symbian-qemu-0.9.1-12/python-2.6.1/Doc/library/sqlite3.rst
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Doc/library/sqlite3.rst	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,860 @@
+:mod:`sqlite3` --- DB-API 2.0 interface for SQLite databases
+============================================================
+
+.. module:: sqlite3
+   :synopsis: A DB-API 2.0 implementation using SQLite 3.x.
+.. sectionauthor:: Gerhard Häring <gh@ghaering.de>
+
+
+.. versionadded:: 2.5
+
+SQLite is a C library that provides a lightweight disk-based database that
+doesn't require a separate server process and allows accessing the database
+using a nonstandard variant of the SQL query language. Some applications can use
+SQLite for internal data storage.  It's also possible to prototype an
+application using SQLite and then port the code to a larger database such as
+PostgreSQL or Oracle.
+
+pysqlite was written by Gerhard Häring and provides a SQL interface compliant
+with the DB-API 2.0 specification described by :pep:`249`.
+
+To use the module, you must first create a :class:`Connection` object that
+represents the database.  Here the data will be stored in the
+:file:`/tmp/example` file::
+
+   conn = sqlite3.connect('/tmp/example')
+
+You can also supply the special name ``:memory:`` to create a database in RAM.
+
+Once you have a :class:`Connection`, you can create a :class:`Cursor`  object
+and call its :meth:`~Cursor.execute` method to perform SQL commands::
+
+   c = conn.cursor()
+
+   # Create table
+   c.execute('''create table stocks
+   (date text, trans text, symbol text,
+    qty real, price real)''')
+
+   # Insert a row of data
+   c.execute("""insert into stocks
+             values ('2006-01-05','BUY','RHAT',100,35.14)""")
+
+   # Save (commit) the changes
+   conn.commit()
+
+   # We can also close the cursor if we are done with it
+   c.close()
+
+Usually your SQL operations will need to use values from Python variables.  You
+shouldn't assemble your query using Python's string operations because doing so
+is insecure; it makes your program vulnerable to an SQL injection attack.
+
+Instead, use the DB-API's parameter substitution.  Put ``?`` as a placeholder
+wherever you want to use a value, and then provide a tuple of values as the
+second argument to the cursor's :meth:`~Cursor.execute` method.  (Other database modules
+may use a different placeholder, such as ``%s`` or ``:1``.) For example::
+
+   # Never do this -- insecure!
+   symbol = 'IBM'
+   c.execute("... where symbol = '%s'" % symbol)
+
+   # Do this instead
+   t = (symbol,)
+   c.execute('select * from stocks where symbol=?', t)
+
+   # Larger example
+   for t in [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
+             ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
+             ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
+            ]:
+       c.execute('insert into stocks values (?,?,?,?,?)', t)
+
+To retrieve data after executing a SELECT statement, you can either treat the
+cursor as an :term:`iterator`, call the cursor's :meth:`~Cursor.fetchone` method to
+retrieve a single matching row, or call :meth:`~Cursor.fetchall` to get a list of the
+matching rows.
+
+This example uses the iterator form::
+
+   >>> c = conn.cursor()
+   >>> c.execute('select * from stocks order by price')
+   >>> for row in c:
+   ...    print row
+   ...
+   (u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
+   (u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
+   (u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
+   (u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
+   >>>
+
+
+.. seealso::
+
+   http://www.pysqlite.org
+      The pysqlite web page.
+
+   http://www.sqlite.org
+      The SQLite web page; the documentation describes the syntax and the available
+      data types for the supported SQL dialect.
+
+   :pep:`249` - Database API Specification 2.0
+      PEP written by Marc-André Lemburg.
+
+
+.. _sqlite3-module-contents:
+
+Module functions and constants
+------------------------------
+
+
+.. data:: PARSE_DECLTYPES
+
+   This constant is meant to be used with the *detect_types* parameter of the
+   :func:`connect` function.
+
+   Setting it makes the :mod:`sqlite3` module parse the declared type for each
+   column it returns.  It will parse out the first word of the declared type,
+   i. e.  for "integer primary key", it will parse out "integer", or for
+   "number(10)" it will parse out "number". Then for that column, it will look
+   into the converters dictionary and use the converter function registered for
+   that type there.
+
+
+.. data:: PARSE_COLNAMES
+
+   This constant is meant to be used with the *detect_types* parameter of the
+   :func:`connect` function.
