target_long arg) |
|
266 { |
|
267 #if defined(TARGET_PPC64) |
|
268 if (!msr_sf) |
|
269 return (uint32_t)(addr + arg); |
|
270 else |
|
271 #endif |
|
272 return addr + arg; |
|
273 } |
|
274 |
|
275 void helper_lmw (target_ulong addr, uint32_t reg) |
|
276 { |
|
277 for (; reg < 32; reg++) { |
|
278 if (msr_le) |
|
279 env->gpr[reg] = bswap32(ldl(addr)); |
|
280 else |
|
281 env->gpr[reg] = ldl(addr); |
|
282 addr = addr_add(addr, 4); |
|
283 } |
|
284 } |
|
285 |
|
286 void helper_stmw (target_ulong addr, uint32_t reg) |
|
287 { |
|
288 for (; reg < 32; reg++) { |
|
289 if (msr_le) |
|
290 stl(addr, bswap32((uint32_t)env->gpr[reg])); |
|
291 else |
|
292 stl(addr, (uint32_t)env->gpr[reg]); |
|
293 addr = addr_add(addr, 4); |
|
294 } |
|
295 } |
|
296 |
|
297 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) |
|
298 { |
|
299 int sh; |
|
300 for (; nb > 3; nb -= 4) { |
|
301 env->gpr[reg] = ldl(addr); |
|
302 reg = (reg + 1) % 32; |
|
303 addr = addr_add(addr, 4); |
|
304 } |
|
305 if (unlikely(nb > 0)) { |
|
306 env->gpr[reg] = 0; |
|
307 for (sh = 24; nb > 0; nb--, sh -= 8) { |
|
308 env->gpr[reg] |= ldub(addr) << sh; |
|
309 addr = addr_add(addr, 1); |
|
310 } |
|
311 } |
|
312 } |
|
313 /* PPC32 specification says we must generate an exception if |
|
314 * rA is in the range of registers to be loaded. |
|
315 * In an other hand, IBM says this is valid, but rA won't be loaded. |
|
316 * For now, I'll follow the spec... |
|
317 */ |
|
318 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) |
|
319 { |
|
320 if (likely(xer_bc != 0)) { |
|
321 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || |
|
322 (reg < rb && (reg + xer_bc) > rb))) { |
|
323 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
324 POWERPC_EXCP_INVAL | |
|
325 POWERPC_EXCP_INVAL_LSWX); |
|
326 } else { |
|
327 helper_lsw(addr, xer_bc, reg); |
|
328 } |
|
329 } |
|
330 } |
|
331 |
|
332 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) |
|
333 { |
|
334 int sh; |
|
335 for (; nb > 3; nb -= 4) { |
|
336 stl(addr, env->gpr[reg]); |
|
337 reg = (reg + 1) % 32; |
|
338 addr = addr_add(addr, 4); |
|
339 } |
|
340 if (unlikely(nb > 0)) { |
|
341 for (sh = 24; nb > 0; nb--, sh -= 8) |
|
342 stb(addr, (env->gpr[reg] >> sh) & 0xFF); |
|
343 addr = addr_add(addr, 1); |
|
344 } |
|
345 } |
|
346 |
|
347 static void do_dcbz(target_ulong addr, int dcache_line_size) |
|
348 { |
|
349 addr &= ~(dcache_line_size - 1); |
|
350 int i; |
|
351 for (i = 0 ; i < dcache_line_size ; i += 4) { |
|
352 stl(addr + i , 0); |
|
353 } |
|
354 if (env->reserve == addr) |
|
355 env->reserve = (target_ulong)-1ULL; |
|
356 } |
|
357 |
|
358 void helper_dcbz(target_ulong addr) |
|
359 { |
|
360 do_dcbz(addr, env->dcache_line_size); |
|
361 } |
|
362 |
|
363 void helper_dcbz_970(target_ulong addr) |
|
364 { |
|
365 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) |
|
366 do_dcbz(addr, 32); |
|
367 else |
|
368 do_dcbz(addr, env->dcache_line_size); |
|
369 } |
|
370 |
|
371 void helper_icbi(target_ulong addr) |
|
372 { |
|
373 uint32_t tmp; |
|
374 |
|
375 addr &= ~(env->dcache_line_size - 1); |
|
376 /* Invalidate one cache line : |
|
377 * PowerPC specification says this is to be treated like a load |
|
378 * (not a fetch) by the MMU. To be sure it will be so, |
|
379 * do the load "by hand". |
|
380 */ |
|
381 tmp = ldl(addr); |
|
382 tb_invalidate_page_range(addr, addr + env->icache_line_size); |
|
383 } |
|
384 |
|
385 // XXX: to be tested |
|
386 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) |
|
387 { |
|
388 int i, c, d; |
|
389 d = 24; |
|
390 for (i = 0; i < xer_bc; i++) { |
|
391 c = ldub(addr); |
|
392 addr = addr_add(addr, 1); |
|
393 /* ra (if not 0) and rb are never modified */ |
|
394 if (likely(reg != rb && (ra == 0 || reg != ra))) { |
|
395 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); |
|
396 } |
|
397 if (unlikely(c == xer_cmp)) |
|
398 break; |
|
399 if (likely(d != 0)) { |
|
400 d -= 8; |
|
401 } else { |
|
402 d = 24; |
|
403 reg++; |
|
404 reg = reg & 0x1F; |
|
405 } |
|
406 } |
|
407 return i; |
|
408 } |
|
409 |
|
410 /*****************************************************************************/ |
|
411 /* Fixed point operations helpers */ |
|
412 #if defined(TARGET_PPC64) |
|
413 |
|
414 /* multiply high word */ |
|
415 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) |
|
416 { |
|
417 uint64_t tl, th; |
|
418 |
|
419 muls64(&tl, &th, arg1, arg2); |
|
420 return th; |
|
421 } |
|
422 |
|
423 /* multiply high word unsigned */ |
|
424 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) |
|
425 { |
|
426 uint64_t tl, th; |
|
427 |
|
428 mulu64(&tl, &th, arg1, arg2); |
|
429 return th; |
|
430 } |
|
431 |
|
432 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) |
|
433 { |
|
434 int64_t th; |
|
435 uint64_t tl; |
|
436 |
|
437 muls64(&tl, (uint64_t *)&th, arg1, arg2); |
|
438 /* If th != 0 && th != -1, then we had an overflow */ |
|
439 if (likely((uint64_t)(th + 1) <= 1)) { |
|
440 env->xer &= ~(1 << XER_OV); |
|
441 } else { |
|
442 env->xer |= (1 << XER_OV) | (1 << XER_SO); |
|
443 } |
|
444 return (int64_t)tl; |
|
445 } |
|
446 #endif |
|
447 |
|
448 target_ulong helper_cntlzw (target_ulong t) |
|
449 { |
|
450 return clz32(t); |
|
451 } |
|
452 |
|
453 #if defined(TARGET_PPC64) |
|
454 target_ulong helper_cntlzd (target_ulong t) |
|
455 { |
|
456 return clz64(t); |
|
457 } |
|
458 #endif |
|
459 |
|
460 /* shift right arithmetic helper */ |
|
461 target_ulong helper_sraw (target_ulong value, target_ulong shift) |
|
462 { |
|
463 int32_t ret; |
|
464 |
|
465 if (likely(!(shift & 0x20))) { |
|
466 if (likely((uint32_t)shift != 0)) { |
|
467 shift &= 0x1f; |
|
468 ret = (int32_t)value >> shift; |
|
469 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { |
|
470 env->xer &= ~(1 << XER_CA); |
|
471 } else { |
|
472 env->xer |= (1 << XER_CA); |
|
473 } |
|
474 } else { |
|
475 ret = (int32_t)value; |
|
476 env->xer &= ~(1 << XER_CA); |
|
477 } |
|
478 } else { |
|
479 ret = (int32_t)value >> 31; |
|
480 if (ret) { |
|
481 env->xer |= (1 << XER_CA); |
|
482 } else { |
|
483 env->xer &= ~(1 << XER_CA); |
|
484 } |
|
485 } |
|
486 return (target_long)ret; |
|
487 } |
|
488 |
|
489 #if defined(TARGET_PPC64) |
|
490 target_ulong helper_srad (target_ulong value, target_ulong shift) |
|
491 { |
|
492 int64_t ret; |
|
493 |
|
494 if (likely(!(shift & 0x40))) { |
|
495 if (likely((uint64_t)shift != 0)) { |
|
496 shift &= 0x3f; |
|
497 ret = (int64_t)value >> shift; |
|
498 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { |
|
499 env->xer &= ~(1 << XER_CA); |
|
500 } else { |
|
501 env->xer |= (1 << XER_CA); |
|
502 } |
|
503 } else { |
|
504 ret = (int64_t)value; |
|
505 env->xer &= ~(1 << XER_CA); |
|
506 } |
|
507 } else { |
|
508 ret = (int64_t)value >> 63; |
|
509 if (ret) { |
|
510 env->xer |= (1 << XER_CA); |
|
511 } else { |
|
512 env->xer &= ~(1 << XER_CA); |
|
513 } |
|
514 } |
|
515 return ret; |
|
516 } |
|
517 #endif |
|
518 |
|
519 target_ulong helper_popcntb (target_ulong val) |
|
520 { |
|
521 val = (val & 0x55555555) + ((val >> 1) & 0x55555555); |
|
522 val = (val & 0x33333333) + ((val >> 2) & 0x33333333); |
|
523 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); |
|
524 return val; |
|
525 } |
|
526 |
|
527 #if defined(TARGET_PPC64) |
|
528 target_ulong helper_popcntb_64 (target_ulong val) |
|
529 { |
|
530 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); |
|
531 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); |
|
532 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); |
|
533 return val; |
|
534 } |
|
535 #endif |
|
536 |
|
537 /*****************************************************************************/ |
|
538 /* Floating point operations helpers */ |
|
539 uint64_t helper_float32_to_float64(uint32_t arg) |
|
540 { |
|
541 CPU_FloatU f; |
|
542 CPU_DoubleU d; |
|
543 f.l = arg; |
|
544 d.d = float32_to_float64(f.f, &env->fp_status); |
|
545 return d.ll; |
|
546 } |
|
547 |
|
548 uint32_t helper_float64_to_float32(uint64_t arg) |
|
549 { |
|
550 CPU_FloatU f; |
|
551 CPU_DoubleU d; |
|
552 d.ll = arg; |
|
553 f.f = float64_to_float32(d.d, &env->fp_status); |
|
554 return f.l; |
|
555 } |
|
556 |
|
557 static always_inline int isden (float64 d) |
|
558 { |
|
559 CPU_DoubleU u; |
|
560 |
|
561 u.d = d; |
|
562 |
|
563 return ((u.ll >> 52) & 0x7FF) == 0; |
|
564 } |
|
565 |
|
566 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) |
|
567 { |
|
568 CPU_DoubleU farg; |
|
569 int isneg; |
|
570 int ret; |
|
571 farg.ll = arg; |
|
572 isneg = float64_is_neg(farg.d); |
|
573 if (unlikely(float64_is_nan(farg.d))) { |
|
574 if (float64_is_signaling_nan(farg.d)) { |
|
575 /* Signaling NaN: flags are undefined */ |
|
576 ret = 0x00; |
|
577 } else { |
|
578 /* Quiet NaN */ |
|
579 ret = 0x11; |
|
580 } |
|
581 } else if (unlikely(float64_is_infinity(farg.d))) { |
|
582 /* +/- infinity */ |
|
583 if (isneg) |
|
584 ret = 0x09; |
|
585 else |
|
586 ret = 0x05; |
|
587 } else { |
|
588 if (float64_is_zero(farg.d)) { |
|
589 /* +/- zero */ |
|
590 if (isneg) |
|
591 ret = 0x12; |
|
592 else |
|
593 ret = 0x02; |
|
594 } else { |
|
595 if (isden(farg.d)) { |
|
596 /* Denormalized numbers */ |
|
597 ret = 0x10; |
|
598 } else { |
|
599 /* Normalized numbers */ |
|
600 ret = 0x00; |
|
601 } |
|
602 if (isneg) { |
|
603 ret |= 0x08; |
|
604 } else { |
|
605 ret |= 0x04; |
|
606 } |
|
607 } |
|
608 } |
|
609 if (set_fprf) { |
|
610 /* We update FPSCR_FPRF */ |
|
611 env->fpscr &= ~(0x1F << FPSCR_FPRF); |
|
612 env->fpscr |= ret << FPSCR_FPRF; |
|
613 } |
|
614 /* We just need fpcc to update Rc1 */ |
|
615 return ret & 0xF; |
|
616 } |
|
617 |
|
618 /* Floating-point invalid operations exception */ |
|
619 static always_inline uint64_t fload_invalid_op_excp (int op) |
|
620 { |
|
621 uint64_t ret = 0; |
|
622 int ve; |
|
623 |
|
624 ve = fpscr_ve; |
|
625 switch (op) { |
|
626 case POWERPC_EXCP_FP_VXSNAN: |
|
627 env->fpscr |= 1 << FPSCR_VXSNAN; |
|
628 break; |
|
629 case POWERPC_EXCP_FP_VXSOFT: |
|
630 env->fpscr |= 1 << FPSCR_VXSOFT; |
|
631 break; |
|
632 case POWERPC_EXCP_FP_VXISI: |
|
633 /* Magnitude subtraction of infinities */ |
|
634 env->fpscr |= 1 << FPSCR_VXISI; |
|
635 goto update_arith; |
|
636 case POWERPC_EXCP_FP_VXIDI: |
|
637 /* Division of infinity by infinity */ |
|
638 env->fpscr |= 1 << FPSCR_VXIDI; |
|
639 goto update_arith; |
|
640 case POWERPC_EXCP_FP_VXZDZ: |
|
641 /* Division of zero by zero */ |
|
642 env->fpscr |= 1 << FPSCR_VXZDZ; |
|
643 goto update_arith; |
|
644 case POWERPC_EXCP_FP_VXIMZ: |
|
645 /* Multiplication of zero by infinity */ |
|
646 env->fpscr |= 1 << FPSCR_VXIMZ; |
|
647 goto update_arith; |
|
648 case POWERPC_EXCP_FP_VXVC: |
|
649 /* Ordered comparison of NaN */ |
|
650 env->fpscr |= 1 << FPSCR_VXVC; |
|
651 env->fpscr &= ~(0xF << FPSCR_FPCC); |
|
652 env->fpscr |= 0x11 << FPSCR_FPCC; |
|
653 /* We must update the target FPR before raising the exception */ |
|
654 if (ve != 0) { |
|
655 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
656 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
|
657 /* Update the floating-point enabled exception summary */ |
|
658 env->fpscr |= 1 << FPSCR_FEX; |
|
659 /* Exception is differed */ |
|
660 ve = 0; |
|
661 } |
|
662 break; |
|
663 case POWERPC_EXCP_FP_VXSQRT: |
|
664 /* Square root of a negative number */ |
|
665 env->fpscr |= 1 << FPSCR_VXSQRT; |
|
666 update_arith: |
|
667 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
|
668 if (ve == 0) { |
|
669 /* Set the result to quiet NaN */ |
|
670 ret = 0xFFF8000000000000ULL; |
|
671 env->fpscr &= ~(0xF << FPSCR_FPCC); |
|
672 env->fpscr |= 0x11 << FPSCR_FPCC; |
|
673 } |
|
674 break; |
|
675 case POWERPC_EXCP_FP_VXCVI: |
|
676 /* Invalid conversion */ |
|
677 env->fpscr |= 1 << FPSCR_VXCVI; |
|
678 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
|
679 if (ve == 0) { |
|
680 /* Set the result to quiet NaN */ |
|
681 ret = 0xFFF8000000000000ULL; |
|
682 env->fpscr &= ~(0xF << FPSCR_FPCC); |
|
683 env->fpscr |= 0x11 << FPSCR_FPCC; |
|
684 } |
|
685 break; |
|
686 } |
|
687 /* Update the floating-point invalid operation summary */ |
|
688 env->fpscr |= 1 << FPSCR_VX; |
|
689 /* Update the floating-point exception summary */ |
|
690 env->fpscr |= 1 << FPSCR_FX; |
|
691 if (ve != 0) { |
|
692 /* Update the floating-point enabled exception summary */ |
|
693 env->fpscr |= 1 << FPSCR_FEX; |
|
694 if (msr_fe0 != 0 || msr_fe1 != 0) |
|
695 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); |
|
696 } |
|
697 return ret; |
|
698 } |
|
699 |
|
700 static always_inline void float_zero_divide_excp (void) |
|
701 { |
|
702 env->fpscr |= 1 << FPSCR_ZX; |
|
703 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
|
704 /* Update the floating-point exception summary */ |
|
705 env->fpscr |= 1 << FPSCR_FX; |
|
706 if (fpscr_ze != 0) { |
|
707 /* Update the floating-point enabled exception summary */ |
|
708 env->fpscr |= 1 << FPSCR_FEX; |
|
709 if (msr_fe0 != 0 || msr_fe1 != 0) { |
|
710 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
711 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
|
712 } |
|
713 } |
|
714 } |
|
715 |
|
716 static always_inline void float_overflow_excp (void) |
|
717 { |
|
718 env->fpscr |= 1 << FPSCR_OX; |
|
719 /* Update the floating-point exception summary */ |
|
720 env->fpscr |= 1 << FPSCR_FX; |
|
721 if (fpscr_oe != 0) { |
|
722 /* XXX: should adjust the result */ |
|
723 /* Update the floating-point enabled exception summary */ |
|
724 env->fpscr |= 1 << FPSCR_FEX; |
|
725 /* We must update the target FPR before raising the exception */ |
|
726 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
727 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
|
728 } else { |
|
729 env->fpscr |= 1 << FPSCR_XX; |
|
730 env->fpscr |= 1 << FPSCR_FI; |
|
731 } |
|
732 } |
|
733 |
|
734 static always_inline void float_underflow_excp (void) |
|
735 { |
|
736 env->fpscr |= 1 << FPSCR_UX; |
|
737 /* Update the floating-point exception summary */ |
|
738 env->fpscr |= 1 << FPSCR_FX; |
|
739 if (fpscr_ue != 0) { |
|
740 /* XXX: should adjust the result */ |
|
741 /* Update the floating-point enabled exception summary */ |
|
742 env->fpscr |= 1 << FPSCR_FEX; |
|
743 /* We must update the target FPR before raising the exception */ |
|
744 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