+
+   Setting this makes the SQLite interface parse the column name for each column it
+   returns.  It will look for a string formed [mytype] in there, and then decide
+   that 'mytype' is the type of the column. It will try to find an entry of
+   'mytype' in the converters dictionary and then use the converter function found
+   there to return the value. The column name found in :attr:`Cursor.description`
+   is only the first word of the column name, i.  e. if you use something like
+   ``'as "x [datetime]"'`` in your SQL, then we will parse out everything until the
+   first blank for the column name: the column name would simply be "x".
+
+
+.. function:: connect(database[, timeout, isolation_level, detect_types, factory])
+
+   Opens a connection to the SQLite database file *database*. You can use
+   ``":memory:"`` to open a database connection to a database that resides in RAM
+   instead of on disk.
+
+   When a database is accessed by multiple connections, and one of the processes
+   modifies the database, the SQLite database is locked until that transaction is
+   committed. The *timeout* parameter specifies how long the connection should wait
+   for the lock to go away until raising an exception. The default for the timeout
+   parameter is 5.0 (five seconds).
+
+   For the *isolation_level* parameter, please see the
+   :attr:`Connection.isolation_level` property of :class:`Connection` objects.
+
+   SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If
+   you want to use other types you must add support for them yourself. The
+   *detect_types* parameter and the using custom **converters** registered with the
+   module-level :func:`register_converter` function allow you to easily do that.
+
+   *detect_types* defaults to 0 (i. e. off, no type detection), you can set it to
+   any combination of :const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES` to turn
+   type detection on.
+
+   By default, the :mod:`sqlite3` module uses its :class:`Connection` class for the
+   connect call.  You can, however, subclass the :class:`Connection` class and make
+   :func:`connect` use your class instead by providing your class for the *factory*
+   parameter.
+
+   Consult the section :ref:`sqlite3-types` of this manual for details.
+
+   The :mod:`sqlite3` module internally uses a statement cache to avoid SQL parsing
+   overhead. If you want to explicitly set the number of statements that are cached
+   for the connection, you can set the *cached_statements* parameter. The currently
+   implemented default is to cache 100 statements.
+
+
+.. function:: register_converter(typename, callable)
+
+   Registers a callable to convert a bytestring from the database into a custom
+   Python type. The callable will be invoked for all database values that are of
+   the type *typename*. Confer the parameter *detect_types* of the :func:`connect`
+   function for how the type detection works. Note that the case of *typename* and
+   the name of the type in your query must match!
+
+
+.. function:: register_adapter(type, callable)
+
+   Registers a callable to convert the custom Python type *type* into one of
+   SQLite's supported types. The callable *callable* accepts as single parameter
+   the Python value, and must return a value of the following types: int, long,
+   float, str (UTF-8 encoded), unicode or buffer.
+
+
+.. function:: complete_statement(sql)
+
+   Returns :const:`True` if the string *sql* contains one or more complete SQL
+   statements terminated by semicolons. It does not verify that the SQL is
+   syntactically correct, only that there are no unclosed string literals and the
+   statement is terminated by a semicolon.
+
+   This can be used to build a shell for SQLite, as in the following example:
+
+
+   .. literalinclude:: ../includes/sqlite3/complete_statement.py
+
+
+.. function:: enable_callback_tracebacks(flag)
+
+   By default you will not get any tracebacks in user-defined functions,
+   aggregates, converters, authorizer callbacks etc. If you want to debug them, you
+   can call this function with *flag* as True. Afterwards, you will get tracebacks
+   from callbacks on ``sys.stderr``. Use :const:`False` to disable the feature
+   again.
+
+
+.. _sqlite3-connection-objects:
+
+Connection Objects
+------------------
+
+.. class:: Connection
+
+   A SQLite database connection has the following attributes and methods:
+
+.. attribute:: Connection.isolation_level
+
+   Get or set the current isolation level. :const:`None` for autocommit mode or one of
+   "DEFERRED", "IMMEDIATE" or "EXLUSIVE". See section
+   :ref:`sqlite3-controlling-transactions` for a more detailed explanation.
+
+
+.. method:: Connection.cursor([cursorClass])
+
+   The cursor method accepts a single optional parameter *cursorClass*. If
+   supplied, this must be a custom cursor class that extends
+   :class:`sqlite3.Cursor`.
+
+
+.. method:: Connection.commit()
+
+   This method commits the current transaction. If you don't call this method,
+   anything you did since the last call to ``commit()`` is not visible from from
+   other database connections. If you wonder why you don't see the data you've
+   written to the database, please check you didn't forget to call this method.
+
+.. method:: Connection.rollback()
+
+   This method rolls back any changes to the database since the last call to 
+   :meth:`commit`.
+
+.. method:: Connection.close()
+
+   This closes the database connection. Note that this does not automatically
+   call :meth:`commit`. If you just close your database connection without
+   calling :meth:`commit` first, your changes will be lost!
+
+.. method:: Connection.execute(sql, [parameters])
+
+   This is a nonstandard shortcut that creates an intermediate cursor object by
+   calling the cursor method, then calls the cursor's :meth:`execute` method with
+   the parameters given.
+
+
+.. method:: Connection.executemany(sql, [parameters])
+
+   This is a nonstandard shortcut that creates an intermediate cursor object by
+   calling the cursor method, then calls the cursor's :meth:`executemany` method
+   with the parameters given.
+
+.. method:: Connection.executescript(sql_script)
+
+   This is a nonstandard shortcut that creates an intermediate cursor object by
+   calling the cursor method, then calls the cursor's :meth:`executescript` method
+   with the parameters given.
+
+
+.. method:: Connection.create_function(name, num_params, func)
+
+   Creates a user-defined function that you can later use from within SQL
+   statements under the function name *name*. *num_params* is the number of
+   parameters the function accepts, and *func* is a Python callable that is called
+   as the SQL function.
+
+   The function can return any of the types supported by SQLite: unicode, str, int,
+   long, float, buffer and None.
+
+   Example:
+
+   .. literalinclude:: ../includes/sqlite3/md5func.py
+
+
+.. method:: Connection.create_aggregate(name, num_params, aggregate_class)
+
+   Creates a user-defined aggregate function.
+
+   The aggregate class must implement a ``step`` method, which accepts the number
+   of parameters *num_params*, and a ``finalize`` method which will return the
+   final result of the aggregate.
+
+   The ``finalize`` method can return any of the types supported by SQLite:
+   unicode, str, int, long, float, buffer and None.
+
+   Example:
+
+   .. literalinclude:: ../includes/sqlite3/mysumaggr.py
+
+
+.. method:: Connection.create_collation(name, callable)
+
+   Creates a collation with the specified *name* and *callable*. The callable will
+   be passed two string arguments. It should return -1 if the first is ordered
+   lower than the second, 0 if they are ordered equal and 1 if the first is ordered
+   higher than the second.  Note that this controls sorting (ORDER BY in SQL) so
+   your comparisons don't affect other SQL operations.
+
+   Note that the callable will get its parameters as Python bytestrings, which will
+   normally be encoded in UTF-8.
+
+   The following example shows a custom collation that sorts "the wrong way":
+
+   .. literalinclude:: ../includes/sqlite3/collation_reverse.py
+
+   To remove a collation, call ``create_collation`` with None as callable::
+
+      con.create_collation("reverse", None)
+
+
+.. method:: Connection.interrupt()
+
+   You can call this method from a different thread to abort any queries that might
+   be executing on the connection. The query will then abort and the caller will
+   get an exception.
+
+
+.. method:: Connection.set_authorizer(authorizer_callback)
+
+   This routine registers a callback. The callback is invoked for each attempt to
+   access a column of a table in the database. The callback should return
+   :const:`SQLITE_OK` if access is allowed, :const:`SQLITE_DENY` if the entire SQL
+   statement should be aborted with an error and :const:`SQLITE_IGNORE` if the
+   column should be treated as a NULL value. These constants are available in the
+   :mod:`sqlite3` module.
+
+   The first argument to the callback signifies what kind of operation is to be
+   authorized. The second and third argument will be arguments or :const:`None`
+   depending on the first argument. The 4th argument is the name of the database
+   ("main", "temp", etc.) if applicable. The 5th argument is the name of the
+   inner-most trigger or view that is responsible for the access attempt or
+   :const:`None` if this access attempt is directly from input SQL code.
+
+   Please consult the SQLite documentation about the possible values for the first
+   argument and the meaning of the second and third argument depending on the first
+   one. All necessary constants are available in the :mod:`sqlite3` module.
+
+
+.. method:: Connection.set_progress_handler(handler, n)
+
+   .. versionadded:: 2.6
+
+   This routine registers a callback. The callback is invoked for every *n*
+   instructions of the SQLite virtual machine. This is useful if you want to
+   get called from SQLite during long-running operations, for example to update
+   a GUI.