745 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
|
746 } |
|
747 } |
|
748 |
|
749 static always_inline void float_inexact_excp (void) |
|
750 { |
|
751 env->fpscr |= 1 << FPSCR_XX; |
|
752 /* Update the floating-point exception summary */ |
|
753 env->fpscr |= 1 << FPSCR_FX; |
|
754 if (fpscr_xe != 0) { |
|
755 /* Update the floating-point enabled exception summary */ |
|
756 env->fpscr |= 1 << FPSCR_FEX; |
|
757 /* We must update the target FPR before raising the exception */ |
|
758 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
759 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
|
760 } |
|
761 } |
|
762 |
|
763 static always_inline void fpscr_set_rounding_mode (void) |
|
764 { |
|
765 int rnd_type; |
|
766 |
|
767 /* Set rounding mode */ |
|
768 switch (fpscr_rn) { |
|
769 case 0: |
|
770 /* Best approximation (round to nearest) */ |
|
771 rnd_type = float_round_nearest_even; |
|
772 break; |
|
773 case 1: |
|
774 /* Smaller magnitude (round toward zero) */ |
|
775 rnd_type = float_round_to_zero; |
|
776 break; |
|
777 case 2: |
|
778 /* Round toward +infinite */ |
|
779 rnd_type = float_round_up; |
|
780 break; |
|
781 default: |
|
782 case 3: |
|
783 /* Round toward -infinite */ |
|
784 rnd_type = float_round_down; |
|
785 break; |
|
786 } |
|
787 set_float_rounding_mode(rnd_type, &env->fp_status); |
|
788 } |
|
789 |
|
790 void helper_fpscr_clrbit (uint32_t bit) |
|
791 { |
|
792 int prev; |
|
793 |
|
794 prev = (env->fpscr >> bit) & 1; |
|
795 env->fpscr &= ~(1 << bit); |
|
796 if (prev == 1) { |
|
797 switch (bit) { |
|
798 case FPSCR_RN1: |
|
799 case FPSCR_RN: |
|
800 fpscr_set_rounding_mode(); |
|
801 break; |
|
802 default: |
|
803 break; |
|
804 } |
|
805 } |
|
806 } |
|
807 |
|
808 void helper_fpscr_setbit (uint32_t bit) |
|
809 { |
|
810 int prev; |
|
811 |
|
812 prev = (env->fpscr >> bit) & 1; |
|
813 env->fpscr |= 1 << bit; |
|
814 if (prev == 0) { |
|
815 switch (bit) { |
|
816 case FPSCR_VX: |
|
817 env->fpscr |= 1 << FPSCR_FX; |
|
818 if (fpscr_ve) |
|
819 goto raise_ve; |
|
820 case FPSCR_OX: |
|
821 env->fpscr |= 1 << FPSCR_FX; |
|
822 if (fpscr_oe) |
|
823 goto raise_oe; |
|
824 break; |
|
825 case FPSCR_UX: |
|
826 env->fpscr |= 1 << FPSCR_FX; |
|
827 if (fpscr_ue) |
|
828 goto raise_ue; |
|
829 break; |
|
830 case FPSCR_ZX: |
|
831 env->fpscr |= 1 << FPSCR_FX; |
|
832 if (fpscr_ze) |
|
833 goto raise_ze; |
|
834 break; |
|
835 case FPSCR_XX: |
|
836 env->fpscr |= 1 << FPSCR_FX; |
|
837 if (fpscr_xe) |
|
838 goto raise_xe; |
|
839 break; |
|
840 case FPSCR_VXSNAN: |
|
841 case FPSCR_VXISI: |
|
842 case FPSCR_VXIDI: |
|
843 case FPSCR_VXZDZ: |
|
844 case FPSCR_VXIMZ: |
|
845 case FPSCR_VXVC: |
|
846 case FPSCR_VXSOFT: |
|
847 case FPSCR_VXSQRT: |
|
848 case FPSCR_VXCVI: |
|
849 env->fpscr |= 1 << FPSCR_VX; |
|
850 env->fpscr |= 1 << FPSCR_FX; |
|
851 if (fpscr_ve != 0) |
|
852 goto raise_ve; |
|
853 break; |
|
854 case FPSCR_VE: |
|
855 if (fpscr_vx != 0) { |
|
856 raise_ve: |
|
857 env->error_code = POWERPC_EXCP_FP; |
|
858 if (fpscr_vxsnan) |
|
859 env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
|
860 if (fpscr_vxisi) |
|
861 env->error_code |= POWERPC_EXCP_FP_VXISI; |
|
862 if (fpscr_vxidi) |
|
863 env->error_code |= POWERPC_EXCP_FP_VXIDI; |
|
864 if (fpscr_vxzdz) |
|
865 env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
|
866 if (fpscr_vximz) |
|
867 env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
|
868 if (fpscr_vxvc) |
|
869 env->error_code |= POWERPC_EXCP_FP_VXVC; |
|
870 if (fpscr_vxsoft) |
|
871 env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
|
872 if (fpscr_vxsqrt) |
|
873 env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
|
874 if (fpscr_vxcvi) |
|
875 env->error_code |= POWERPC_EXCP_FP_VXCVI; |
|
876 goto raise_excp; |
|
877 } |
|
878 break; |
|
879 case FPSCR_OE: |
|
880 if (fpscr_ox != 0) { |
|
881 raise_oe: |
|
882 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
|
883 goto raise_excp; |
|
884 } |
|
885 break; |
|
886 case FPSCR_UE: |
|
887 if (fpscr_ux != 0) { |
|
888 raise_ue: |
|
889 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
|
890 goto raise_excp; |
|
891 } |
|
892 break; |
|
893 case FPSCR_ZE: |
|
894 if (fpscr_zx != 0) { |
|
895 raise_ze: |
|
896 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
|
897 goto raise_excp; |
|
898 } |
|
899 break; |
|
900 case FPSCR_XE: |
|
901 if (fpscr_xx != 0) { |
|
902 raise_xe: |
|
903 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
|
904 goto raise_excp; |
|
905 } |
|
906 break; |
|
907 case FPSCR_RN1: |
|
908 case FPSCR_RN: |
|
909 fpscr_set_rounding_mode(); |
|
910 break; |
|
911 default: |
|
912 break; |
|
913 raise_excp: |
|
914 /* Update the floating-point enabled exception summary */ |
|
915 env->fpscr |= 1 << FPSCR_FEX; |
|
916 /* We have to update Rc1 before raising the exception */ |
|
917 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
918 break; |
|
919 } |
|
920 } |
|
921 } |
|
922 |
|
923 void helper_store_fpscr (uint64_t arg, uint32_t mask) |
|
924 { |
|
925 /* |
|
926 * We use only the 32 LSB of the incoming fpr |
|
927 */ |
|
928 uint32_t prev, new; |
|
929 int i; |
|
930 |
|
931 prev = env->fpscr; |
|
932 new = (uint32_t)arg; |
|
933 new &= ~0x60000000; |
|
934 new |= prev & 0x60000000; |
|
935 for (i = 0; i < 8; i++) { |
|
936 if (mask & (1 << i)) { |
|
937 env->fpscr &= ~(0xF << (4 * i)); |
|
938 env->fpscr |= new & (0xF << (4 * i)); |
|
939 } |
|
940 } |
|
941 /* Update VX and FEX */ |
|
942 if (fpscr_ix != 0) |
|
943 env->fpscr |= 1 << FPSCR_VX; |
|
944 else |
|
945 env->fpscr &= ~(1 << FPSCR_VX); |
|
946 if ((fpscr_ex & fpscr_eex) != 0) { |
|
947 env->fpscr |= 1 << FPSCR_FEX; |
|
948 env->exception_index = POWERPC_EXCP_PROGRAM; |
|
949 /* XXX: we should compute it properly */ |
|
950 env->error_code = POWERPC_EXCP_FP; |
|
951 } |
|
952 else |
|
953 env->fpscr &= ~(1 << FPSCR_FEX); |
|
954 fpscr_set_rounding_mode(); |
|
955 } |
|
956 |
|
957 void helper_float_check_status (void) |
|
958 { |
|
959 #ifdef CONFIG_SOFTFLOAT |
|
960 if (env->exception_index == POWERPC_EXCP_PROGRAM && |
|
961 (env->error_code & POWERPC_EXCP_FP)) { |
|
962 /* Differred floating-point exception after target FPR update */ |
|
963 if (msr_fe0 != 0 || msr_fe1 != 0) |
|
964 helper_raise_exception_err(env->exception_index, env->error_code); |
|
965 } else { |
|
966 int status = get_float_exception_flags(&env->fp_status); |
|
967 if (status & float_flag_divbyzero) { |
|
968 float_zero_divide_excp(); |
|
969 } else if (status & float_flag_overflow) { |
|
970 float_overflow_excp(); |
|
971 } else if (status & float_flag_underflow) { |
|
972 float_underflow_excp(); |
|
973 } else if (status & float_flag_inexact) { |
|
974 float_inexact_excp(); |
|
975 } |
|
976 } |
|
977 #else |
|
978 if (env->exception_index == POWERPC_EXCP_PROGRAM && |
|
979 (env->error_code & POWERPC_EXCP_FP)) { |
|
980 /* Differred floating-point exception after target FPR update */ |
|
981 if (msr_fe0 != 0 || msr_fe1 != 0) |
|
982 helper_raise_exception_err(env->exception_index, env->error_code); |
|
983 } |
|
984 #endif |
|
985 } |
|
986 |
|
987 #ifdef CONFIG_SOFTFLOAT |
|
988 void helper_reset_fpstatus (void) |
|
989 { |
|
990 set_float_exception_flags(0, &env->fp_status); |
|
991 } |
|
992 #endif |
|
993 |
|
994 /* fadd - fadd. */ |
|
995 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) |
|
996 { |
|
997 CPU_DoubleU farg1, farg2; |
|
998 |
|
999 farg1.ll = arg1; |
|
1000 farg2.ll = arg2; |
|
1001 #if USE_PRECISE_EMULATION |
|
1002 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1003 float64_is_signaling_nan(farg2.d))) { |
|
1004 /* sNaN addition */ |
|
1005 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1006 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
|
1007 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { |
|
1008 /* Magnitude subtraction of infinities */ |
|
1009 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1010 } else { |
|
1011 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
|
1012 } |
|
1013 #else |
|
1014 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
|
1015 #endif |
|
1016 return farg1.ll; |
|
1017 } |
|
1018 |
|
1019 /* fsub - fsub. */ |
|
1020 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) |
|
1021 { |
|
1022 CPU_DoubleU farg1, farg2; |
|
1023 |
|
1024 farg1.ll = arg1; |
|
1025 farg2.ll = arg2; |
|
1026 #if USE_PRECISE_EMULATION |
|
1027 { |
|
1028 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1029 float64_is_signaling_nan(farg2.d))) { |
|
1030 /* sNaN subtraction */ |
|
1031 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1032 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
|
1033 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { |
|
1034 /* Magnitude subtraction of infinities */ |
|
1035 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1036 } else { |
|
1037 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
|
1038 } |
|
1039 } |
|
1040 #else |
|
1041 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
|
1042 #endif |
|
1043 return farg1.ll; |
|
1044 } |
|
1045 |
|
1046 /* fmul - fmul. */ |
|
1047 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) |
|
1048 { |
|
1049 CPU_DoubleU farg1, farg2; |
|
1050 |
|
1051 farg1.ll = arg1; |
|
1052 farg2.ll = arg2; |
|
1053 #if USE_PRECISE_EMULATION |
|
1054 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1055 float64_is_signaling_nan(farg2.d))) { |
|
1056 /* sNaN multiplication */ |
|
1057 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1058 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
|
1059 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
|
1060 /* Multiplication of zero by infinity */ |
|
1061 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
|
1062 } else { |
|
1063 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1064 } |
|
1065 #else |
|
1066 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1067 #endif |
|
1068 return farg1.ll; |
|
1069 } |
|
1070 |
|
1071 /* fdiv - fdiv. */ |
|
1072 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) |
|
1073 { |
|
1074 CPU_DoubleU farg1, farg2; |
|
1075 |
|
1076 farg1.ll = arg1; |
|
1077 farg2.ll = arg2; |
|
1078 #if USE_PRECISE_EMULATION |
|
1079 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1080 float64_is_signaling_nan(farg2.d))) { |
|
1081 /* sNaN division */ |
|
1082 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1083 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) { |
|
1084 /* Division of infinity by infinity */ |
|
1085 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); |
|
1086 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { |
|
1087 /* Division of zero by zero */ |
|
1088 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); |
|
1089 } else { |
|
1090 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
|
1091 } |
|
1092 #else |
|
1093 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
|
1094 #endif |
|
1095 return farg1.ll; |
|
1096 } |
|
1097 |
|
1098 /* fabs */ |
|
1099 uint64_t helper_fabs (uint64_t arg) |
|
1100 { |
|
1101 CPU_DoubleU farg; |
|
1102 |
|
1103 farg.ll = arg; |
|
1104 farg.d = float64_abs(farg.d); |
|
1105 return farg.ll; |
|
1106 } |
|
1107 |
|
1108 /* fnabs */ |
|
1109 uint64_t helper_fnabs (uint64_t arg) |
|
1110 { |
|
1111 CPU_DoubleU farg; |
|
1112 |
|
1113 farg.ll = arg; |
|
1114 farg.d = float64_abs(farg.d); |
|
1115 farg.d = float64_chs(farg.d); |
|
1116 return farg.ll; |
|
1117 } |
|
1118 |
|
1119 /* fneg */ |
|
1120 uint64_t helper_fneg (uint64_t arg) |
|
1121 { |
|
1122 CPU_DoubleU farg; |
|
1123 |
|
1124 farg.ll = arg; |
|
1125 farg.d = float64_chs(farg.d); |
|
1126 return farg.ll; |
|
1127 } |
|
1128 |
|
1129 /* fctiw - fctiw. */ |
|
1130 uint64_t helper_fctiw (uint64_t arg) |
|
1131 { |
|
1132 CPU_DoubleU farg; |
|
1133 farg.ll = arg; |
|
1134 |
|
1135 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1136 /* sNaN conversion */ |
|
1137 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
|
1138 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
|
1139 /* qNan / infinity conversion */ |
|
1140 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
|
1141 } else { |
|
1142 farg.ll = float64_to_int32(farg.d, &env->fp_status); |
|
1143 #if USE_PRECISE_EMULATION |
|
1144 /* XXX: higher bits are not supposed to be significant. |
|
1145 * to make tests easier, return the same as a real PowerPC 750 |
|
1146 */ |
|
1147 farg.ll |= 0xFFF80000ULL << 32; |
|
1148 #endif |
|
1149 } |
|
1150 return farg.ll; |
|
1151 } |
|
1152 |
|
1153 /* fctiwz - fctiwz. */ |
|
1154 uint64_t helper_fctiwz (uint64_t arg) |
|
1155 { |
|
1156 CPU_DoubleU farg; |
|
1157 farg.ll = arg; |
|
1158 |
|
1159 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1160 /* sNaN conversion */ |
|
1161 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
|
1162 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
|
1163 /* qNan / infinity conversion */ |
|
1164 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
|
1165 } else { |
|
1166 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); |
|
1167 #if USE_PRECISE_EMULATION |
|
1168 /* XXX: higher bits are not supposed to be significant. |
|
1169 * to make tests easier, return the same as a real PowerPC 750 |
|
1170 */ |
|
1171 farg.ll |= 0xFFF80000ULL << 32; |
|
1172 #endif |
|
1173 } |
|
1174 return farg.ll; |
|
1175 } |
|
1176 |
|
1177 #if defined(TARGET_PPC64) |
|
1178 /* fcfid - fcfid. */ |
|
1179 uint64_t helper_fcfid (uint64_t arg) |
|
1180 { |
|
1181 CPU_DoubleU farg; |
|
1182 farg.d = int64_to_float64(arg, &env->fp_status); |
|
1183 return farg.ll; |
|
1184 } |
|
1185 |
|
1186 /* fctid - fctid. */ |
|
1187 uint64_t helper_fctid (uint64_t arg) |
|
1188 { |
|
1189 CPU_DoubleU farg; |
|
1190 farg.ll = arg; |
|
1191 |
|
1192 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1193 /* sNaN conversion */ |
|
1194 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
|
1195 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
|
1196 /* qNan / infinity conversion */ |
|
1197 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
|
1198 } else { |
|
1199 farg.ll = float64_to_int64(farg.d, &env->fp_status); |
|
1200 } |
|
1201 return farg.ll; |
|
1202 } |
|
1203 |
|
1204 /* fctidz - fctidz. */ |
|
1205 uint64_t helper_fctidz (uint64_t arg) |
|
1206 { |
|
1207 CPU_DoubleU farg; |
|
1208 farg.ll = arg; |
|
1209 |
|
1210 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1211 /* sNaN conversion */ |
|
1212 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
|
1213 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
|
1214 /* qNan / infinity conversion */ |
|
1215 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
|
1216 } else { |
|
1217 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); |
|
1218 } |
|
1219 return farg.ll; |
|
1220 } |
|
1221 |
|
1222 #endif |
|
1223 |
|
1224 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode) |
|
1225 { |
|
1226 CPU_DoubleU farg; |
|
1227 farg.ll = arg; |
|
1228 |
|
1229 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1230 /* sNaN round */ |
|
1231 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
|
1232 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) { |
|
1233 /* qNan / infinity round */ |
|
1234 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
|
1235 } else { |
|
1236 set_float_rounding_mode(rounding_mode, &env->fp_status); |
|
1237 farg.ll = float64_round_to_int(farg.d, &env->fp_status); |
|
1238 /* Restore rounding mode from FPSCR */ |
|
1239 fpscr_set_rounding_mode(); |
|
1240 } |
|
1241 return farg.ll; |
|
1242 } |
|
1243 |
|
1244 uint64_t helper_frin (uint64_t arg) |
|
1245 { |
|
1246 return do_fri(arg, float_round_nearest_even); |
|
1247 } |
|
1248 |
|
1249 uint64_t helper_friz (uint64_t arg) |
|
1250 { |
|
1251 return do_fri(arg, float_round_to_zero); |
|
1252 } |
|
1253 |
|
1254 uint64_t helper_frip (uint64_t arg) |
|
1255 { |
|
1256 return do_fri(arg, float_round_up); |
|
1257 } |
|
1258 |
|
1259 uint64_t helper_frim (uint64_t arg) |
|
1260 { |
|
1261 return do_fri(arg, float_round_down); |
|
1262 } |
|
1263 |
|
1264 /* fmadd - fmadd. */ |
|
1265 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
|
1266 { |
|
1267 CPU_DoubleU farg1, farg2, farg3; |
|
1268 |
|
1269 farg1.ll = arg1; |
|
1270 farg2.ll = arg2; |
|
1271 farg3.ll = arg3; |
|
1272 #if USE_PRECISE_EMULATION |
|
1273 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1274 float64_is_signaling_nan(farg2.d) || |
|
1275 float64_is_signaling_nan(farg3.d))) { |
|
1276 /* sNaN operation */ |
|
1277 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1278 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
|
1279 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
|
1280 /* Multiplication of zero by infinity */ |
|
1281 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
|
1282 } else { |
|
1283 #ifdef FLOAT128 |
|
1284 /* This is the way the PowerPC specification defines it */ |
|
1285 float128 ft0_128, ft1_128; |
|
1286 |
|
1287 ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
|
1288 ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
|
1289 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
|
1290 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
|
1291 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
|
1292 /* Magnitude subtraction of infinities */ |
|
1293 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1294 } else { |
|
1295 ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
|
1296 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
|
1297 farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
|
1298 } |
|
1299 #else |
|
1300 /* This is OK on x86 hosts */ |
|
1301 farg1.d = (farg1.d * farg2.d) + farg3.d; |
|
1302 #endif |
|
1303 } |
|
1304 #else |
|
1305 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1306 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); |
|
1307 #endif |
|
1308 return farg1.ll; |
|
1309 } |
|
1310 |
|
1311 /* fmsub - fmsub. */ |
|
1312 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
|
1313 { |
|
1314 CPU_DoubleU farg1, farg2, farg3; |
|
1315 |
|
1316 farg1.ll = arg1; |
|
1317 farg2.ll = arg2; |
|
1318 farg3.ll = arg3; |
|
1319 #if USE_PRECISE_EMULATION |
|
1320 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1321 float64_is_signaling_nan(farg2.d) || |
|
1322 float64_is_signaling_nan(farg3.d))) { |
|
1323 /* sNaN operation */ |
|
1324 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1325 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
|
1326 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
|
1327 /* Multiplication of zero by infinity */ |
|
1328 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
|
1329 } else { |
|
1330 #ifdef FLOAT128 |
|
1331 /* This is the way the PowerPC specification defines it */ |
|
1332 float128 ft0_128, ft1_128; |
|
1333 |
|
1334 ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
|
1335 ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
|
1336 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
|
1337 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
|
1338 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
|
1339 /* Magnitude subtraction of infinities */ |
|
1340 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1341 } else { |
|
1342 ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
|
1343 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
|
1344 farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
|
1345 } |
|
1346 #else |
|
1347 /* This is OK on x86 hosts */ |
|
1348 farg1.d = (farg1.d * farg2.d) - farg3.d; |
|
1349 #endif |
|
1350 } |
|
1351 #else |
|
1352 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1353 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); |
|
1354 #endif |
|
1355 return farg1.ll; |
|
1356 } |
|
1357 |
|
1358 /* fnmadd - fnmadd. */ |
|
1359 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
|
1360 { |
|
1361 CPU_DoubleU farg1, farg2, farg3; |
|
1362 |
|
1363 farg1.ll = arg1; |
|
1364 farg2.ll = arg2; |
|
1365 farg3.ll = arg3; |
|
1366 |
|
1367 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1368 float64_is_signaling_nan(farg2.d) || |
|
1369 float64_is_signaling_nan(farg3.d))) { |
|
1370 /* sNaN operation */ |
|
1371 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1372 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
|
1373 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
|
1374 /* Multiplication of zero by infinity */ |
|
1375 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
|
1376 } else { |
|
1377 #if USE_PRECISE_EMULATION |
|
1378 #ifdef FLOAT128 |
|
1379 /* This is the way the PowerPC specification defines it */ |
|
1380 float128 ft0_128, ft1_128; |
|
1381 |
|
1382 ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
|
1383 ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
|
1384 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
|
1385 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
|
1386 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
|
1387 /* Magnitude subtraction of infinities */ |
|
1388 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1389 } else { |
|
1390 ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
|
1391 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
|
1392 farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
|
1393 } |
|
1394 #else |
|
1395 /* This is OK on x86 hosts */ |
|
1396 farg1.d = (farg1.d * farg2.d) + farg3.d; |
|
1397 #endif |
|
1398 #else |
|
1399 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1400 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status); |
|
1401 #endif |
|
1402 if (likely(!float64_is_nan(farg1.d))) |
|
1403 farg1.d = float64_chs(farg1.d); |
|
1404 } |
|
1405 return farg1.ll; |
|
1406 } |
|
1407 |
|
1408 /* fnmsub - fnmsub. */ |
|
1409 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
|
1410 { |
|
1411 CPU_DoubleU farg1, farg2, farg3; |
|
1412 |
|
1413 farg1.ll = arg1; |
|
1414 farg2.ll = arg2; |
|
1415 farg3.ll = arg3; |
|
1416 |
|
1417 if (unlikely(float64_is_signaling_nan(farg1.d) || |
|
1418 float64_is_signaling_nan(farg2.d) || |
|
1419 float64_is_signaling_nan(farg3.d))) { |
|
1420 /* sNaN operation */ |
|
1421 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1422 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
|
1423 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
|
1424 /* Multiplication of zero by infinity */ |
|
1425 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
|
1426 } else { |
|
1427 #if USE_PRECISE_EMULATION |
|
1428 #ifdef FLOAT128 |
|
1429 /* This is the way the PowerPC specification defines it */ |
|
1430 float128 ft0_128, ft1_128; |
|
1431 |
|
1432 ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
|
1433 ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
|
1434 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
|
1435 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && |
|
1436 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
|
1437 /* Magnitude subtraction of infinities */ |
|
1438 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
|
1439 } else { |
|
1440 ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
|
1441 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
|
1442 farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
|
1443 } |
|
1444 #else |
|
1445 /* This is OK on x86 hosts */ |
|
1446 farg1.d = (farg1.d * farg2.d) - farg3.d; |
|
1447 #endif |
|
1448 #else |
|
1449 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
|
1450 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status); |
|
1451 #endif |
|
1452 if (likely(!float64_is_nan(farg1.d))) |
|
1453 farg1.d = float64_chs(farg1.d); |
|
1454 } |
|
1455 return farg1.ll; |
|
1456 } |
|
1457 |
|
1458 /* frsp - frsp. */ |
|
1459 uint64_t helper_frsp (uint64_t arg) |
|
1460 { |
|
1461 CPU_DoubleU farg; |
|
1462 float32 f32; |
|
1463 farg.ll = arg; |
|
1464 |
|
1465 #if USE_PRECISE_EMULATION |
|
1466 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1467 /* sNaN square root */ |
|
1468 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1469 } else { |
|
1470 f32 = float64_to_float32(farg.d, &env->fp_status); |
|
1471 farg.d = float32_to_float64(f32, &env->fp_status); |
|
1472 } |
|
1473 #else |
|
1474 f32 = float64_to_float32(farg.d, &env->fp_status); |
|
1475 farg.d = float32_to_float64(f32, &env->fp_status); |
|
1476 #endif |
|
1477 return farg.ll; |
|
1478 } |
|
1479 |
|
1480 /* fsqrt - fsqrt. */ |
|
1481 uint64_t helper_fsqrt (uint64_t arg) |
|
1482 { |
|
1483 CPU_DoubleU farg; |
|
1484 farg.ll = arg; |
|
1485 |
|
1486 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1487 /* sNaN square root */ |
|
1488 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1489 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
|
1490 /* Square root of a negative nonzero number */ |
|
1491 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
|
1492 } else { |
|
1493 farg.d = float64_sqrt(farg.d, &env->fp_status); |
|
1494 } |
|
1495 return farg.ll; |
|
1496 } |
|
1497 |
|
1498 /* fre - fre. */ |
|
1499 uint64_t helper_fre (uint64_t arg) |
|
1500 { |
|
1501 CPU_DoubleU fone, farg; |
|
1502 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */ |
|
1503 farg.ll = arg; |
|
1504 |
|
1505 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1506 /* sNaN reciprocal */ |
|
1507 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1508 } else { |
|
1509 farg.d = float64_div(fone.d, farg.d, &env->fp_status); |
|
1510 } |
|
1511 return farg.d; |
|
1512 } |
|
1513 |
|
1514 /* fres - fres. */ |
|
1515 uint64_t helper_fres (uint64_t arg) |
|
1516 { |
|
1517 CPU_DoubleU fone, farg; |
|
1518 float32 f32; |
|
1519 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */ |
|
1520 farg.ll = arg; |
|
1521 |
|
1522 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1523 /* sNaN reciprocal */ |
|
1524 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1525 } else { |
|
1526 farg.d = float64_div(fone.d, farg.d, &env->fp_status); |
|
1527 f32 = float64_to_float32(farg.d, &env->fp_status); |
|
1528 farg.d = float32_to_float64(f32, &env->fp_status); |
|
1529 } |
|
1530 return farg.ll; |
|
1531 } |
|
1532 |
|
1533 /* frsqrte - frsqrte. */ |
|
1534 uint64_t helper_frsqrte (uint64_t arg) |
|
1535 { |
|
1536 CPU_DoubleU fone, farg; |
|
1537 float32 f32; |
|
1538 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */ |
|
1539 farg.ll = arg; |
|
1540 |
|
1541 if (unlikely(float64_is_signaling_nan(farg.d))) { |
|
1542 /* sNaN reciprocal square root */ |
|
1543 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1544 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
|
1545 /* Reciprocal square root of a negative nonzero number */ |
|
1546 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
|
1547 } else { |
|
1548 farg.d = float64_sqrt(farg.d, &env->fp_status); |
|
1549 farg.d = float64_div(fone.d, farg.d, &env->fp_status); |
|
1550 f32 = float64_to_float32(farg.d, &env->fp_status); |
|
1551 farg.d = float32_to_float64(f32, &env->fp_status); |
|
1552 } |
|
1553 return farg.ll; |
|
1554 } |
|
1555 |
|
1556 /* fsel - fsel. */ |
|
1557 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) |
|
1558 { |
|
1559 CPU_DoubleU farg1; |
|
1560 |
|
1561 farg1.ll = arg1; |
|
1562 |
|
1563 if (!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) |
|
1564 return arg2; |
|
1565 else |
|
1566 return arg3; |
|
1567 } |
|
1568 |
|
1569 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD) |
|
1570 { |
|
1571 CPU_DoubleU farg1, farg2; |
|
1572 uint32_t ret = 0; |
|
1573 farg1.ll = arg1; |
|
1574 farg2.ll = arg2; |
|
1575 |
|
1576 if (unlikely(float64_is_nan(farg1.d) || |
|
1577 float64_is_nan(farg2.d))) { |
|
1578 ret = 0x01UL; |
|
1579 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
|
1580 ret = 0x08UL; |
|
1581 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
|
1582 ret = 0x04UL; |
|
1583 } else { |
|
1584 ret = 0x02UL; |
|
1585 } |
|
1586 |
|
1587 env->fpscr &= ~(0x0F << FPSCR_FPRF); |
|
1588 env->fpscr |= ret << FPSCR_FPRF; |
|
1589 env->crf[crfD] = ret; |
|
1590 if (unlikely(ret == 0x01UL |
|
1591 && (float64_is_signaling_nan(farg1.d) || |
|
1592 float64_is_signaling_nan(farg2.d)))) { |
|
1593 /* sNaN comparison */ |
|
1594 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
|
1595 } |
|
1596 } |
|
1597 |
|
1598 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD) |
|
1599 { |
|
1600 CPU_DoubleU farg1, farg2; |
|
1601 uint32_t ret = 0; |
|
1602 farg1.ll = arg1; |
|
1603 farg2.ll = arg2; |
|
1604 |
|
1605 if (unlikely(float64_is_nan(farg1.d) || |
|
1606 float64_is_nan(farg2.d))) { |
|
1607 ret = 0x01UL; |
|
1608 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
|
1609 ret = 0x08UL; |
|
1610 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
|