+
+   If you want to clear any previously installed progress handler, call the
+   method with :const:`None` for *handler*.
+
+
+.. attribute:: Connection.row_factory
+
+   You can change this attribute to a callable that accepts the cursor and the
+   original row as a tuple and will return the real result row.  This way, you can
+   implement more advanced ways of returning results, such  as returning an object
+   that can also access columns by name.
+
+   Example:
+
+   .. literalinclude:: ../includes/sqlite3/row_factory.py
+
+   If returning a tuple doesn't suffice and you want name-based access to
+   columns, you should consider setting :attr:`row_factory` to the
+   highly-optimized :class:`sqlite3.Row` type. :class:`Row` provides both
+   index-based and case-insensitive name-based access to columns with almost no
+   memory overhead. It will probably be better than your own custom
+   dictionary-based approach or even a db_row based solution.
+
+   .. XXX what's a db_row-based solution?
+
+
+.. attribute:: Connection.text_factory
+
+   Using this attribute you can control what objects are returned for the ``TEXT``
+   data type. By default, this attribute is set to :class:`unicode` and the
+   :mod:`sqlite3` module will return Unicode objects for ``TEXT``. If you want to
+   return bytestrings instead, you can set it to :class:`str`.
+
+   For efficiency reasons, there's also a way to return Unicode objects only for
+   non-ASCII data, and bytestrings otherwise. To activate it, set this attribute to
+   :const:`sqlite3.OptimizedUnicode`.
+
+   You can also set it to any other callable that accepts a single bytestring
+   parameter and returns the resulting object.
+
+   See the following example code for illustration:
+
+   .. literalinclude:: ../includes/sqlite3/text_factory.py
+
+
+.. attribute:: Connection.total_changes
+
+   Returns the total number of database rows that have been modified, inserted, or
+   deleted since the database connection was opened.
+
+
+.. attribute:: Connection.iterdump
+
+   Returns an iterator to dump the database in an SQL text format.  Useful when
+   saving an in-memory database for later restoration.  This function provides
+   the same capabilities as the :kbd:`.dump` command in the :program:`sqlite3`
+   shell.
+
+   .. versionadded:: 2.6
+
+   Example::
+
+      # Convert file existing_db.db to SQL dump file dump.sql
+      import sqlite3, os
+
+      con = sqlite3.connect('existing_db.db')
+      with open('dump.sql', 'w') as f:
+          for line in con.iterdump():
+              f.write('%s\n' % line)
+
+
+.. _sqlite3-cursor-objects:
+
+Cursor Objects
+--------------
+
+.. class:: Cursor
+
+   A SQLite database cursor has the following attributes and methods:
+
+.. method:: Cursor.execute(sql, [parameters])
+
+   Executes an SQL statement. The SQL statement may be parametrized (i. e.
+   placeholders instead of SQL literals). The :mod:`sqlite3` module supports two
+   kinds of placeholders: question marks (qmark style) and named placeholders
+   (named style).
+
+   This example shows how to use parameters with qmark style:
+
+   .. literalinclude:: ../includes/sqlite3/execute_1.py
+
+   This example shows how to use the named style:
+
+   .. literalinclude:: ../includes/sqlite3/execute_2.py
+
+   :meth:`execute` will only execute a single SQL statement. If you try to execute
+   more than one statement with it, it will raise a Warning. Use
+   :meth:`executescript` if you want to execute multiple SQL statements with one
+   call.
+
+
+.. method:: Cursor.executemany(sql, seq_of_parameters)
+
+   Executes an SQL command against all parameter sequences or mappings found in
+   the sequence *sql*.  The :mod:`sqlite3` module also allows using an
+   :term:`iterator` yielding parameters instead of a sequence.
+
+   .. literalinclude:: ../includes/sqlite3/executemany_1.py
+
+   Here's a shorter example using a :term:`generator`:
+
+   .. literalinclude:: ../includes/sqlite3/executemany_2.py
+
+
+.. method:: Cursor.executescript(sql_script)
+
+   This is a nonstandard convenience method for executing multiple SQL statements
+   at once. It issues a ``COMMIT`` statement first, then executes the SQL script it
+   gets as a parameter.
+
+   *sql_script* can be a bytestring or a Unicode string.