1611 ret = 0x04UL; |
|
1612 } else { |
|
1613 ret = 0x02UL; |
|
1614 } |
|
1615 |
|
1616 env->fpscr &= ~(0x0F << FPSCR_FPRF); |
|
1617 env->fpscr |= ret << FPSCR_FPRF; |
|
1618 env->crf[crfD] = ret; |
|
1619 if (unlikely (ret == 0x01UL)) { |
|
1620 if (float64_is_signaling_nan(farg1.d) || |
|
1621 float64_is_signaling_nan(farg2.d)) { |
|
1622 /* sNaN comparison */ |
|
1623 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | |
|
1624 POWERPC_EXCP_FP_VXVC); |
|
1625 } else { |
|
1626 /* qNaN comparison */ |
|
1627 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); |
|
1628 } |
|
1629 } |
|
1630 } |
|
1631 |
|
1632 #if !defined (CONFIG_USER_ONLY) |
|
1633 void helper_store_msr (target_ulong val) |
|
1634 { |
|
1635 val = hreg_store_msr(env, val, 0); |
|
1636 if (val != 0) { |
|
1637 env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
|
1638 helper_raise_exception(val); |
|
1639 } |
|
1640 } |
|
1641 |
|
1642 static always_inline void do_rfi (target_ulong nip, target_ulong msr, |
|
1643 target_ulong msrm, int keep_msrh) |
|
1644 { |
|
1645 #if defined(TARGET_PPC64) |
|
1646 if (msr & (1ULL << MSR_SF)) { |
|
1647 nip = (uint64_t)nip; |
|
1648 msr &= (uint64_t)msrm; |
|
1649 } else { |
|
1650 nip = (uint32_t)nip; |
|
1651 msr = (uint32_t)(msr & msrm); |
|
1652 if (keep_msrh) |
|
1653 msr |= env->msr & ~((uint64_t)0xFFFFFFFF); |
|
1654 } |
|
1655 #else |
|
1656 nip = (uint32_t)nip; |
|
1657 msr &= (uint32_t)msrm; |
|
1658 #endif |
|
1659 /* XXX: beware: this is false if VLE is supported */ |
|
1660 env->nip = nip & ~((target_ulong)0x00000003); |
|
1661 hreg_store_msr(env, msr, 1); |
|
1662 #if defined (DEBUG_OP) |
|
1663 cpu_dump_rfi(env->nip, env->msr); |
|
1664 #endif |
|
1665 /* No need to raise an exception here, |
|
1666 * as rfi is always the last insn of a TB |
|
1667 */ |
|
1668 env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
|
1669 } |
|
1670 |
|
1671 void helper_rfi (void) |
|
1672 { |
|
1673 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
|
1674 ~((target_ulong)0xFFFF0000), 1); |
|
1675 } |
|
1676 |
|
1677 #if defined(TARGET_PPC64) |
|
1678 void helper_rfid (void) |
|
1679 { |
|
1680 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
|
1681 ~((target_ulong)0xFFFF0000), 0); |
|
1682 } |
|
1683 |
|
1684 void helper_hrfid (void) |
|
1685 { |
|
1686 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
|
1687 ~((target_ulong)0xFFFF0000), 0); |
|
1688 } |
|
1689 #endif |
|
1690 #endif |
|
1691 |
|
1692 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) |
|
1693 { |
|
1694 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || |
|
1695 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || |
|
1696 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || |
|
1697 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || |
|
1698 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { |
|
1699 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
|
1700 } |
|
1701 } |
|
1702 |
|
1703 #if defined(TARGET_PPC64) |
|
1704 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) |
|
1705 { |
|
1706 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || |
|
1707 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || |
|
1708 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || |
|
1709 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || |
|
1710 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) |
|
1711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
|
1712 } |
|
1713 #endif |
|
1714 |
|
1715 /*****************************************************************************/ |
|
1716 /* PowerPC 601 specific instructions (POWER bridge) */ |
|
1717 |
|
1718 target_ulong helper_clcs (uint32_t arg) |
|
1719 { |
|
1720 switch (arg) { |
|
1721 case 0x0CUL: |
|
1722 /* Instruction cache line size */ |
|
1723 return env->icache_line_size; |
|
1724 break; |
|
1725 case 0x0DUL: |
|
1726 /* Data cache line size */ |
|
1727 return env->dcache_line_size; |
|
1728 break; |
|
1729 case 0x0EUL: |
|
1730 /* Minimum cache line size */ |
|
1731 return (env->icache_line_size < env->dcache_line_size) ? |
|
1732 env->icache_line_size : env->dcache_line_size; |
|
1733 break; |
|
1734 case 0x0FUL: |
|
1735 /* Maximum cache line size */ |
|
1736 return (env->icache_line_size > env->dcache_line_size) ? |
|
1737 env->icache_line_size : env->dcache_line_size; |
|
1738 break; |
|
1739 default: |
|
1740 /* Undefined */ |
|
1741 return 0; |
|
1742 break; |
|
1743 } |
|
1744 } |
|
1745 |
|
1746 target_ulong helper_div (target_ulong arg1, target_ulong arg2) |
|
1747 { |
|
1748 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
|
1749 |
|
1750 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
|
1751 (int32_t)arg2 == 0) { |
|
1752 env->spr[SPR_MQ] = 0; |
|
1753 return INT32_MIN; |
|
1754 } else { |
|
1755 env->spr[SPR_MQ] = tmp % arg2; |
|
1756 return tmp / (int32_t)arg2; |
|
1757 } |
|
1758 } |
|
1759 |
|
1760 target_ulong helper_divo (target_ulong arg1, target_ulong arg2) |
|
1761 { |
|
1762 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; |
|
1763 |
|
1764 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
|
1765 (int32_t)arg2 == 0) { |
|
1766 env->xer |= (1 << XER_OV) | (1 << XER_SO); |
|
1767 env->spr[SPR_MQ] = 0; |
|
1768 return INT32_MIN; |
|
1769 } else { |
|
1770 env->spr[SPR_MQ] = tmp % arg2; |
|
1771 tmp /= (int32_t)arg2; |
|
1772 if ((int32_t)tmp != tmp) { |
|
1773 env->xer |= (1 << XER_OV) | (1 << XER_SO); |
|
1774 } else { |
|
1775 env->xer &= ~(1 << XER_OV); |
|
1776 } |
|
1777 return tmp; |
|
1778 } |
|
1779 } |
|
1780 |
|
1781 target_ulong helper_divs (target_ulong arg1, target_ulong arg2) |
|
1782 { |
|
1783 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
|
1784 (int32_t)arg2 == 0) { |
|
1785 env->spr[SPR_MQ] = 0; |
|
1786 return INT32_MIN; |
|
1787 } else { |
|
1788 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
|
1789 return (int32_t)arg1 / (int32_t)arg2; |
|
1790 } |
|
1791 } |
|
1792 |
|
1793 target_ulong helper_divso (target_ulong arg1, target_ulong arg2) |
|
1794 { |
|
1795 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || |
|
1796 (int32_t)arg2 == 0) { |
|
1797 env->xer |= (1 << XER_OV) | (1 << XER_SO); |
|
1798 env->spr[SPR_MQ] = 0; |
|
1799 return INT32_MIN; |
|
1800 } else { |
|
1801 env->xer &= ~(1 << XER_OV); |
|
1802 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; |
|
1803 return (int32_t)arg1 / (int32_t)arg2; |
|
1804 } |
|
1805 } |
|
1806 |
|
1807 #if !defined (CONFIG_USER_ONLY) |
|
1808 target_ulong helper_rac (target_ulong addr) |
|
1809 { |
|
1810 mmu_ctx_t ctx; |
|
1811 int nb_BATs; |
|
1812 target_ulong ret = 0; |
|
1813 |
|
1814 /* We don't have to generate many instances of this instruction, |
|
1815 * as rac is supervisor only. |
|
1816 */ |
|
1817 /* XXX: FIX THIS: Pretend we have no BAT */ |
|
1818 nb_BATs = env->nb_BATs; |
|
1819 env->nb_BATs = 0; |
|
1820 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0) |
|
1821 ret = ctx.raddr; |
|
1822 env->nb_BATs = nb_BATs; |
|
1823 return ret; |
|
1824 } |
|
1825 |
|
1826 void helper_rfsvc (void) |
|
1827 { |
|
1828 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
|
1829 } |
|
1830 #endif |
|
1831 |
|
1832 /*****************************************************************************/ |
|
1833 /* 602 specific instructions */ |
|
1834 /* mfrom is the most crazy instruction ever seen, imho ! */ |
|
1835 /* Real implementation uses a ROM table. Do the same */ |
|
1836 /* Extremly decomposed: |
|
1837 * -arg / 256 |
|
1838 * return 256 * log10(10 + 1.0) + 0.5 |
|
1839 */ |
|
1840 #if !defined (CONFIG_USER_ONLY) |
|
1841 target_ulong helper_602_mfrom (target_ulong arg) |
|
1842 { |
|
1843 if (likely(arg < 602)) { |
|
1844 #include "mfrom_table.c" |
|
1845 return mfrom_ROM_table[arg]; |
|
1846 } else { |
|
1847 return 0; |
|
1848 } |
|
1849 } |
|
1850 #endif |
|
1851 |
|
1852 /*****************************************************************************/ |
|
1853 /* Embedded PowerPC specific helpers */ |
|
1854 |
|
1855 /* XXX: to be improved to check access rights when in user-mode */ |
|
1856 target_ulong helper_load_dcr (target_ulong dcrn) |
|
1857 { |
|
1858 target_ulong val = 0; |
|
1859 |
|
1860 if (unlikely(env->dcr_env == NULL)) { |
|
1861 if (loglevel != 0) { |
|
1862 fprintf(logfile, "No DCR environment\n"); |
|
1863 } |
|
1864 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
1865 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
|
1866 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) { |
|
1867 if (loglevel != 0) { |
|
1868 fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn); |
|
1869 } |
|
1870 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
1871 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
|
1872 } |
|
1873 return val; |
|
1874 } |
|
1875 |
|
1876 void helper_store_dcr (target_ulong dcrn, target_ulong val) |
|
1877 { |
|
1878 if (unlikely(env->dcr_env == NULL)) { |
|
1879 if (loglevel != 0) { |
|
1880 fprintf(logfile, "No DCR environment\n"); |
|
1881 } |
|
1882 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
1883 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
|
1884 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) { |
|
1885 if (loglevel != 0) { |
|
1886 fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn); |
|
1887 } |
|
1888 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, |
|
1889 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
|
1890 } |
|
1891 } |
|
1892 |
|
1893 #if !defined(CONFIG_USER_ONLY) |
|
1894 void helper_40x_rfci (void) |
|
1895 { |
|
1896 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
|
1897 ~((target_ulong)0xFFFF0000), 0); |
|
1898 } |
|
1899 |
|
1900 void helper_rfci (void) |
|
1901 { |
|
1902 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
|
1903 ~((target_ulong)0x3FFF0000), 0); |
|
1904 } |
|
1905 |
|
1906 void helper_rfdi (void) |
|
1907 { |
|
1908 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
|
1909 ~((target_ulong)0x3FFF0000), 0); |
|
1910 } |
|
1911 |
|
1912 void helper_rfmci (void) |
|
1913 { |
|
1914 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
|
1915 ~((target_ulong)0x3FFF0000), 0); |
|
1916 } |
|
1917 #endif |
|
1918 |
|
1919 /* 440 specific */ |
|
1920 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc) |
|
1921 { |
|
1922 target_ulong mask; |
|
1923 int i; |
|
1924 |
|
1925 i = 1; |
|
1926 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
|
1927 if ((high & mask) == 0) { |
|
1928 if (update_Rc) { |
|
1929 env->crf[0] = 0x4; |
|
1930 } |
|
1931 goto done; |
|
1932 } |
|
1933 i++; |
|
1934 } |
|
1935 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
|
1936 if ((low & mask) == 0) { |
|
1937 if (update_Rc) { |
|
1938 env->crf[0] = 0x8; |
|
1939 } |
|
1940 goto done; |
|
1941 } |
|
1942 i++; |
|
1943 } |
|
1944 if (update_Rc) { |
|
1945 env->crf[0] = 0x2; |
|
1946 } |
|
1947 done: |
|
1948 env->xer = (env->xer & ~0x7F) | i; |
|
1949 if (update_Rc) { |
|
1950 env->crf[0] |= xer_so; |
|
1951 } |
|
1952 return i; |
|
1953 } |
|
1954 |
|
1955 /* Altivec extension helpers. */ |
|
1956 /* FIXME: Crufty Altivec stuff that should probably be rewritten/removed. */ |
|
1957 #if 0 |
|
1958 #if defined(WORDS_BIGENDIAN) |
|
1959 #define HI_IDX 0 |
|
1960 #define LO_IDX 1 |
|
1961 #else |
|
1962 #define HI_IDX 1 |
|
1963 #define LO_IDX 0 |
|
1964 #endif |
|
1965 |
|
1966 #define N_ELEMS(element) (sizeof (AVR0.element) / sizeof (AVR0.element[0])) |
|
1967 |
|
1968 #define VECTOR_FOR(element) \ |
|
1969 int i; \ |
|
1970 VECTOR_FOR_I(i, element) |
|
1971 |
|
1972 #define VECTOR_FOR_I(index, element) \ |
|
1973 for (index = 0; index < N_ELEMS(element); index++) |
|
1974 |
|
1975 #if defined(WORDS_BIGENDIAN) |
|
1976 #define VECTOR_FOR_INORDER_I(index, element) VECTOR_FOR_I(index, element) |
|
1977 #else |
|
1978 #define VECTOR_FOR_INORDER_I(index, element) \ |
|
1979 for (index = N_ELEMS(element)-1; index >= 0; index--) |
|
1980 #endif |
|
1981 |
|
1982 /* Saturating arithmetic helpers. */ |
|
1983 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \ |
|
1984 static always_inline to_type cvt##from##to (from_type x, int *sat) \ |
|
1985 { \ |
|
1986 to_type r; \ |
|
1987 if (use_min && x < min) { \ |
|
1988 r = min; \ |
|
1989 *sat = 1; \ |
|
1990 } else if (use_max && x > max) { \ |
|
1991 r = max; \ |
|
1992 *sat = 1; \ |
|
1993 } else { \ |
|
1994 r = x; \ |
|
1995 } \ |
|
1996 return r; \ |
|
1997 } |
|
1998 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1) |
|
1999 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1) |
|
2000 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1) |
|
2001 SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1) |
|
2002 SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1) |
|
2003 SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1) |
|
2004 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1) |
|
2005 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1) |
|
2006 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1) |
|
2007 #undef SATCVT |
|
2008 |
|
2009 void do_lvsl (void) |
|
2010 { |
|
2011 int sh = (uint32_t)T0 & 0xf; |
|
2012 int i, j = sh; |
|
2013 |
|
2014 VECTOR_FOR_INORDER_I (i, u8) { |
|
2015 AVR0.u8[i] = j++; |
|
2016 } |
|
2017 } |
|
2018 |
|
2019 void do_lvsr (void) |
|
2020 { |
|
2021 int sh = (uint32_t)T0 & 0xf; |
|
2022 int i, j = 0x10-sh; |
|
2023 |
|
2024 VECTOR_FOR_INORDER_I (i, u8) { |
|
2025 AVR0.u8[i] = j++; |
|
2026 } |
|
2027 } |
|
2028 |
|
2029 void do_vaddcuw (void) |
|
2030 { |
|
2031 VECTOR_FOR(u32) { |
|
2032 AVR0.u32[i] = ~AVR0.u32[i] < AVR1.u32[i]; |
|
2033 } |
|
2034 } |
|
2035 |
|
2036 #define VARITH_DO(name, op, element) \ |
|
2037 void do_v##name (void) \ |
|
2038 { \ |
|
2039 VECTOR_FOR (element) { \ |
|
2040 AVR0.element[i] = AVR0.element[i] op AVR1.element[i]; \ |
|
2041 } \ |
|
2042 } |
|
2043 #define VARITH(suffix, element) \ |
|
2044 VARITH_DO(add##suffix, +, element) \ |
|
2045 VARITH_DO(sub##suffix, -, element) |
|
2046 VARITH(fp, f) |
|
2047 VARITH(ubm, u8) |
|
2048 VARITH(uhm, u16) |
|
2049 VARITH(uwm, u32) |
|
2050 #undef VARITH_DO |
|
2051 #undef VARITH |
|
2052 |
|
2053 #define VARITHSAT_CASE(type, op, min, max, use_min, use_max, element) \ |
|
2054 { \ |
|
2055 type result = (type)AVR0.element[i] op (type)AVR1.element[i]; \ |
|
2056 if (use_min && result < min) { \ |
|
2057 result = min; \ |
|
2058 sat = 1; \ |
|