+
+   Example:
+
+   .. literalinclude:: ../includes/sqlite3/executescript.py
+
+
+.. method:: Cursor.fetchone() 
+          
+   Fetches the next row of a query result set, returning a single sequence,
+   or :const:`None` when no more data is available.
+
+
+.. method:: Cursor.fetchmany([size=cursor.arraysize])
+          
+   Fetches the next set of rows of a query result, returning a list.  An empty
+   list is returned when no more rows are available.
+   
+   The number of rows to fetch per call is specified by the *size* parameter.
+   If it is not given, the cursor's arraysize determines the number of rows
+   to be fetched. The method should try to fetch as many rows as indicated by
+   the size parameter. If this is not possible due to the specified number of
+   rows not being available, fewer rows may be returned.
+   
+   Note there are performance considerations involved with the *size* parameter.
+   For optimal performance, it is usually best to use the arraysize attribute.
+   If the *size* parameter is used, then it is best for it to retain the same
+   value from one :meth:`fetchmany` call to the next.
+            
+.. method:: Cursor.fetchall() 
+
+   Fetches all (remaining) rows of a query result, returning a list.  Note that
+   the cursor's arraysize attribute can affect the performance of this operation.
+   An empty list is returned when no rows are available.
+
+
+.. attribute:: Cursor.rowcount
+
+   Although the :class:`Cursor` class of the :mod:`sqlite3` module implements this
+   attribute, the database engine's own support for the determination of "rows
+   affected"/"rows selected" is quirky.
+
+   For ``DELETE`` statements, SQLite reports :attr:`rowcount` as 0 if you make a
+   ``DELETE FROM table`` without any condition.
+
+   For :meth:`executemany` statements, the number of modifications are summed up
+   into :attr:`rowcount`.
+
+   As required by the Python DB API Spec, the :attr:`rowcount` attribute "is -1 in
+   case no ``executeXX()`` has been performed on the cursor or the rowcount of the
+   last operation is not determinable by the interface".
+
+   This includes ``SELECT`` statements because we cannot determine the number of
+   rows a query produced until all rows were fetched.
+
+.. attribute:: Cursor.lastrowid
+
+   This read-only attribute provides the rowid of the last modified row. It is
+   only set if you issued a ``INSERT`` statement using the :meth:`execute`
+   method. For operations other than ``INSERT`` or when :meth:`executemany` is
+   called, :attr:`lastrowid` is set to :const:`None`.
+
+.. attribute:: Cursor.description
+
+   This read-only attribute provides the column names of the last query. To
+   remain compatible with the Python DB API, it returns a 7-tuple for each
+   column where the last six items of each tuple are :const:`None`. 
+   
+   It is set for ``SELECT`` statements without any matching rows as well.
+
+.. _sqlite3-row-objects:
+
+Row Objects
+-----------
+
+.. class:: Row
+
+   A :class:`Row` instance serves as a highly optimized
+   :attr:`~Connection.row_factory` for :class:`Connection` objects. 
+   It tries to mimic a tuple in most of its features.
+
+   It supports mapping access by column name and index, iteration,
+   representation, equality testing and :func:`len`.
+
+   If two :class:`Row` objects have exactly the same columns and their
+   members are equal, they compare equal.
+   
+   .. versionchanged:: 2.6
+      Added iteration and equality (hashability).
+
+   .. method:: keys
+
+      This method returns a tuple of column names. Immediately after a query,
+      it is the first member of each tuple in :attr:`Cursor.description`.
+
+      .. versionadded:: 2.6
+
+Let's assume we initialize a table as in the example given above::
+
+    conn = sqlite3.connect(":memory:")
+    c = conn.cursor()
+    c.execute('''create table stocks
+    (date text, trans text, symbol text,
+     qty real, price real)''')
+    c.execute("""insert into stocks
+              values ('2006-01-05','BUY','RHAT',100,35.14)""")
+    conn.commit()
+    c.close()
+
+Now we plug :class:`Row` in::
+
+    >>> conn.row_factory = sqlite3.Row
+    >>> c = conn.cursor()
+    >>> c.execute('select * from stocks')
+    <sqlite3.Cursor object at 0x7f4e7dd8fa80>
+    >>> r = c.fetchone()
+    >>> type(r)
+    <type 'sqlite3.Row'>
+    >>> r
+    (u'2006-01-05', u'BUY', u'RHAT', 100.0, 35.140000000000001)
+    >>> len(r)
+    5
+    >>> r[2]
+    u'RHAT'
+    >>> r.keys()
+    ['date', 'trans', 'symbol', 'qty', 'price']
+    >>> r['qty']
+    100.0
+    >>> for member in r: print member
+    ...