2059 } else if (use_max && result > max) { \ |
|
2060 result = max; \ |
|
2061 sat = 1; \ |
|
2062 } \ |
|
2063 AVR0.element[i] = result; \ |
|
2064 } |
|
2065 |
|
2066 #define VARITHSAT_DO(name, op, min, max, use_min, use_max, element) \ |
|
2067 void do_v##name (void) \ |
|
2068 { \ |
|
2069 int sat = 0; \ |
|
2070 VECTOR_FOR (element) { \ |
|
2071 switch (sizeof(AVR0.element[0])) { \ |
|
2072 case 1: VARITHSAT_CASE(int16_t, op, min, max, use_min, use_max, element); break; \ |
|
2073 case 2: VARITHSAT_CASE(int32_t, op, min, max, use_min, use_max, element); break; \ |
|
2074 case 4: VARITHSAT_CASE(int64_t, op, min, max, use_min, use_max, element); break; \ |
|
2075 } \ |
|
2076 } \ |
|
2077 if (sat) { \ |
|
2078 env->vscr |= (1 << VSCR_SAT); \ |
|
2079 } \ |
|
2080 } |
|
2081 #define VARITHSAT_SIGNED(suffix, element, min, max) \ |
|
2082 VARITHSAT_DO(adds##suffix##s, +, min, max, 1, 1, element) \ |
|
2083 VARITHSAT_DO(subs##suffix##s, -, min, max, 1, 1, element) |
|
2084 #define VARITHSAT_UNSIGNED(suffix, element, max) \ |
|
2085 VARITHSAT_DO(addu##suffix##s, +, 0, max, 0, 1, element) \ |
|
2086 VARITHSAT_DO(subu##suffix##s, -, 0, max, 1, 0, element) |
|
2087 VARITHSAT_SIGNED(b, s8, INT8_MIN, INT8_MAX) |
|
2088 VARITHSAT_SIGNED(h, s16, INT16_MIN, INT16_MAX) |
|
2089 VARITHSAT_SIGNED(w, s32, INT32_MIN, INT32_MAX) |
|
2090 VARITHSAT_UNSIGNED(b, u8, UINT8_MAX) |
|
2091 VARITHSAT_UNSIGNED(h, u16, UINT16_MAX) |
|
2092 VARITHSAT_UNSIGNED(w, u32, UINT32_MAX) |
|
2093 #undef VARITHSAT_CASE |
|
2094 #undef VARITHSAT_DO |
|
2095 #undef VARITHSAT_SIGNED |
|
2096 #undef VARITHSAT_UNSIGNED |
|
2097 |
|
2098 #define VAVG_CASE(signedp, element, signed_type, unsigned_type) \ |
|
2099 if (signedp) { \ |
|
2100 signed_type x = (signed_type)AVR0.element[i] + (signed_type)AVR1.element[i] + 1; \ |
|
2101 AVR0.element[i] = x >> 1; \ |
|
2102 } else { \ |
|
2103 unsigned_type x = (unsigned_type)AVR0.element[i] + (unsigned_type)AVR1.element[i] + 1; \ |
|
2104 AVR0.element[i] = x >> 1; \ |
|
2105 } |
|
2106 |
|
2107 #define VAVG_DO(name, signedp, element) \ |
|
2108 void do_v##name (void) \ |
|
2109 { \ |
|
2110 VECTOR_FOR (element) { \ |
|
2111 switch (sizeof (AVR0.element[0])) { \ |
|
2112 case 1: VAVG_CASE(signedp, element, int16_t, uint16_t); break; \ |
|
2113 case 2: VAVG_CASE(signedp, element, int32_t, uint32_t); break; \ |
|
2114 case 4: VAVG_CASE(signedp, element, int64_t, uint64_t); break; \ |
|
2115 } \ |
|
2116 } \ |
|
2117 } |
|
2118 |
|
2119 #define VAVG(type, signed_element, unsigned_element) \ |
|
2120 VAVG_DO(avgs##type, 1, signed_element) \ |
|
2121 VAVG_DO(avgu##type, 0, unsigned_element) |
|
2122 VAVG(b, s8, u8) |
|
2123 VAVG(h, s16, u16) |
|
2124 VAVG(w, s32, u32) |
|
2125 #undef VAVG_CASE |
|
2126 #undef VAVG_DO |
|
2127 #undef VAVG |
|
2128 |
|
2129 void do_vcmpbfp (void) |
|
2130 { |
|
2131 int all_in = 0; |
|
2132 VECTOR_FOR (f) { |
|
2133 int le = AVR0.f[i] <= AVR1.f[i]; |
|
2134 int ge = AVR0.f[i] >= -AVR1.f[i]; |
|
2135 AVR0.u32[i] = ((!le) << 31) | ((!ge) << 30); |
|
2136 all_in |= (!le | !ge); |
|
2137 } |
|
2138 T0 = (all_in == 0) << 1; |
|
2139 } |
|
2140 |
|
2141 void do_vcfsx (void) |
|
2142 { |
|
2143 uint32_t div = 1 << (uint32_t)T0; |
|
2144 VECTOR_FOR (f) { |
|
2145 AVR0.f[i] = (float)AVR1.s32[i] / div; |
|
2146 } |
|
2147 } |
|
2148 |
|
2149 void do_vcfux (void) |
|
2150 { |
|
2151 uint32_t div = 1 << (uint32_t)T0; |
|
2152 VECTOR_FOR (f) { |
|
2153 AVR0.f[i] = (float)AVR1.u32[i] / div; |
|
2154 } |
|
2155 } |
|
2156 |
|
2157 #define VCMP(suffix, compare, element) \ |
|
2158 void do_vcmp##suffix (void) \ |
|
2159 { \ |
|
2160 uint32_t ones = (sizeof (AVR0.element[0]) == 4 \ |
|
2161 ? 0xffffffff \ |
|
2162 : (sizeof (AVR0.element[0]) == 2 \ |
|
2163 ? 0xffff \ |
|
2164 : 0xff)); \ |
|
2165 uint32_t all = ones; \ |
|
2166 uint32_t none = 0; \ |
|
2167 VECTOR_FOR (element) { \ |
|
2168 uint32_t result = (AVR0.element[i] compare AVR1.element[i] ? ones : 0x0); \ |
|
2169 switch (sizeof (AVR0.element[0])) { \ |
|
2170 case 4: AVR0.u32[i] = result; break; \ |
|
2171 case 2: AVR0.u16[i] = result; break; \ |
|
2172 case 1: AVR0.u8[i] = result; break; \ |
|
2173 } \ |
|
2174 all &= result; \ |
|
2175 none |= result; \ |
|
2176 } \ |
|
2177 T0 = ((all != 0) << 3) | ((none == 0) << 1); \ |
|
2178 } |
|
2179 VCMP(eqfp, ==, f) |
|
2180 VCMP(gefp, >=, f) |
|
2181 VCMP(gtfp, >, f) |
|
2182 VCMP(equb, ==, u8) |
|
2183 VCMP(equh, ==, u16) |
|
2184 VCMP(equw, ==, u32) |
|
2185 VCMP(gtub, >, u8) |
|
2186 VCMP(gtuh, >, u16) |
|
2187 VCMP(gtuw, >, u32) |
|
2188 VCMP(gtsb, >, s8) |
|
2189 VCMP(gtsh, >, s16) |
|
2190 VCMP(gtsw, >, s32) |
|
2191 #undef VCMP |
|
2192 |
|
2193 #define VCT(suffix, element, cvt, min, max) \ |
|
2194 void do_vct##suffix (void) \ |
|
2195 { \ |
|
2196 uint32_t uimm = (uint32_t)T0 & 0x1f; \ |
|
2197 int sat = 0; \ |
|
2198 VECTOR_FOR (f) { \ |
|
2199 uint32_t fi = AVR1.u32[i]; \ |
|
2200 int exponent = (fi >> 23) & 0xff; \ |
|
2201 if (exponent == 255 || (exponent + uimm) <= 254) { \ |
|
2202 double prod = ldexp((double)AVR1.f[i], (int)uimm); \ |
|
2203 int64_t x = (int64_t)prod; \ |
|
2204 AVR0.element[i] = cvt(x, &sat); \ |
|
2205 } else { \ |
|
2206 if (fi >> 31) { \ |
|
2207 AVR0.element[i] = min; \ |
|
2208 } else { \ |
|
2209 AVR0.element[i] = max; \ |
|
2210 } \ |
|
2211 sat = 1; \ |
|
2212 } \ |
|
2213 } \ |
|
2214 if (sat) { \ |
|
2215 env->vscr |= (1 << VSCR_SAT); \ |
|
2216 } \ |
|
2217 } |
|
2218 VCT(sxs, s32, cvtsdsw, INT32_MIN, INT32_MAX) |
|
2219 VCT(uxs, u32, cvtsduw, 0, UINT32_MAX) |
|
2220 #undef VCT |
|
2221 |
|
2222 void do_vexptefp (void) |
|
2223 { |
|
2224 /* FIXME: need to properly handle special inputs */ |
|
2225 VECTOR_FOR (f) { |
|
2226 AVR0.f[i] = powf((float)2.0, AVR1.f[i]); |
|
2227 } |
|
2228 } |
|
2229 |
|
2230 void do_vlogefp (void) |
|
2231 { |
|
2232 VECTOR_FOR (f) { |
|
2233 AVR0.f[i] = logf(AVR1.f[i])/logf((float)2.0); |
|
2234 } |
|
2235 } |
|
2236 |
|
2237 void do_vmaddfp (void) |
|
2238 { |
|
2239 VECTOR_FOR (f) { |
|
2240 AVR0.f[i] = AVR0.f[i] * AVR2.f[i] + AVR1.f[i]; |
|
2241 } |
|
2242 } |
|
2243 |
|
2244 #define VMINMAX_DO(name, compare, element) \ |
|
2245 void do_v##name (void) \ |
|
2246 { \ |
|
2247 VECTOR_FOR (element) { \ |
|
2248 if (AVR0.element[i] compare AVR1.element[i]) { \ |
|
2249 AVR0.element[i] = AVR1.element[i]; \ |
|
2250 } \ |
|
2251 } \ |
|
2252 } |
|
2253 #define VMINMAX(suffix, element) \ |
|
2254 VMINMAX_DO(min##suffix, >, element) \ |
|
2255 VMINMAX_DO(max##suffix, <, element) |
|
2256 VMINMAX(fp, f) |
|
2257 VMINMAX(sb, s8) |
|
2258 VMINMAX(sh, s16) |
|
2259 VMINMAX(sw, s32) |
|
2260 VMINMAX(ub, u8) |
|
2261 VMINMAX(uh, u16) |
|
2262 VMINMAX(uw, u32) |
|
2263 #undef VMINMAX_DO |
|
2264 #undef VMINMAX |
|
2265 |
|
2266 void do_vmhaddshs (void) |
|
2267 { |
|
2268 int sat = 0; |
|
2269 |
|
2270 VECTOR_FOR (s16) { |
|
2271 int32_t prod = AVR0.s16[i] * AVR1.s16[i]; |
|
2272 int32_t t = (int32_t)AVR2.s16[i] + (prod >> 15); |
|
2273 AVR0.s16[i] = cvtswsh (t, &sat); |
|
2274 } |
|
2275 |
|
2276 if (sat) { |
|
2277 env->vscr |= (1 << VSCR_SAT); |
|
2278 } |
|
2279 } |
|
2280 |
|
2281 void do_vmhraddshs (void) |
|
2282 { |
|
2283 int sat = 0; |
|
2284 |
|
2285 VECTOR_FOR (s16) { |
|
2286 int32_t prod = AVR0.s16[i] * AVR1.s16[i] + 0x00004000; |
|
2287 int32_t t = (int32_t)AVR2.s16[i] + (prod >> 15); |
|
2288 AVR0.s16[i] = cvtswsh (t, &sat); |
|
2289 } |
|
2290 |
|
2291 if (sat) { |
|
2292 env->vscr |= (1 << VSCR_SAT); |
|
2293 } |
|
2294 } |
|
2295 |
|
2296 void do_vmladduhm (void) |
|
2297 { |
|
2298 VECTOR_FOR (s16) { |
|
2299 int32_t prod = AVR0.s16[i] * AVR1.s16[i]; |
|
2300 AVR0.s16[i] = (int16_t) (prod + AVR2.s16[i]); |
|
2301 } |
|
2302 } |
|
2303 |
|
2304 #define VMRG_DO(name, element, highp) \ |
|
2305 void do_v##name (void) \ |
|
2306 { \ |
|
2307 ppc_avr_t result; \ |
|
2308 int i; \ |
|
2309 size_t n_elems = N_ELEMS(element); \ |
|
2310 for (i = 0; i < n_elems/2; i++) { \ |
|
2311 if (highp) { \ |
|
2312 result.element[i*2+HI_IDX] = AVR0.element[i]; \ |
|
2313 result.element[i*2+LO_IDX] = AVR1.element[i]; \ |
|
2314 } else { \ |
|
2315 result.element[n_elems - i*2 - (1+HI_IDX)] = AVR1.element[n_elems - i - 1]; \ |
|
2316 result.element[n_elems - i*2 - (1+LO_IDX)] = AVR0.element[n_elems - i - 1]; \ |
|
2317 } \ |
|
2318 } \ |
|
2319 AVR0 = result; \ |
|
2320 } |
|
2321 #if defined(WORDS_BIGENDIAN) |
|
2322 #define MRGHI 0 |
|
2323 #define MRGL0 1 |
|
2324 #else |
|
2325 #define MRGHI 1 |
|
2326 #define MRGLO 0 |
|
2327 #endif |
|
2328 #define VMRG(suffix, element) \ |
|
2329 VMRG_DO(mrgl##suffix, element, MRGHI) \ |
|
2330 VMRG_DO(mrgh##suffix, element, MRGLO) |
|
2331 VMRG(b, u8) |
|
2332 VMRG(h, u16) |
|
2333 VMRG(w, u32) |
|
2334 #undef VMRG_DO |
|
2335 #undef VMRG |
|
2336 |
|
2337 void do_vmsummbm (void) |
|
2338 { |
|
2339 int32_t prod[16]; |
|
2340 int i; |
|
2341 |
|
2342 VECTOR_FOR_I(i, s8) { |
|
2343 prod[i] = (int32_t)AVR0.s8[i] * AVR1.u8[i]; |
|
2344 } |
|
2345 |
|
2346 VECTOR_FOR_INORDER_I(i, s32) { |
|
2347 AVR0.s32[i] = AVR2.s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; |
|
2348 } |
|
2349 } |
|
2350 |
|
2351 void do_vmsumshm (void) |
|
2352 { |
|
2353 int32_t prod[8]; |
|
2354 int i; |
|
2355 |
|
2356 VECTOR_FOR_I(i, s16) { |
|
2357 prod[i] = AVR0.s16[i] * AVR1.s16[i]; |
|
2358 } |
|
2359 |
|
2360 VECTOR_FOR_INORDER_I(i, s32) { |
|
2361 AVR0.s32[i] = AVR2.s32[i] + prod[2*i] + prod[2*i+1]; |
|
2362 } |
|
2363 } |
|
2364 |
|
2365 void do_vmsumshs (void) |
|
2366 { |
|
2367 int32_t prod[8]; |
|
2368 int i; |
|
2369 int sat = 0; |
|
2370 |
|
2371 VECTOR_FOR_I (i, s16) { |
|
2372 prod[i] = (int32_t)AVR0.s16[i] * AVR1.s16[i]; |
|
2373 } |
|
2374 |
|
2375 VECTOR_FOR_INORDER_I (i, s32) { |
|
2376 int64_t t = (int64_t)AVR2.s32[i] + prod[2*i] + prod[2*i+1]; |
|
2377 AVR0.u32[i] = cvtsdsw(t, &sat); |
|
2378 } |
|
2379 |
|
2380 if (sat) { |
|
2381 env->vscr |= (1 << VSCR_SAT); |
|
2382 } |
|
2383 } |
|
2384 |
|
2385 void do_vmsumubm (void) |
|
2386 { |
|
2387 uint16_t prod[16]; |
|
2388 int i; |
|
2389 |
|
2390 VECTOR_FOR_I(i, u8) { |
|
2391 prod[i] = AVR0.u8[i] * AVR1.u8[i]; |
|
2392 } |
|
2393 |
|
2394 VECTOR_FOR_INORDER_I(i, u32) { |
|
2395 AVR0.u32[i] = AVR2.u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; |
|
2396 } |
|
2397 } |
|
2398 |
|
2399 void do_vmsumuhm (void) |
|
2400 { |
|
2401 uint32_t prod[8]; |
|
2402 int i; |
|
2403 |
|
2404 VECTOR_FOR_I(i, u16) { |
|
2405 prod[i] = AVR0.u16[i] * AVR1.u16[i]; |
|
2406 } |
|
2407 |
|
2408 VECTOR_FOR_INORDER_I(i, u32) { |
|
2409 AVR0.u32[i] = AVR2.u32[i] + prod[2*i] + prod[2*i+1]; |
|
2410 } |
|
2411 } |
|
2412 |
|
2413 void do_vmsumuhs (void) |
|
2414 { |
|
2415 uint32_t prod[8]; |
|
2416 int i; |
|
2417 int sat = 0; |
|
2418 |
|
2419 VECTOR_FOR_I (i, u16) { |
|
2420 prod[i] = AVR0.u16[i] * AVR1.u16[i]; |
|
2421 } |
|
2422 |
|
2423 VECTOR_FOR_INORDER_I (i, s32) { |
|
2424 uint64_t t = (uint64_t)AVR2.u32[i] + prod[2*i] + prod[2*i+1]; |
|
2425 AVR0.u32[i] = cvtuduw(t, &sat); |
|
2426 } |
|
2427 |
|
2428 if (sat) { |
|
2429 env->vscr |= (1 << VSCR_SAT); |
|
2430 } |
|
2431 } |
|
2432 |
|
2433 #define VMUL_DO(name, mul_element, prod_element, evenp) \ |
|
2434 void do_v##name (void) \ |
|
2435 { \ |
|
2436 int i; \ |
|
2437 VECTOR_FOR_INORDER_I(i, prod_element) { \ |
|
2438 if (evenp) { \ |
|
2439 AVR0.prod_element[i] = AVR0.mul_element[i*2+HI_IDX] * AVR1.mul_element[i*2+HI_IDX]; \ |
|
2440 } else { \ |
|
2441 AVR0.prod_element[i] = AVR0.mul_element[i*2+LO_IDX] * AVR1.mul_element[i*2+LO_IDX]; \ |
|
2442 } \ |
|
2443 } \ |
|
2444 } |
|
2445 #define VMUL(suffix, mul_element, prod_element) \ |
|
2446 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ |
|
2447 VMUL_DO(mulo##suffix, mul_element, prod_element, 0) |
|
2448 VMUL(sb, s8, s16) |
|
2449 VMUL(sh, s16, s32) |
|
2450 VMUL(ub, u8, u16) |
|
2451 VMUL(uh, u16, u32) |
|
2452 #undef VMUL_DO |
|
2453 #undef VMUL |
|
2454 |
|
2455 void do_vnmsubfp (void) |
|
2456 { |
|
2457 VECTOR_FOR (f) { |
|
2458 AVR0.f[i] = -(AVR0.f[i] * AVR2.f[i] - AVR1.f[i]); |
|
2459 } |
|
2460 } |
|
2461 |
|
2462 void do_vperm (void) |
|
2463 { |
|
2464 ppc_avr_t result; |
|
2465 int i; |
|
2466 VECTOR_FOR_INORDER_I (i, u8) { |
|
2467 int s = AVR2.u8[i] & 0x1f; |
|
2468 #if defined(WORDS_BIGENDIAN) |
|
2469 int index = s & 0xf; |
|
2470 #else |
|
2471 int index = 15 - (s & 0xf); |
|
2472 #endif |
|
2473 if (s & 0x10) { |
|
2474 result.u8[i] = AVR1.u8[index]; |
|
2475 } else { |
|
2476 result.u8[i] = AVR0.u8[index]; |
|
2477 } |
|
2478 } |
|
2479 AVR0 = result; |
|
2480 } |
|
2481 |
|
2482 #if defined(WORDS_BIGENDIAN) |
|
2483 #define PKBIG 1 |
|
2484 #else |
|
2485 #define PKBIG 0 |
|
2486 #endif |
|
2487 void do_vpkpx (void) |
|
2488 { |
|
2489 int i, j; |
|
2490 ppc_avr_t result; |
|
2491 #if defined(WORDS_BIGENDIAN) |
|
2492 ppc_avr_t x[2] = { AVR0, AVR1 }; |
|
2493 #else |
|
2494 ppc_avr_t x[2] = { AVR1, AVR0 }; |
|
2495 #endif |
|
2496 |
|
2497 VECTOR_FOR_INORDER_I (i, u64) { |
|
2498 VECTOR_FOR_INORDER_I (j, u32){ |
|
2499 uint32_t e = x[i].u32[j]; |
|
2500 result.u16[4*i+j] = ((e >> 9) & 0xfc00) | ((e >> 6) & 0x3e0) | ((e >> 3) & 0x1f); |
|
2501 } |
|
2502 } |
|
2503 AVR0 = result; |
|
2504 } |
|
2505 |
|
2506 #define VPK(suffix, from, to, cvt, dosat) \ |
|
2507 void do_vpk##suffix (void) \ |
|
2508 { \ |
|
2509 int i; \ |
|
2510 int sat = 0; \ |
|
2511 ppc_avr_t result; \ |
|
2512 ppc_avr_t *a0 = PKBIG ? &AVR0 : &AVR1; \ |
|
2513 ppc_avr_t *a1 = PKBIG ? &AVR1 : &AVR0; \ |
|
2514 VECTOR_FOR_INORDER_I (i, from) { \ |
|
2515 result.to[i] = cvt(a0->from[i], &sat); \ |
|
2516 result.to[i+N_ELEMS(from)] = cvt(a1->from[i], &sat); \ |
|
2517 } \ |
|
2518 AVR0 = result; \ |
|
2519 if (dosat && sat) { \ |
|
2520 env->vscr |= (1 << VSCR_SAT); \ |
|
2521 } \ |
|
2522 } |
|
2523 #define I(x, y) (x) |
|
2524 VPK(shss, s16, s8, cvtshsb, 1) |
|
2525 VPK(shus, s16, u8, cvtshub, 1) |
|
2526 VPK(swss, s32, s16, cvtswsh, 1) |
|
2527 VPK(swus, s32, u16, cvtswuh, 1) |
|
2528 VPK(uhus, u16, u8, cvtuhub, 1) |
|
2529 VPK(uwus, u32, u16, cvtuwuh, 1) |
|
2530 VPK(uhum, u16, u8, I, 0) |
|
2531 VPK(uwum, u32, u16, I, 0) |
|
2532 #undef I |
|
2533 #undef VPK |
|
2534 #undef PKBIG |
|
2535 |
|
2536 void do_vrefp (void) |
|
2537 { |
|
2538 VECTOR_FOR (f) { |
|
2539 AVR0.f[i] = 1/AVR1.f[i]; |
|
2540 } |
|
2541 } |
|
2542 |
|
2543 #define VRFI(suffix, func) \ |
|
2544 void do_vrfi##suffix (void) \ |
|
2545 { \ |
|
2546 VECTOR_FOR (f) { \ |
|