+    2006-01-05
+    BUY
+    RHAT
+    100.0
+    35.14
+
+
+.. _sqlite3-types:
+
+SQLite and Python types
+-----------------------
+
+
+Introduction
+^^^^^^^^^^^^
+
+SQLite natively supports the following types: ``NULL``, ``INTEGER``,
+``REAL``, ``TEXT``, ``BLOB``.
+
+The following Python types can thus be sent to SQLite without any problem:
+
++-----------------------------+-------------+
+| Python type                 | SQLite type |
++=============================+=============+
+| :const:`None`               | ``NULL``    |
++-----------------------------+-------------+
+| :class:`int`                | ``INTEGER`` |
++-----------------------------+-------------+
+| :class:`long`               | ``INTEGER`` |
++-----------------------------+-------------+
+| :class:`float`              | ``REAL``    |
++-----------------------------+-------------+
+| :class:`str` (UTF8-encoded) | ``TEXT``    |
++-----------------------------+-------------+
+| :class:`unicode`            | ``TEXT``    |
++-----------------------------+-------------+
+| :class:`buffer`             | ``BLOB``    |
++-----------------------------+-------------+
+
+This is how SQLite types are converted to Python types by default:
+
++-------------+----------------------------------------------+
+| SQLite type | Python type                                  |
++=============+==============================================+
+| ``NULL``    | :const:`None`                                |
++-------------+----------------------------------------------+
+| ``INTEGER`` | :class:`int` or :class:`long`,               |
+|             | depending on size                            |
++-------------+----------------------------------------------+
+| ``REAL``    | :class:`float`                               |
++-------------+----------------------------------------------+
+| ``TEXT``    | depends on :attr:`~Connection.text_factory`, |
+|             | :class:`unicode` by default                  |
++-------------+----------------------------------------------+
+| ``BLOB``    | :class:`buffer`                              |
++-------------+----------------------------------------------+
+
+The type system of the :mod:`sqlite3` module is extensible in two ways: you can
+store additional Python types in a SQLite database via object adaptation, and
+you can let the :mod:`sqlite3` module convert SQLite types to different Python
+types via converters.
+
+
+Using adapters to store additional Python types in SQLite databases
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+As described before, SQLite supports only a limited set of types natively. To
+use other Python types with SQLite, you must **adapt** them to one of the
+sqlite3 module's supported types for SQLite: one of NoneType, int, long, float,
+str, unicode, buffer.
+
+The :mod:`sqlite3` module uses Python object adaptation, as described in
+:pep:`246` for this.  The protocol to use is :class:`PrepareProtocol`.
+
+There are two ways to enable the :mod:`sqlite3` module to adapt a custom Python
+type to one of the supported ones.
+
+
+Letting your object adapt itself
+""""""""""""""""""""""""""""""""
+
+This is a good approach if you write the class yourself. Let's suppose you have
+a class like this::
+
+   class Point(object):
+       def __init__(self, x, y):
+           self.x, self.y = x, y
+
+Now you want to store the point in a single SQLite column.  First you'll have to
+choose one of the supported types first to be used for representing the point.
+Let's just use str and separate the coordinates using a semicolon. Then you need
+to give your class a method ``__conform__(self, protocol)`` which must return
+the converted value. The parameter *protocol* will be :class:`PrepareProtocol`.
+
+.. literalinclude:: ../includes/sqlite3/adapter_point_1.py
+
+
+Registering an adapter callable
+"""""""""""""""""""""""""""""""
+
+The other possibility is to create a function that converts the type to the
+string representation and register the function with :meth:`register_adapter`.
+
+.. note::
+
+   The type/class to adapt must be a :term:`new-style class`, i. e. it must have
+   :class:`object` as one of its bases.
+
+.. literalinclude:: ../includes/sqlite3/adapter_point_2.py
+
+The :mod:`sqlite3` module has two default adapters for Python's built-in
+:class:`datetime.date` and :class:`datetime.datetime` types.  Now let's suppose
+we want to store :class:`datetime.datetime` objects not in ISO representation,
+but as a Unix timestamp.
+
+.. literalinclude:: ../includes/sqlite3/adapter_datetime.py
+
+
+Converting SQLite values to custom Python types
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Writing an adapter lets you send custom Python types to SQLite. But to make it
+really useful we need to make the Python to SQLite to Python roundtrip work.