2547 AVR0.f[i] = func (AVR1.f[i]); \ |
|
2548 } \ |
|
2549 } |
|
2550 VRFI(m, floorf) |
|
2551 VRFI(n, rintf) |
|
2552 VRFI(p, ceilf) |
|
2553 VRFI(z, truncf) |
|
2554 #undef VRFI |
|
2555 |
|
2556 #define VROTATE(suffix, element) \ |
|
2557 void do_vrl##suffix (void) \ |
|
2558 { \ |
|
2559 VECTOR_FOR (element) { \ |
|
2560 unsigned int mask = ((1 << (3 + (sizeof (AVR0.element[0]) >> 1))) - 1); \ |
|
2561 unsigned int shift = AVR1.element[i] & mask; \ |
|
2562 AVR0.element[i] = (AVR0.element[i] << shift) | (AVR0.element[i] >> (sizeof(AVR0.element[0]) * 8 - shift)); \ |
|
2563 } \ |
|
2564 } |
|
2565 VROTATE(b, u8) |
|
2566 VROTATE(h, u16) |
|
2567 VROTATE(w, u32) |
|
2568 #undef VROTATE |
|
2569 |
|
2570 void do_vrsqrtefp (void) |
|
2571 { |
|
2572 VECTOR_FOR (f) { |
|
2573 AVR0.f[i] = 1/sqrtf(AVR1.f[i]); |
|
2574 } |
|
2575 } |
|
2576 |
|
2577 #if defined(WORDS_BIGENDIAN) |
|
2578 #define LEFT 0 |
|
2579 #define RIGHT 1 |
|
2580 #else |
|
2581 #define LEFT 1 |
|
2582 #define RIGHT 0 |
|
2583 #endif |
|
2584 #define VSHIFT(suffix, leftp) \ |
|
2585 void do_vs##suffix (void) \ |
|
2586 { \ |
|
2587 int shift = AVR1.u8[LO_IDX*0x15] & 0x7; \ |
|
2588 int doit = 1; \ |
|
2589 VECTOR_FOR (u8) { \ |
|
2590 doit = doit && ((AVR1.u8[i] & 0x7) == shift); \ |
|
2591 } \ |
|
2592 if (doit) { \ |
|
2593 if (shift == 0) { \ |
|
2594 return; \ |
|
2595 } else if (leftp) { \ |
|
2596 uint64_t carry = AVR0.u64[LO_IDX] >> (64 - shift); \ |
|
2597 AVR0.u64[HI_IDX] = (AVR0.u64[HI_IDX] << shift) | carry; \ |
|
2598 AVR0.u64[LO_IDX] <<= shift; \ |
|
2599 } else { \ |
|
2600 uint64_t carry = AVR0.u64[HI_IDX] << (64 - shift); \ |
|
2601 AVR0.u64[LO_IDX] = (AVR0.u64[LO_IDX] >> shift) | carry; \ |
|
2602 AVR0.u64[HI_IDX] >>= shift; \ |
|
2603 } \ |
|
2604 } \ |
|
2605 } |
|
2606 VSHIFT(l, LEFT) |
|
2607 VSHIFT(r, RIGHT) |
|
2608 #undef VSHIFT |
|
2609 #undef LEFT |
|
2610 #undef RIGHT |
|
2611 |
|
2612 #define VSL(suffix, element) \ |
|
2613 void do_vsl##suffix (void) \ |
|
2614 { \ |
|
2615 VECTOR_FOR (element) { \ |
|
2616 unsigned int mask = ((1 << (3 + (sizeof (AVR0.element[0]) >> 1))) - 1); \ |
|
2617 unsigned int shift = AVR1.element[i] & mask; \ |
|
2618 AVR0.element[i] = AVR0.element[i] << shift; \ |
|
2619 } \ |
|
2620 } |
|
2621 VSL(b, u8) |
|
2622 VSL(h, u16) |
|
2623 VSL(w, u32) |
|
2624 #undef VSL |
|
2625 |
|
2626 void do_vsldoi (void) |
|
2627 { |
|
2628 int sh = (int)T0 & 0xf; |
|
2629 int i; |
|
2630 ppc_avr_t result; |
|
2631 |
|
2632 #if defined(WORDS_BIGENDIAN) |
|
2633 VECTOR_FOR_I (i, u8) { |
|
2634 int index = sh + i; |
|
2635 if (index > 0xf) { |
|
2636 result.u8[i] = AVR1.u8[index-0x10]; |
|
2637 } else { |
|
2638 result.u8[i] = AVR0.u8[index]; |
|
2639 } |
|
2640 } |
|
2641 #else |
|
2642 VECTOR_FOR_I (i, u8) { |
|
2643 int index = (16 - sh) + i; |
|
2644 if (index > 0xf) { |
|
2645 result.u8[i] = AVR0.u8[index-0x10]; |
|
2646 } else { |
|
2647 result.u8[i] = AVR1.u8[index]; |
|
2648 } |
|
2649 } |
|
2650 #endif |
|
2651 AVR0 = result; |
|
2652 } |
|
2653 |
|
2654 void do_vslo (void) |
|
2655 { |
|
2656 int sh = (AVR1.u8[LO_IDX*0xf] >> 3) & 0xf; |
|
2657 |
|
2658 #if defined (WORDS_BIGENDIAN) |
|
2659 memmove (&AVR0.u8[0], &AVR0.u8[sh], 0x10-sh); |
|
2660 memset (&AVR0.u8[16-sh], 0, sh); |
|
2661 #else |
|
2662 memmove (&AVR0.u8[sh], &AVR0.u8[0], 0x10-sh); |
|
2663 memset (&AVR0.u8[0], 0, sh); |
|
2664 #endif |
|
2665 } |
|
2666 |
|
2667 /* Experimental testing shows that hardware masks the immediate. */ |
|
2668 #define _SPLAT_MASKED(element) ((uint32_t)T0 & (N_ELEMS(element) - 1)) |
|
2669 #if defined(WORDS_BIGENDIAN) |
|
2670 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) |
|
2671 #else |
|
2672 #define SPLAT_ELEMENT(element) (N_ELEMS(element)-1 - _SPLAT_MASKED(element)) |
|
2673 #endif |
|
2674 #define VSPLT(suffix, element) \ |
|
2675 void do_vsplt##suffix (void) \ |
|
2676 { \ |
|
2677 uint32_t s = AVR1.element[SPLAT_ELEMENT(element)]; \ |
|
2678 VECTOR_FOR (element) { \ |
|
2679 AVR0.element[i] = s; \ |
|
2680 } \ |
|
2681 } |
|
2682 VSPLT(b, u8) |
|
2683 VSPLT(h, u16) |
|
2684 VSPLT(w, u32) |
|
2685 #undef VSPLT |
|
2686 #undef SPLAT_ELEMENT |
|
2687 #undef _SPLAT_MASKED |
|
2688 |
|
2689 #define VSPLTI(suffix, element, splat_type) \ |
|
2690 void do_vspltis##suffix (void) \ |
|
2691 { \ |
|
2692 splat_type x = (splat_type)T0; \ |
|
2693 /* 5-bit sign extension. */ \ |
|
2694 if (x & 0x10) \ |
|
2695 x -= 0x20; \ |
|
2696 VECTOR_FOR (element) { \ |
|
2697 AVR0.element[i] = x; \ |
|
2698 } \ |
|
2699 } |
|
2700 VSPLTI(b, s8, int8_t) |
|
2701 VSPLTI(h, s16, int16_t) |
|
2702 VSPLTI(w, s32, int32_t) |
|
2703 #undef VSPLTI |
|
2704 |
|
2705 #define VSR(suffix, element) \ |
|
2706 void do_vsr##suffix (void) \ |
|
2707 { \ |
|
2708 VECTOR_FOR (element) { \ |
|
2709 unsigned int mask = ((1 << (3 + (sizeof (AVR0.element[0]) >> 1))) - 1); \ |
|
2710 unsigned int shift = AVR1.element[i] & mask; \ |
|
2711 AVR0.element[i] = AVR0.element[i] >> shift; \ |
|
2712 } \ |
|
2713 } |
|
2714 VSR(ab, s8) |
|
2715 VSR(ah, s16) |
|
2716 VSR(aw, s32) |
|
2717 VSR(b, u8) |
|
2718 VSR(h, u16) |
|
2719 VSR(w, u32) |
|
2720 #undef VSR |
|
2721 |
|
2722 void do_vsro (void) |
|
2723 { |
|
2724 int sh = (AVR1.u8[LO_IDX*0xf] >> 3) & 0xf; |
|
2725 |
|
2726 #if defined (WORDS_BIGENDIAN) |
|
2727 memmove (&AVR0.u8[sh], &AVR0.u8[0], 0x10-sh); |
|
2728 memset (&AVR0.u8[0], 0, sh); |
|
2729 #else |
|
2730 memmove (&AVR0.u8[0], &AVR0.u8[sh], 0x10-sh); |
|
2731 memset (&AVR0.u8[0x10-sh], 0, sh); |
|
2732 #endif |
|
2733 } |
|
2734 |
|
2735 void do_vsubcuw (void) |
|
2736 { |
|
2737 VECTOR_FOR(u32) { |
|
2738 AVR0.u32[i] = AVR0.u32[i] >= AVR1.u32[i]; |
|
2739 } |
|
2740 } |
|
2741 |
|
2742 void do_vsumsws (void) |
|
2743 { |
|
2744 int64_t t; |
|
2745 int i, upper; |
|
2746 ppc_avr_t result; |
|
2747 int sat = 0; |
|
2748 |
|
2749 #if defined(WORDS_BIGENDIAN) |
|
2750 upper = N_ELEMS(s32)-1; |
|
2751 #else |
|
2752 upper = 0; |
|
2753 #endif |
|
2754 t = (int64_t)AVR1.s32[upper]; |
|
2755 VECTOR_FOR_I (i, s32) { |
|
2756 t += AVR0.s32[i]; |
|
2757 result.s32[i] = 0; |
|
2758 } |
|
2759 result.s32[upper] = cvtsdsw(t, &sat); |
|
2760 AVR0 = result; |
|
2761 |
|
2762 if (sat) { |
|
2763 env->vscr |= (1 << VSCR_SAT); |
|
2764 } |
|
2765 } |
|
2766 |
|
2767 void do_vsum2sws (void) |
|
2768 { |
|
2769 int i, j, upper; |
|
2770 ppc_avr_t result; |
|
2771 int sat = 0; |
|
2772 |
|
2773 #if defined(WORDS_BIGENDIAN) |
|
2774 upper = 1; |
|
2775 #else |
|
2776 upper = 0; |
|
2777 #endif |
|
2778 VECTOR_FOR_I (i, u64) { |
|
2779 int64_t t = (int64_t)AVR1.s32[upper+i*2]; |
|
2780 result.u64[i] = 0; |
|
2781 VECTOR_FOR_I (j, u64) { |
|
2782 t += AVR0.s32[2*i+j]; |
|
2783 } |
|
2784 result.s32[upper+i*2] = cvtsdsw(t, &sat); |
|
2785 } |
|
2786 |
|
2787 AVR0 = result; |
|
2788 if (sat) { |
|
2789 env->vscr |= (1 << VSCR_SAT); |
|
2790 } |
|
2791 } |
|
2792 |
|
2793 void do_vsum4sbs (void) |
|
2794 { |
|
2795 int i, j; |
|
2796 int sat = 0; |
|
2797 |
|
2798 VECTOR_FOR_I (i, s32) { |
|
2799 int64_t t = (int64_t)AVR1.s32[i]; |
|
2800 VECTOR_FOR_I (j, s32) { |
|
2801 t += AVR0.s8[4*i+j]; |
|
2802 } |
|
2803 AVR0.s32[i] = cvtsdsw(t, &sat); |
|
2804 } |
|
2805 |
|
2806 if (sat) { |
|
2807 env->vscr |= (1 << VSCR_SAT); |
|
2808 } |
|
2809 } |
|
2810 |
|
2811 void do_vsum4shs (void) |
|
2812 { |
|
2813 int sat = 0; |
|
2814 |
|
2815 VECTOR_FOR (s32) { |
|
2816 int64_t t = (int64_t)AVR1.s32[i]; |
|
2817 t += AVR0.s16[2*i] + AVR0.s16[2*i+1]; |
|
2818 AVR0.s32[i] = cvtsdsw(t, &sat); |
|
2819 } |
|
2820 |
|
2821 if (sat) { |
|
2822 env->vscr |= (1 << VSCR_SAT); |
|
2823 } |
|
2824 } |
|
2825 |
|
2826 void do_vsum4ubs (void) |
|
2827 { |
|
2828 int i, j; |
|
2829 int sat = 0; |
|
2830 |
|
2831 VECTOR_FOR_I (i, u32) { |
|
2832 uint64_t t = (uint64_t)AVR1.u32[i]; |
|
2833 VECTOR_FOR_I (j, u32) { |
|
2834 t += AVR0.u8[4*i+j]; |
|
2835 } |
|
2836 AVR0.u32[i] = cvtuduw(t, &sat); |
|
2837 } |
|
2838 |
|
2839 if (sat) { |
|
2840 env->vscr |= (1 << VSCR_SAT); |
|
2841 } |
|
2842 } |
|
2843 |
|
2844 #if defined(WORDS_BIGENDIAN) |
|
2845 #define UPKHI 1 |
|
2846 #define UPKLO 0 |
|
2847 #else |
|
2848 #define UPKHI 0 |
|
2849 #define UPKLO 1 |
|
2850 #endif |
|
2851 #define VUPKPX(suffix, hi) \ |
|
2852 void do_vupk##suffix (void) \ |
|
2853 { \ |
|
2854 int i; \ |
|
2855 VECTOR_FOR_I (i, u32) { \ |
|
2856 uint16_t e = AVR1.u16[hi ? i : i+4]; \ |
|
2857 uint8_t a = (e >> 15) ? 0xff : 0; \ |
|
2858 uint8_t r = (e >> 10) & 0x1f; \ |
|
2859 uint8_t g = (e >> 5) & 0x1f; \ |
|
2860 uint8_t b = e & 0x1f; \ |
|
2861 AVR0.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ |
|
2862 } \ |
|
2863 } |
|
2864 VUPKPX(lpx, UPKLO) |
|
2865 VUPKPX(hpx, UPKHI) |
|
2866 |
|
2867 #define VUPK(suffix, unpacked, packee, hi) \ |
|
2868 void do_vupk##suffix (void) \ |
|
2869 { \ |
|
2870 int i; \ |
|
2871 ppc_avr_t result; \ |
|
2872 if (hi) { \ |
|
2873 for (i = 0; i < N_ELEMS(unpacked); i++) { \ |
|
2874 result.unpacked[i] = AVR1.packee[i]; \ |
|
2875 } \ |
|
2876 } else { \ |
|
2877 for (i = N_ELEMS(unpacked); i < N_ELEMS(packee); i++) { \ |
|
2878 result.unpacked[i-N_ELEMS(unpacked)] = AVR1.packee[i]; \ |
|
2879 } \ |
|
2880 } \ |
|
2881 AVR0 = result; \ |
|
2882 } |
|
2883 VUPK(hsb, s16, s8, UPKHI) |
|
2884 VUPK(hsh, s32, s16, UPKHI) |
|
2885 VUPK(lsb, s16, s8, UPKLO) |
|
2886 VUPK(lsh, s32, s16, UPKLO) |
|
2887 #undef VUPK |
|
2888 #undef UPKHI |
|
2889 #undef UPKLO |
|
2890 |
|
2891 #undef VECTOR_FOR |
|
2892 #undef VECTOR_FOR_I |
|
2893 #undef VECTOR_FOR_INORDER_I |
|
2894 #undef HI_IDX |
|
2895 #undef LO_IDX |
|
2896 #endif |
|
2897 |
|
2898 /*****************************************************************************/ |
|
2899 /* SPE extension helpers */ |
|
2900 /* Use a table to make this quicker */ |
|
2901 static uint8_t hbrev[16] = { |
|
2902 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, |
|
2903 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, |
|
2904 }; |
|
2905 |
|
2906 static always_inline uint8_t byte_reverse (uint8_t val) |
|
2907 { |
|
2908 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); |
|
2909 } |
|
2910 |
|
2911 static always_inline uint32_t word_reverse (uint32_t val) |
|
2912 { |
|
2913 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | |
|
2914 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); |
|
2915 } |
|
2916 |
|
2917 #define MASKBITS 16 // Random value - to be fixed (implementation dependant) |
|
2918 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) |
|
2919 { |
|
2920 uint32_t a, b, d, mask; |
|
2921 |
|
2922 mask = UINT32_MAX >> (32 - MASKBITS); |
|
2923 a = arg1 & mask; |
|
2924 b = arg2 & mask; |
|
2925 d = word_reverse(1 + word_reverse(a | ~b)); |
|
2926 return (arg1 & ~mask) | (d & b); |
|
2927 } |
|
2928 |
|
2929 uint32_t helper_cntlsw32 (uint32_t val) |
|
2930 { |
|
2931 if (val & 0x80000000) |
|
2932 return clz32(~val); |
|
2933 else |
|
2934 return clz32(val); |
|
2935 } |
|
2936 |
|
2937 uint32_t helper_cntlzw32 (uint32_t val) |
|
2938 { |
|
2939 return clz32(val); |
|
2940 } |
|
2941 |
|
2942 /* Single-precision floating-point conversions */ |
|
2943 static always_inline uint32_t efscfsi (uint32_t val) |
|
2944 { |
|
2945 CPU_FloatU u; |
|
2946 |
|
2947 u.f = int32_to_float32(val, &env->spe_status); |
|
2948 |
|
2949 return u.l; |
|
2950 } |
|
2951 |
|
2952 static always_inline uint32_t efscfui (uint32_t val) |
|
2953 { |
|
2954 CPU_FloatU u; |
|
2955 |
|
2956 u.f = uint32_to_float32(val, &env->spe_status); |
|
2957 |
|
2958 return u.l; |
|
2959 } |
|
2960 |
|
2961 static always_inline int32_t efsctsi (uint32_t val) |
|
2962 { |
|
2963 CPU_FloatU u; |
|
2964 |
|
2965 u.l = val; |
|
2966 /* NaN are not treated the same way IEEE 754 does */ |
|
2967 if (unlikely(float32_is_nan(u.f))) |
|
2968 return 0; |
|
2969 |
|
2970 return float32_to_int32(u.f, &env->spe_status); |
|
2971 } |
|
2972 |
|
2973 static always_inline uint32_t efsctui (uint32_t val) |
|
2974 { |
|
2975 CPU_FloatU u; |
|
2976 |
|
2977 u.l = val; |
|
2978 /* NaN are not treated the same way IEEE 754 does */ |
|
2979 if (unlikely(float32_is_nan(u.f))) |
|
2980 return 0; |
|
2981 |
|
2982 return float32_to_uint32(u.f, &env->spe_status); |
|
2983 } |
|
2984 |
|
2985 static always_inline uint32_t efsctsiz (uint32_t val) |
|
2986 { |
|
2987 CPU_FloatU u; |
|
2988 |
|
2989 u.l = val; |
|
2990 /* NaN are not treated the same way IEEE 754 does */ |
|
2991 if (unlikely(float32_is_nan(u.f))) |
|
2992 return 0; |
|
2993 |
|
2994 return float32_to_int32_round_to_zero(u.f, &env->spe_status); |
|
2995 } |
|
2996 |
|
2997 static always_inline uint32_t efsctuiz (uint32_t val) |
|
2998 { |
|
2999 CPU_FloatU u; |
|
3000 |
|
3001 u.l = val; |
|
3002 /* NaN are not treated the same way IEEE 754 does */ |
|
3003 if (unlikely(float32_is_nan(u.f))) |
|
3004 return 0; |
|
3005 |
|
3006 return float32_to_uint32_round_to_zero(u.f, &env->spe_status); |
|
3007 } |
|
3008 |
|
3009 static always_inline uint32_t efscfsf (uint32_t val) |
|
3010 { |
|
3011 CPU_FloatU u; |
|
3012 float32 tmp; |
|
3013 |
|
3014 u.f = int32_to_float32(val, &env->spe_status); |
|
3015 tmp = int64_to_float32(1ULL << 32, &env->spe_status); |
|
3016 u.f = float32_div(u.f, tmp, &env->spe_status); |
|
3017 |
|
3018 return u.l; |
|
3019 } |
|
3020 |
|
3021 static always_inline uint32_t efscfuf (uint32_t val) |
|
3022 { |
|
3023 CPU_FloatU u; |
|
3024 float32 tmp; |
|
3025 |
|
3026 u.f = uint32_to_float32(val, &env->spe_status); |
|
3027 tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
|
3028 u.f = float32_div(u.f, tmp, &env->spe_status); |
|
3029 |
|
3030 return u.l; |
|
3031 } |
|
3032 |
|
3033 static always_inline uint32_t efsctsf (uint32_t val) |
|
3034 { |
|
3035 CPU_FloatU u; |
|
3036 float32 tmp; |
|
3037 |
|
3038 u.l = val; |
|
3039 /* NaN are not treated the same way IEEE 754 does */ |
|
3040 if (unlikely(float32_is_nan(u.f))) |
|
3041 return 0; |
|
3042 tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
|
3043 u.f = float32_mul(u.f, tmp, &env->spe_status); |
|
3044 |
|
3045 return float32_to_int32(u.f, &env->spe_status); |
|
3046 } |
|
3047 |
|
3048 static always_inline uint32_t efsctuf (uint32_t val) |
|
3049 { |
|
3050 CPU_FloatU u; |
|
3051 float32 tmp; |
|
3052 |
|
3053 u.l = val; |
|
3054 /* NaN are not treated the same way IEEE 754 does */ |
|
3055 if (unlikely(float32_is_nan(u.f))) |
|
3056 return 0; |
|
3057 tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
|
3058 u.f = float32_mul(u.f, tmp, &env->spe_status); |
|
3059 |
|
3060 return float32_to_uint32(u.f, &env->spe_status); |
|
3061 } |
|
3062 |
|
3063 #define HELPER_SPE_SINGLE_CONV(name) \ |
|
3064 uint32_t helper_e##name (uint32_t val) \ |
|
3065 { \ |
|
3066 return e##name(val); \ |
|
3067 } |
|
3068 /* efscfsi */ |
|
3069 HELPER_SPE_SINGLE_CONV(fscfsi); |
|
3070 /* efscfui */ |
|
3071 HELPER_SPE_SINGLE_CONV(fscfui); |
|
3072 /* efscfuf */ |
|
3073 HELPER_SPE_SINGLE_CONV(fscfuf); |
|
3074 /* efscfsf */ |
|
3075 HELPER_SPE_SINGLE_CONV(fscfsf); |
|
3076 /* efsctsi */ |
|
3077 HELPER_SPE_SINGLE_CONV(fsctsi); |
|
3078 /* efsctui */ |
|
3079 HELPER_SPE_SINGLE_CONV(fsctui); |
|
3080 /* efsctsiz */ |
|
3081 HELPER_SPE_SINGLE_CONV(fsctsiz); |
|
3082 /* efsctuiz */ |
|
3083 HELPER_SPE_SINGLE_CONV(fsctuiz); |
|
3084 /* efsctsf */ |
|
3085 HELPER_SPE_SINGLE_CONV(fsctsf); |
|
3086 /* efsctuf */ |
|
3087 HELPER_SPE_SINGLE_CONV(fsctuf); |
|
3088 |
|
3089 #define HELPER_SPE_VECTOR_CONV(name) \ |
|
3090 uint64_t helper_ev##name (uint64_t val) \ |
|
3091 { \ |
|
3092 return ((uint64_t)e##name(val >> 32) << 32) | \ |
|
3093 (uint64_t)e##name(val); \ |
|
3094 } |
|
3095 /* evfscfsi */ |
|
3096 HELPER_SPE_VECTOR_CONV(fscfsi); |
|
3097 /* evfscfui */ |
|
3098 HELPER_SPE_VECTOR_CONV(fscfui); |
|
3099 /* evfscfuf */ |
|
3100 HELPER_SPE_VECTOR_CONV(fscfuf); |
|
3101 /* evfscfsf */ |
|
3102 HELPER_SPE_VECTOR_CONV(fscfsf); |
|
3103 /* evfsctsi */ |
|
3104 HELPER_SPE_VECTOR_CONV(fsctsi); |
|
3105 /* evfsctui */ |
|
3106 HELPER_SPE_VECTOR_CONV(fsctui); |
|
3107 /* evfsctsiz */ |
|
3108 HELPER_SPE_VECTOR_CONV(fsctsiz); |
|
3109 /* evfsctuiz */ |
|
3110 HELPER_SPE_VECTOR_CONV(fsctuiz); |
|
3111 /* evfsctsf */ |
|
3112 HELPER_SPE_VECTOR_CONV(fsctsf); |
|
3113 /* evfsctuf */ |
|
3114 HELPER_SPE_VECTOR_CONV(fsctuf); |
|
3115 |
|
3116 /* Single-precision floating-point arithmetic */ |
|
3117 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2) |
|
3118 { |
|
3119 CPU_FloatU u1, u2; |
|
3120 u1.l = op1; |
|
3121 u2.l = op2; |
|
3122 u1.f = float32_add(u1.f, u2.f, &env->spe_status); |
|
3123 return u1.l; |
|
3124 } |
|
3125 |
|
3126 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2) |
|
3127 { |
|
3128 CPU_FloatU u1, u2; |
|
3129 u1.l = op1; |
|
3130 u2.l = op2; |
|
3131 u1.f = float32_sub(u1.f, u2.f, &env->spe_status); |
|
3132 return u1.l; |
|
3133 } |
|
3134 |
|
3135 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2) |
|
3136 { |
|
3137 CPU_FloatU u1, u2; |
|
3138 u1.l = op1; |
|
3139 u2.l = op2; |
|
3140 u1.f = float32_mul(u1.f, u2.f, &env->spe_status); |
|
3141 return u1.l; |
|
3142 } |
|
3143 |
|
3144 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2) |
|
3145 { |
|
3146 CPU_FloatU u1, u2; |
|
3147 u1.l = op1; |
|
3148 u2.l = op2; |
|
3149 u1.f = float32_div(u1.f, u2.f, &env->spe_status); |
|
3150 return u1.l; |
|
3151 } |
|
3152 |
|
3153 #define HELPER_SPE_SINGLE_ARITH(name) \ |
|
3154 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ |
|
3155 { \ |
|
3156 return e##name(op1, op2); \ |
|
3157 } |
|
3158 /* efsadd */ |
|
3159 HELPER_SPE_SINGLE_ARITH(fsadd); |
|
3160 /* efssub */ |
|
3161 HELPER_SPE_SINGLE_ARITH(fssub); |
|
3162 /* efsmul */ |
|
3163 HELPER_SPE_SINGLE_ARITH(fsmul); |
|
3164 /* efsdiv */ |
|
3165 HELPER_SPE_SINGLE_ARITH(fsdiv); |
|
3166 |
|
3167 #define HELPER_SPE_VECTOR_ARITH(name) \ |
|
3168 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ |
|
3169 { \ |
|
3170 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ |
|
3171 (uint64_t)e##name(op1, op2); \ |
|
3172 } |
|
3173 /* evfsadd */ |
|
3174 HELPER_SPE_VECTOR_ARITH(fsadd); |
|
3175 /* evfssub */ |
|
3176 HELPER_SPE_VECTOR_ARITH(fssub); |
|
3177 /* evfsmul */ |
|
3178 HELPER_SPE_VECTOR_ARITH(fsmul); |
|
3179 /* evfsdiv */ |
|
3180 HELPER_SPE_VECTOR_ARITH(fsdiv); |
|
3181 |
|
3182 /* Single-precision floating-point comparisons */ |
|
3183 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2) |
|
3184 { |
|
3185 CPU_FloatU u1, u2; |
|
3186 u1.l = op1; |
|
3187 u2.l = op2; |
|
3188 return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0; |
|
3189 } |
|
3190 |
|
3191 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2) |
|
3192 { |
|
3193 CPU_FloatU u1, u2; |
|
3194 u1.l = op1; |
|
3195 u2.l = op2; |
|
3196 return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4; |
|
3197 } |
|
3198 |
|
3199 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2) |
|
3200 { |
|
3201 CPU_FloatU u1, u2; |
|
3202 u1.l = op1; |
|
3203 u2.l = op2; |
|
3204 return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0; |
|
3205 } |
|
3206 |
|
3207 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2) |
|
3208 { |
|
3209 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3210 return efststlt(op1, op2); |
|
3211 } |
|
3212 |
|
3213 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2) |
|
3214 { |
|
3215 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3216 return efststgt(op1, op2); |
|
3217 } |
|
3218 |
|
3219 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2) |
|
3220 { |
|
3221 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3222 return efststeq(op1, op2); |
|
3223 } |
|
3224 |
|
3225 #define HELPER_SINGLE_SPE_CMP(name) \ |
|
3226 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ |
|
3227 { \ |
|
3228 return e##name(op1, op2) << 2; \ |
|
3229 } |
|
3230 /* efststlt */ |
|
3231 HELPER_SINGLE_SPE_CMP(fststlt); |
|
3232 /* efststgt */ |
|
3233 HELPER_SINGLE_SPE_CMP(fststgt); |
|
3234 /* efststeq */ |
|
3235 HELPER_SINGLE_SPE_CMP(fststeq); |
|
3236 /* efscmplt */ |
|
3237 HELPER_SINGLE_SPE_CMP(fscmplt); |
|
3238 /* efscmpgt */ |
|
3239 HELPER_SINGLE_SPE_CMP(fscmpgt); |
|
3240 /* efscmpeq */ |
|
3241 HELPER_SINGLE_SPE_CMP(fscmpeq); |
|
3242 |
|
3243 static always_inline uint32_t evcmp_merge (int t0, int t1) |
|
3244 { |
|
3245 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
|
3246 } |
|
3247 |
|
3248 #define HELPER_VECTOR_SPE_CMP(name) \ |
|
3249 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ |
|
3250 { \ |
|
3251 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ |
|
3252 } |
|
3253 /* evfststlt */ |
|
3254 HELPER_VECTOR_SPE_CMP(fststlt); |
|
3255 /* evfststgt */ |
|
3256 HELPER_VECTOR_SPE_CMP(fststgt); |
|
3257 /* evfststeq */ |
|
3258 HELPER_VECTOR_SPE_CMP(fststeq); |
|
3259 /* evfscmplt */ |
|
3260 HELPER_VECTOR_SPE_CMP(fscmplt); |
|
3261 /* evfscmpgt */ |
|
3262 HELPER_VECTOR_SPE_CMP(fscmpgt); |
|
3263 /* evfscmpeq */ |
|
3264 HELPER_VECTOR_SPE_CMP(fscmpeq); |
|
3265 |
|
3266 /* Double-precision floating-point conversion */ |
|
3267 uint64_t helper_efdcfsi (uint32_t val) |
|
3268 { |
|
3269 CPU_DoubleU u; |
|
3270 |
|
3271 u.d = int32_to_float64(val, &env->spe_status); |
|
3272 |
|
3273 return u.ll; |
|
3274 } |
|
3275 |
|
3276 uint64_t helper_efdcfsid (uint64_t val) |
|
3277 { |
|
3278 CPU_DoubleU u; |
|
3279 |
|
3280 u.d = int64_to_float64(val, &env->spe_status); |
|
3281 |
|
3282 return u.ll; |
|
3283 } |
|
3284 |
|
3285 uint64_t helper_efdcfui (uint32_t val) |
|
3286 { |
|
3287 CPU_DoubleU u; |
|
3288 |
|
3289 u.d = uint32_to_float64(val, &env->spe_status); |
|
3290 |
|
3291 return u.ll; |
|
3292 } |
|
3293 |
|
3294 uint64_t helper_efdcfuid (uint64_t val) |
|
3295 { |
|
3296 CPU_DoubleU u; |
|
3297 |
|
3298 u.d = uint64_to_float64(val, &env->spe_status); |
|
3299 |
|
3300 return u.ll; |
|
3301 } |
|
3302 |
|
3303 uint32_t helper_efdctsi (uint64_t val) |
|
3304 { |
|
3305 CPU_DoubleU u; |
|
3306 |
|
3307 u.ll = val; |
|
3308 /* NaN are not treated the same way IEEE 754 does */ |
|
3309 if (unlikely(float64_is_nan(u.d))) |
|
3310 return 0; |
|
3311 |
|
3312 return float64_to_int32(u.d, &env->spe_status); |
|
3313 } |
|
3314 |
|
3315 uint32_t helper_efdctui (uint64_t val) |
|
3316 { |
|
3317 CPU_DoubleU u; |
|
3318 |
|
3319 u.ll = val; |
|
3320 /* NaN are not treated the same way IEEE 754 does */ |
|
3321 if (unlikely(float64_is_nan(u.d))) |
|
3322 return 0; |
|
3323 |
|
3324 return float64_to_uint32(u.d, &env->spe_status); |
|
3325 } |
|
3326 |
|
3327 uint32_t helper_efdctsiz (uint64_t val) |
|
3328 { |
|
3329 CPU_DoubleU u; |
|
3330 |
|
3331 u.ll = val; |
|
3332 /* NaN are not treated the same way IEEE 754 does */ |
|
3333 if (unlikely(float64_is_nan(u.d))) |
|
3334 return 0; |
|
3335 |
|
3336 return float64_to_int32_round_to_zero(u.d, &env->spe_status); |
|
3337 } |
|
3338 |
|
3339 uint64_t helper_efdctsidz (uint64_t val) |
|
3340 { |
|
3341 CPU_DoubleU u; |
|
3342 |
|
3343 u.ll = val; |
|
3344 /* NaN are not treated the same way IEEE 754 does */ |
|
3345 if (unlikely(float64_is_nan(u.d))) |
|
3346 return 0; |
|
3347 |
|
3348 return float64_to_int64_round_to_zero(u.d, &env->spe_status); |
|
3349 } |
|
3350 |
|
3351 uint32_t helper_efdctuiz (uint64_t val) |
|
3352 { |
|
3353 CPU_DoubleU u; |
|
3354 |
|
3355 u.ll = val; |
|
3356 /* NaN are not treated the same way IEEE 754 does */ |
|
3357 if (unlikely(float64_is_nan(u.d))) |
|
3358 return 0; |
|
3359 |
|
3360 return float64_to_uint32_round_to_zero(u.d, &env->spe_status); |
|
3361 } |
|
3362 |
|
3363 uint64_t helper_efdctuidz (uint64_t val) |
|
3364 { |
|
3365 CPU_DoubleU u; |
|
3366 |
|
3367 u.ll = val; |
|
3368 /* NaN are not treated the same way IEEE 754 does */ |
|
3369 if (unlikely(float64_is_nan(u.d))) |
|
3370 return 0; |
|
3371 |
|
3372 return float64_to_uint64_round_to_zero(u.d, &env->spe_status); |
|
3373 } |
|
3374 |
|
3375 uint64_t helper_efdcfsf (uint32_t val) |
|
3376 { |
|
3377 CPU_DoubleU u; |
|
3378 float64 tmp; |
|
3379 |
|
3380 u.d = int32_to_float64(val, &env->spe_status); |
|
3381 tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
|
3382 u.d = float64_div(u.d, tmp, &env->spe_status); |
|
3383 |
|
3384 return u.ll; |
|
3385 } |
|
3386 |
|
3387 uint64_t helper_efdcfuf (uint32_t val) |
|
3388 { |
|
3389 CPU_DoubleU u; |
|
3390 float64 tmp; |
|
3391 |
|
3392 u.d = uint32_to_float64(val, &env->spe_status); |
|
3393 tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
|
3394 u.d = float64_div(u.d, tmp, &env->spe_status); |
|
3395 |
|
3396 return u.ll; |
|
3397 } |
|
3398 |
|
3399 uint32_t helper_efdctsf (uint64_t val) |
|
3400 { |
|
3401 CPU_DoubleU u; |
|
3402 float64 tmp; |
|
3403 |
|
3404 u.ll = val; |
|
3405 /* NaN are not treated the same way IEEE 754 does */ |
|
3406 if (unlikely(float64_is_nan(u.d))) |
|
3407 return 0; |
|
3408 tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
|
3409 u.d = float64_mul(u.d, tmp, &env->spe_status); |
|
3410 |
|
3411 return float64_to_int32(u.d, &env->spe_status); |
|
3412 } |
|
3413 |
|
3414 uint32_t helper_efdctuf (uint64_t val) |
|
3415 { |
|
3416 CPU_DoubleU u; |
|
3417 float64 tmp; |
|
3418 |
|
3419 u.ll = val; |
|
3420 /* NaN are not treated the same way IEEE 754 does */ |
|
3421 if (unlikely(float64_is_nan(u.d))) |
|
3422 return 0; |
|
3423 tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
|
3424 u.d = float64_mul(u.d, tmp, &env->spe_status); |
|
3425 |
|
3426 return float64_to_uint32(u.d, &env->spe_status); |
|
3427 } |
|
3428 |
|
3429 uint32_t helper_efscfd (uint64_t val) |
|
3430 { |
|
3431 CPU_DoubleU u1; |
|
3432 CPU_FloatU u2; |
|
3433 |
|
3434 u1.ll = val; |
|
3435 u2.f = float64_to_float32(u1.d, &env->spe_status); |
|
3436 |
|
3437 return u2.l; |
|
3438 } |
|
3439 |
|
3440 uint64_t helper_efdcfs (uint32_t val) |
|
3441 { |
|
3442 CPU_DoubleU u2; |
|
3443 CPU_FloatU u1; |
|
3444 |
|
3445 u1.l = val; |
|
3446 u2.d = float32_to_float64(u1.f, &env->spe_status); |
|
3447 |
|
3448 return u2.ll; |
|
3449 } |
|
3450 |
|
3451 /* Double precision fixed-point arithmetic */ |
|
3452 uint64_t helper_efdadd (uint64_t op1, uint64_t op2) |
|
3453 { |
|
3454 CPU_DoubleU u1, u2; |
|
3455 u1.ll = op1; |
|
3456 u2.ll = op2; |
|
3457 u1.d = float64_add(u1.d, u2.d, &env->spe_status); |
|
3458 return u1.ll; |
|
3459 } |
|
3460 |
|
3461 uint64_t helper_efdsub (uint64_t op1, uint64_t op2) |
|
3462 { |
|
3463 CPU_DoubleU u1, u2; |
|
3464 u1.ll = op1; |
|
3465 u2.ll = op2; |
|
3466 u1.d = float64_sub(u1.d, u2.d, &env->spe_status); |
|
3467 return u1.ll; |
|
3468 } |
|
3469 |
|
3470 uint64_t helper_efdmul (uint64_t op1, uint64_t op2) |
|
3471 { |
|
3472 CPU_DoubleU u1, u2; |
|
3473 u1.ll = op1; |
|
3474 u2.ll = op2; |
|
3475 u1.d = float64_mul(u1.d, u2.d, &env->spe_status); |
|
3476 return u1.ll; |
|
3477 } |
|
3478 |
|
3479 uint64_t helper_efddiv (uint64_t op1, uint64_t op2) |
|
3480 { |
|
3481 CPU_DoubleU u1, u2; |
|
3482 u1.ll = op1; |
|
3483 u2.ll = op2; |
|
3484 u1.d = float64_div(u1.d, u2.d, &env->spe_status); |
|
3485 return u1.ll; |
|
3486 } |
|
3487 |
|
3488 /* Double precision floating point helpers */ |
|
3489 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) |
|
3490 { |
|
3491 CPU_DoubleU u1, u2; |
|
3492 u1.ll = op1; |
|
3493 u2.ll = op2; |
|
3494 return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0; |
|
3495 } |
|
3496 |
|
3497 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) |
|
3498 { |
|
3499 CPU_DoubleU u1, u2; |
|
3500 u1.ll = op1; |
|
3501 u2.ll = op2; |
|
3502 return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4; |
|
3503 } |
|
3504 |
|
3505 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) |
|
3506 { |
|
3507 CPU_DoubleU u1, u2; |
|
3508 u1.ll = op1; |
|
3509 u2.ll = op2; |
|
3510 return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0; |
|
3511 } |
|
3512 |
|
3513 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) |
|
3514 { |
|
3515 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3516 return helper_efdtstlt(op1, op2); |
|
3517 } |
|
3518 |
|
3519 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) |
|
3520 { |
|
3521 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3522 return helper_efdtstgt(op1, op2); |
|
3523 } |
|
3524 |
|
3525 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) |
|
3526 { |
|
3527 /* XXX: TODO: test special values (NaN, infinites, ...) */ |
|
3528 return helper_efdtsteq(op1, op2); |
|
3529 } |
|
3530 |
|
3531 /*****************************************************************************/ |
|
3532 /* Softmmu support */ |
|
3533 #if !defined (CONFIG_USER_ONLY) |
|
3534 |
|
3535 #define MMUSUFFIX _mmu |
|
3536 |
|
3537 #define SHIFT 0 |
|
3538 #include "softmmu_template.h" |
|
3539 |
|
3540 #define SHIFT 1 |
|
3541 #include "softmmu_template.h" |
|
3542 |
|
3543 #define SHIFT 2 |
|
3544 #include "softmmu_template.h" |
|
3545 |
|
3546 #define SHIFT 3 |
|
3547 #include "softmmu_template.h" |
|