+
+Enter converters.
+
+Let's go back to the :class:`Point` class. We stored the x and y coordinates
+separated via semicolons as strings in SQLite.
+
+First, we'll define a converter function that accepts the string as a parameter
+and constructs a :class:`Point` object from it.
+
+.. note::
+
+   Converter functions **always** get called with a string, no matter under which
+   data type you sent the value to SQLite.
+
+::
+
+   def convert_point(s):
+       x, y = map(float, s.split(";"))
+       return Point(x, y)
+
+Now you need to make the :mod:`sqlite3` module know that what you select from
+the database is actually a point. There are two ways of doing this:
+
+* Implicitly via the declared type
+
+* Explicitly via the column name
+
+Both ways are described in section :ref:`sqlite3-module-contents`, in the entries
+for the constants :const:`PARSE_DECLTYPES` and :const:`PARSE_COLNAMES`.
+
+The following example illustrates both approaches.
+
+.. literalinclude:: ../includes/sqlite3/converter_point.py
+
+
+Default adapters and converters
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There are default adapters for the date and datetime types in the datetime
+module. They will be sent as ISO dates/ISO timestamps to SQLite.
+
+The default converters are registered under the name "date" for
+:class:`datetime.date` and under the name "timestamp" for
+:class:`datetime.datetime`.
+
+This way, you can use date/timestamps from Python without any additional
+fiddling in most cases. The format of the adapters is also compatible with the
+experimental SQLite date/time functions.
+
+The following example demonstrates this.
+
+.. literalinclude:: ../includes/sqlite3/pysqlite_datetime.py
+
+
+.. _sqlite3-controlling-transactions:
+
+Controlling Transactions
+------------------------
+
+By default, the :mod:`sqlite3` module opens transactions implicitly before a
+Data Modification Language (DML)  statement (i.e. 
+``INSERT``/``UPDATE``/``DELETE``/``REPLACE``), and commits transactions
+implicitly before a non-DML, non-query statement (i. e.
+anything other than ``SELECT`` or the aforementioned).
+
+So if you are within a transaction and issue a command like ``CREATE TABLE
+...``, ``VACUUM``, ``PRAGMA``, the :mod:`sqlite3` module will commit implicitly
+before executing that command. There are two reasons for doing that. The first
+is that some of these commands don't work within transactions. The other reason
+is that pysqlite needs to keep track of the transaction state (if a transaction
+is active or not).
+
+You can control which kind of ``BEGIN`` statements pysqlite implicitly executes
+(or none at all) via the *isolation_level* parameter to the :func:`connect`
+call, or via the :attr:`isolation_level` property of connections.
+
+If you want **autocommit mode**, then set :attr:`isolation_level` to None.
+
+Otherwise leave it at its default, which will result in a plain "BEGIN"
+statement, or set it to one of SQLite's supported isolation levels: "DEFERRED",
+"IMMEDIATE" or "EXCLUSIVE".
+
+
+
+Using pysqlite efficiently
+--------------------------
+
+
+Using shortcut methods
+^^^^^^^^^^^^^^^^^^^^^^
+
+Using the nonstandard :meth:`execute`, :meth:`executemany` and
+:meth:`executescript` methods of the :class:`Connection` object, your code can
+be written more concisely because you don't have to create the (often
+superfluous) :class:`Cursor` objects explicitly. Instead, the :class:`Cursor`
+objects are created implicitly and these shortcut methods return the cursor
+objects. This way, you can execute a ``SELECT`` statement and iterate over it
+directly using only a single call on the :class:`Connection` object.
+
+.. literalinclude:: ../includes/sqlite3/shortcut_methods.py
+
+
+Accessing columns by name instead of by index
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+One useful feature of the :mod:`sqlite3` module is the builtin
+:class:`sqlite3.Row` class designed to be used as a row factory.
+
+Rows wrapped with this class can be accessed both by index (like tuples) and
+case-insensitively by name:
+
+.. literalinclude:: ../includes/sqlite3/rowclass.py
+
+
+Using the connection as a context manager
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. versionadded:: 2.6
+
+Connection objects can be used as context managers
+that automatically commit or rollback transactions.  In the event of an
+exception, the transaction is rolled back; otherwise, the transaction is
+committed:
+
+.. literalinclude:: ../includes/sqlite3/ctx_manager.py