3548 |
|
3549 /* try to fill the TLB and return an exception if error. If retaddr is |
|
3550 NULL, it means that the function was called in C code (i.e. not |
|
3551 from generated code or from helper.c) */ |
|
3552 /* XXX: fix it to restore all registers */ |
|
3553 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
|
3554 { |
|
3555 TranslationBlock *tb; |
|
3556 CPUState *saved_env; |
|
3557 unsigned long pc; |
|
3558 int ret; |
|
3559 |
|
3560 /* XXX: hack to restore env in all cases, even if not called from |
|
3561 generated code */ |
|
3562 saved_env = env; |
|
3563 env = cpu_single_env; |
|
3564 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
|
3565 if (unlikely(ret != 0)) { |
|
3566 if (likely(retaddr)) { |
|
3567 /* now we have a real cpu fault */ |
|
3568 pc = (unsigned long)retaddr; |
|
3569 tb = tb_find_pc(pc); |
|
3570 if (likely(tb)) { |
|
3571 /* the PC is inside the translated code. It means that we have |
|
3572 a virtual CPU fault */ |
|
3573 cpu_restore_state(tb, env, pc, NULL); |
|
3574 } |
|
3575 } |
|
3576 helper_raise_exception_err(env->exception_index, env->error_code); |
|
3577 } |
|
3578 env = saved_env; |
|
3579 } |
|
3580 |
|
3581 /* Segment registers load and store */ |
|
3582 target_ulong helper_load_sr (target_ulong sr_num) |
|
3583 { |
|
3584 return env->sr[sr_num]; |
|
3585 } |
|
3586 |
|
3587 void helper_store_sr (target_ulong sr_num, target_ulong val) |
|
3588 { |
|
3589 ppc_store_sr(env, sr_num, val); |
|
3590 } |
|
3591 |
|
3592 /* SLB management */ |
|
3593 #if defined(TARGET_PPC64) |
|
3594 target_ulong helper_load_slb (target_ulong slb_nr) |
|
3595 { |
|
3596 return ppc_load_slb(env, slb_nr); |
|
3597 } |
|
3598 |
|
3599 void helper_store_slb (target_ulong slb_nr, target_ulong rs) |
|
3600 { |
|
3601 ppc_store_slb(env, slb_nr, rs); |
|
3602 } |
|
3603 |
|
3604 void helper_slbia (void) |
|
3605 { |
|
3606 ppc_slb_invalidate_all(env); |
|
3607 } |
|
3608 |
|
3609 void helper_slbie (target_ulong addr) |
|
3610 { |
|
3611 ppc_slb_invalidate_one(env, addr); |
|
3612 } |
|
3613 |
|
3614 #endif /* defined(TARGET_PPC64) */ |
|
3615 |
|
3616 /* TLB management */ |
|
3617 void helper_tlbia (void) |
|
3618 { |
|
3619 ppc_tlb_invalidate_all(env); |
|
3620 } |
|
3621 |
|
3622 void helper_tlbie (target_ulong addr) |
|
3623 { |
|
3624 ppc_tlb_invalidate_one(env, addr); |
|
3625 } |
|
3626 |
|
3627 /* Software driven TLBs management */ |
|
3628 /* PowerPC 602/603 software TLB load instructions helpers */ |
|
3629 static void do_6xx_tlb (target_ulong new_EPN, int is_code) |
|
3630 { |
|
3631 target_ulong RPN, CMP, EPN; |
|
3632 int way; |
|
3633 |
|
3634 RPN = env->spr[SPR_RPA]; |
|
3635 if (is_code) { |
|
3636 CMP = env->spr[SPR_ICMP]; |
|
3637 EPN = env->spr[SPR_IMISS]; |
|
3638 } else { |
|
3639 CMP = env->spr[SPR_DCMP]; |
|
3640 EPN = env->spr[SPR_DMISS]; |
|
3641 } |
|
3642 way = (env->spr[SPR_SRR1] >> 17) & 1; |
|
3643 #if defined (DEBUG_SOFTWARE_TLB) |
|
3644 if (loglevel != 0) { |
|
3645 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX |
|
3646 " PTE1 " ADDRX " way %d\n", |
|
3647 __func__, new_EPN, EPN, CMP, RPN, way); |
|
3648 } |
|
3649 #endif |
|
3650 /* Store this TLB */ |
|
3651 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), |
|
3652 way, is_code, CMP, RPN); |
|
3653 } |
|
3654 |
|
3655 void helper_6xx_tlbd (target_ulong EPN) |
|
3656 { |
|
3657 do_6xx_tlb(EPN, 0); |
|
3658 } |
|
3659 |
|
3660 void helper_6xx_tlbi (target_ulong EPN) |
|
3661 { |
|
3662 do_6xx_tlb(EPN, 1); |
|
3663 } |
|
3664 |
|
3665 /* PowerPC 74xx software TLB load instructions helpers */ |
|
3666 static void do_74xx_tlb (target_ulong new_EPN, int is_code) |
|
3667 { |
|
3668 target_ulong RPN, CMP, EPN; |
|
3669 int way; |
|
3670 |
|
3671 RPN = env->spr[SPR_PTELO]; |
|
3672 CMP = env->spr[SPR_PTEHI]; |
|
3673 EPN = env->spr[SPR_TLBMISS] & ~0x3; |
|
3674 way = env->spr[SPR_TLBMISS] & 0x3; |
|
3675 #if defined (DEBUG_SOFTWARE_TLB) |
|
3676 if (loglevel != 0) { |
|
3677 fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX |
|
3678 " PTE1 " ADDRX " way %d\n", |
|
3679 __func__, new_EPN, EPN, CMP, RPN, way); |
|
3680 } |
|
3681 #endif |
|
3682 /* Store this TLB */ |
|
3683 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), |
|
3684 way, is_code, CMP, RPN); |
|
3685 } |
|
3686 |
|
3687 void helper_74xx_tlbd (target_ulong EPN) |
|
3688 { |
|
3689 do_74xx_tlb(EPN, 0); |
|
3690 } |
|
3691 |
|
3692 void helper_74xx_tlbi (target_ulong EPN) |
|
3693 { |
|
3694 do_74xx_tlb(EPN, 1); |
|
3695 } |
|
3696 |
|
3697 static always_inline target_ulong booke_tlb_to_page_size (int size) |
|
3698 { |
|
3699 return 1024 << (2 * size); |
|
3700 } |
|
3701 |
|
3702 static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
|
3703 { |
|
3704 int size; |
|
3705 |
|
3706 switch (page_size) { |
|
3707 case 0x00000400UL: |
|
3708 size = 0x0; |
|
3709 break; |
|
3710 case 0x00001000UL: |
|
3711 size = 0x1; |
|
3712 break; |
|
3713 case 0x00004000UL: |
|
3714 size = 0x2; |
|
3715 break; |
|
3716 case 0x00010000UL: |
|
3717 size = 0x3; |
|
3718 break; |
|
3719 case 0x00040000UL: |
|
3720 size = 0x4; |
|
3721 break; |
|
3722 case 0x00100000UL: |
|
3723 size = 0x5; |
|
3724 break; |
|
3725 case 0x00400000UL: |
|
3726 size = 0x6; |
|
3727 break; |
|
3728 case 0x01000000UL: |
|
3729 size = 0x7; |
|
3730 break; |
|
3731 case 0x04000000UL: |
|
3732 size = 0x8; |
|
3733 break; |
|
3734 case 0x10000000UL: |
|
3735 size = 0x9; |
|
3736 break; |
|
3737 case 0x40000000UL: |
|
3738 size = 0xA; |
|
3739 break; |
|
3740 #if defined (TARGET_PPC64) |
|
3741 case 0x000100000000ULL: |
|
3742 size = 0xB; |
|
3743 break; |
|
3744 case 0x000400000000ULL: |
|
3745 size = 0xC; |
|
3746 break; |
|
3747 case 0x001000000000ULL: |
|
3748 size = 0xD; |
|
3749 break; |
|
3750 case 0x004000000000ULL: |
|
3751 size = 0xE; |
|
3752 break; |
|
3753 case 0x010000000000ULL: |
|
3754 size = 0xF; |
|
3755 break; |
|
3756 #endif |
|
3757 default: |
|
3758 size = -1; |
|
3759 break; |
|
3760 } |
|
3761 |
|
3762 return size; |
|
3763 } |
|
3764 |
|
3765 /* Helpers for 4xx TLB management */ |
|
3766 target_ulong helper_4xx_tlbre_lo (target_ulong entry) |
|
3767 { |
|
3768 ppcemb_tlb_t *tlb; |
|
3769 target_ulong ret; |
|
3770 int size; |
|
3771 |
|
3772 entry &= 0x3F; |
|
3773 tlb = &env->tlb[entry].tlbe; |
|
3774 ret = tlb->EPN; |
|
3775 if (tlb->prot & PAGE_VALID) |
|
3776 ret |= 0x400; |
|
3777 size = booke_page_size_to_tlb(tlb->size); |
|
3778 if (size < 0 || size > 0x7) |
|
3779 size = 1; |
|
3780 ret |= size << 7; |
|
3781 env->spr[SPR_40x_PID] = tlb->PID; |
|
3782 return ret; |
|
3783 } |
|
3784 |
|
3785 target_ulong helper_4xx_tlbre_hi (target_ulong entry) |
|
3786 { |
|
3787 ppcemb_tlb_t *tlb; |
|
3788 target_ulong ret; |
|
3789 |
|
3790 entry &= 0x3F; |
|
3791 tlb = &env->tlb[entry].tlbe; |
|
3792 ret = tlb->RPN; |
|
3793 if (tlb->prot & PAGE_EXEC) |
|
3794 ret |= 0x200; |
|
3795 if (tlb->prot & PAGE_WRITE) |
|
3796 ret |= 0x100; |
|
3797 return ret; |
|
3798 } |
|
3799 |
|
3800 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val) |
|
3801 { |
|
3802 ppcemb_tlb_t *tlb; |
|
3803 target_ulong page, end; |
|
3804 |
|
3805 #if defined (DEBUG_SOFTWARE_TLB) |
|
3806 if (loglevel != 0) { |
|
3807 fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val); |
|
3808 } |
|
3809 #endif |
|
3810 entry &= 0x3F; |
|
3811 tlb = &env->tlb[entry].tlbe; |
|
3812 /* Invalidate previous TLB (if it's valid) */ |
|
3813 if (tlb->prot & PAGE_VALID) { |
|
3814 end = tlb->EPN + tlb->size; |
|
3815 #if defined (DEBUG_SOFTWARE_TLB) |
|
3816 if (loglevel != 0) { |
|
3817 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX |
|
3818 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); |
|
3819 } |
|
3820 #endif |
|
3821 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
|
3822 tlb_flush_page(env, page); |
|
3823 } |
|
3824 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7); |
|
3825 /* We cannot handle TLB size < TARGET_PAGE_SIZE. |
|
3826 * If this ever occurs, one should use the ppcemb target instead |
|
3827 * of the ppc or ppc64 one |
|
3828 */ |
|
3829 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) { |
|
3830 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
|
3831 "are not supported (%d)\n", |
|
3832 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7)); |
|
3833 } |
|
3834 tlb->EPN = val & ~(tlb->size - 1); |
|
3835 if (val & 0x40) |
|
3836 tlb->prot |= PAGE_VALID; |
|
3837 else |
|
3838 tlb->prot &= ~PAGE_VALID; |
|
3839 if (val & 0x20) { |
|
3840 /* XXX: TO BE FIXED */ |
|
3841 cpu_abort(env, "Little-endian TLB entries are not supported by now\n"); |
|
3842 } |
|
3843 tlb->PID = env->spr[SPR_40x_PID]; /* PID */ |
|
3844 tlb->attr = val & 0xFF; |
|
3845 #if defined (DEBUG_SOFTWARE_TLB) |
|
3846 if (loglevel != 0) { |
|
3847 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
|
3848 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
|
3849 (int)entry, tlb->RPN, tlb->EPN, tlb->size, |
|
3850 tlb->prot & PAGE_READ ? 'r' : '-', |
|
3851 tlb->prot & PAGE_WRITE ? 'w' : '-', |
|
3852 tlb->prot & PAGE_EXEC ? 'x' : '-', |
|
3853 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
|
3854 } |
|
3855 #endif |
|
3856 /* Invalidate new TLB (if valid) */ |
|
3857 if (tlb->prot & PAGE_VALID) { |
|
3858 end = tlb->EPN + tlb->size; |
|
3859 #if defined (DEBUG_SOFTWARE_TLB) |
|
3860 if (loglevel != 0) { |
|
3861 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX |
|
3862 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end); |
|
3863 } |
|
3864 #endif |
|
3865 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) |
|
3866 tlb_flush_page(env, page); |
|
3867 } |
|
3868 } |
|
3869 |
|
3870 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val) |
|
3871 { |
|
3872 ppcemb_tlb_t *tlb; |
|
3873 |
|
3874 #if defined (DEBUG_SOFTWARE_TLB) |
|
3875 if (loglevel != 0) { |
|
3876 fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val); |
|
3877 } |
|
3878 #endif |
|
3879 entry &= 0x3F; |
|
3880 tlb = &env->tlb[entry].tlbe; |
|
3881 tlb->RPN = val & 0xFFFFFC00; |
|
3882 tlb->prot = PAGE_READ; |
|
3883 if (val & 0x200) |
|
3884 tlb->prot |= PAGE_EXEC; |
|
3885 if (val & 0x100) |
|
3886 tlb->prot |= PAGE_WRITE; |
|
3887 #if defined (DEBUG_SOFTWARE_TLB) |
|
3888 if (loglevel != 0) { |
|
3889 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
|
3890 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
|
3891 (int)entry, tlb->RPN, tlb->EPN, tlb->size, |
|
3892 tlb->prot & PAGE_READ ? 'r' : '-', |
|
3893 tlb->prot & PAGE_WRITE ? 'w' : '-', |
|
3894 tlb->prot & PAGE_EXEC ? 'x' : '-', |
|
3895 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
|
3896 } |
|
3897 #endif |
|
3898 } |
|
3899 |
|
3900 target_ulong helper_4xx_tlbsx (target_ulong address) |
|
3901 { |
|
3902 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]); |
|
3903 } |
|
3904 |
|
3905 /* PowerPC 440 TLB management */ |
|
3906 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value) |
|
3907 { |
|
3908 ppcemb_tlb_t *tlb; |
|
3909 target_ulong EPN, RPN, size; |
|
3910 int do_flush_tlbs; |
|
3911 |
|
3912 #if defined (DEBUG_SOFTWARE_TLB) |
|
3913 if (loglevel != 0) { |
|
3914 fprintf(logfile, "%s word %d entry %d value " ADDRX "\n", |
|
3915 __func__, word, (int)entry, value); |
|
3916 } |
|
3917 #endif |
|
3918 do_flush_tlbs = 0; |
|
3919 entry &= 0x3F; |
|
3920 tlb = &env->tlb[entry].tlbe; |
|
3921 switch (word) { |
|
3922 default: |
|
3923 /* Just here to please gcc */ |
|
3924 case 0: |
|
3925 EPN = value & 0xFFFFFC00; |
|
3926 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) |
|
3927 do_flush_tlbs = 1; |
|
3928 tlb->EPN = EPN; |
|
3929 size = booke_tlb_to_page_size((value >> 4) & 0xF); |
|
3930 if ((tlb->prot & PAGE_VALID) && tlb->size < size) |
|
3931 do_flush_tlbs = 1; |
|
3932 tlb->size = size; |
|
3933 tlb->attr &= ~0x1; |
|
3934 tlb->attr |= (value >> 8) & 1; |
|
3935 if (value & 0x200) { |
|
3936 tlb->prot |= PAGE_VALID; |
|
3937 } else { |
|
3938 if (tlb->prot & PAGE_VALID) { |
|
3939 tlb->prot &= ~PAGE_VALID; |
|
3940 do_flush_tlbs = 1; |
|
3941 } |
|
3942 } |
|
3943 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; |
|
3944 if (do_flush_tlbs) |
|
3945 tlb_flush(env, 1); |
|
3946 break; |
|
3947 case 1: |
|
3948 RPN = value & 0xFFFFFC0F; |
|
3949 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) |
|
3950 tlb_flush(env, 1); |
|
3951 tlb->RPN = RPN; |
|
3952 break; |
|
3953 case 2: |
|
3954 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00); |
|
3955 tlb->prot = tlb->prot & PAGE_VALID; |
|
3956 if (value & 0x1) |
|
3957 tlb->prot |= PAGE_READ << 4; |
|
3958 if (value & 0x2) |
|
3959 tlb->prot |= PAGE_WRITE << 4; |
|
3960 if (value & 0x4) |
|
3961 tlb->prot |= PAGE_EXEC << 4; |
|
3962 if (value & 0x8) |
|
3963 tlb->prot |= PAGE_READ; |
|
3964 if (value & 0x10) |
|
3965 tlb->prot |= PAGE_WRITE; |
|
3966 if (value & 0x20) |
|
3967 tlb->prot |= PAGE_EXEC; |
|
3968 break; |
|
3969 } |
|
3970 } |
|
3971 |
|
3972 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry) |
|
3973 { |
|
3974 ppcemb_tlb_t *tlb; |
|
3975 target_ulong ret; |
|
3976 int size; |
|
3977 |
|
3978 entry &= 0x3F; |
|
3979 tlb = &env->tlb[entry].tlbe; |
|
3980 switch (word) { |
|
3981 default: |
|
3982 /* Just here to please gcc */ |
|
3983 case 0: |
|
3984 ret = tlb->EPN; |
|
3985 size = booke_page_size_to_tlb(tlb->size); |
|
3986 if (size < 0 || size > 0xF) |
|
3987 size = 1; |
|
3988 ret |= size << 4; |
|
3989 if (tlb->attr & 0x1) |
|
3990 ret |= 0x100; |
|
3991 if (tlb->prot & PAGE_VALID) |
|
3992 ret |= 0x200; |
|
3993 env->spr[SPR_440_MMUCR] &= ~0x000000FF; |
|
3994 env->spr[SPR_440_MMUCR] |= tlb->PID; |
|
3995 break; |
|
3996 case 1: |
|
3997 ret = tlb->RPN; |
|
3998 break; |
|
3999 case 2: |
|
4000 ret = tlb->attr & ~0x1; |
|
4001 if (tlb->prot & (PAGE_READ << 4)) |
|
4002 ret |= 0x1; |
|
4003 if (tlb->prot & (PAGE_WRITE << 4)) |
|
4004 ret |= 0x2; |
|
4005 if (tlb->prot & (PAGE_EXEC << 4)) |
|
4006 ret |= 0x4; |
|
4007 if (tlb->prot & PAGE_READ) |
|
4008 ret |= 0x8; |
|
4009 if (tlb->prot & PAGE_WRITE) |
|
4010 ret |= 0x10; |
|
4011 if (tlb->prot & PAGE_EXEC) |
|
4012 ret |= 0x20; |
|
4013 break; |
|
4014 } |
|
4015 return ret; |
|
4016 } |
|
4017 |
|
4018 target_ulong helper_440_tlbsx (target_ulong address) |
|
4019 { |
|
4020 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF); |
|
4021 } |
|
4022 |
|
4023 #endif /* !CONFIG_USER_ONLY */ |