symbian-qemu-0.9.1-12/python-2.6.1/Modules/audioop.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/audioop.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1655 @@
+
+/* audioopmodule - Module to detect peak values in arrays */
+
+#include "Python.h"
+
+#if SIZEOF_INT == 4
+typedef int Py_Int32;
+typedef unsigned int Py_UInt32;
+#else
+#if SIZEOF_LONG == 4
+typedef long Py_Int32;
+typedef unsigned long Py_UInt32;
+#else
+#error "No 4-byte integral type"
+#endif
+#endif
+
+typedef short PyInt16;
+
+#if defined(__CHAR_UNSIGNED__)
+#if defined(signed)
+/* This module currently does not work on systems where only unsigned
+   characters are available.  Take it out of Setup.  Sorry. */
+#endif
+#endif
+
+/* Code shamelessly stolen from sox, 12.17.7, g711.c
+** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
+
+/* From g711.c:
+ *
+ * December 30, 1994:
+ * Functions linear2alaw, linear2ulaw have been updated to correctly
+ * convert unquantized 16 bit values.
+ * Tables for direct u- to A-law and A- to u-law conversions have been
+ * corrected.
+ * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
+ * bli@cpk.auc.dk
+ *
+ */
+#define BIAS 0x84   /* define the add-in bias for 16 bit samples */
+#define CLIP 32635
+#define SIGN_BIT        (0x80)          /* Sign bit for a A-law byte. */
+#define QUANT_MASK      (0xf)           /* Quantization field mask. */
+#define SEG_SHIFT       (4)             /* Left shift for segment number. */
+#define SEG_MASK        (0x70)          /* Segment field mask. */
+
+static PyInt16 seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF,
+                              0x1FF, 0x3FF, 0x7FF, 0xFFF};
+static PyInt16 seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
+                              0x3FF, 0x7FF, 0xFFF, 0x1FFF};
+
+static PyInt16
+search(PyInt16 val, PyInt16 *table, int size)
+{
+        int i;
+
+        for (i = 0; i < size; i++) {
+                if (val <= *table++)
+                        return (i);
+        }
+        return (size);
+}
+#define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
+#define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
+
+static PyInt16 _st_ulaw2linear16[256] = {
+    -32124,  -31100,  -30076,  -29052,  -28028,  -27004,  -25980,
+    -24956,  -23932,  -22908,  -21884,  -20860,  -19836,  -18812,
+    -17788,  -16764,  -15996,  -15484,  -14972,  -14460,  -13948,
+    -13436,  -12924,  -12412,  -11900,  -11388,  -10876,  -10364,
+     -9852,   -9340,   -8828,   -8316,   -7932,   -7676,   -7420,
+     -7164,   -6908,   -6652,   -6396,   -6140,   -5884,   -5628,
+     -5372,   -5116,   -4860,   -4604,   -4348,   -4092,   -3900,
+     -3772,   -3644,   -3516,   -3388,   -3260,   -3132,   -3004,
+     -2876,   -2748,   -2620,   -2492,   -2364,   -2236,   -2108,
+     -1980,   -1884,   -1820,   -1756,   -1692,   -1628,   -1564,
+     -1500,   -1436,   -1372,   -1308,   -1244,   -1180,   -1116,
+     -1052,    -988,    -924,    -876,    -844,    -812,    -780,
+      -748,    -716,    -684,    -652,    -620,    -588,    -556,
+      -524,    -492,    -460,    -428,    -396,    -372,    -356,
+      -340,    -324,    -308,    -292,    -276,    -260,    -244,
+      -228,    -212,    -196,    -180,    -164,    -148,    -132,
+      -120,    -112,    -104,     -96,     -88,     -80,     -72,
+       -64,     -56,     -48,     -40,     -32,     -24,     -16,
+        -8,       0,   32124,   31100,   30076,   29052,   28028,
+     27004,   25980,   24956,   23932,   22908,   21884,   20860,
+     19836,   18812,   17788,   16764,   15996,   15484,   14972,
+     14460,   13948,   13436,   12924,   12412,   11900,   11388,
+     10876,   10364,    9852,    9340,    8828,    8316,    7932,
+      7676,    7420,    7164,    6908,    6652,    6396,    6140,
+      5884,    5628,    5372,    5116,    4860,    4604,    4348,
+      4092,    3900,    3772,    3644,    3516,    3388,    3260,
+      3132,    3004,    2876,    2748,    2620,    2492,    2364,
+      2236,    2108,    1980,    1884,    1820,    1756,    1692,
+      1628,    1564,    1500,    1436,    1372,    1308,    1244,
+      1180,    1116,    1052,     988,     924,     876,     844,
+       812,     780,     748,     716,     684,     652,     620,
+       588,     556,     524,     492,     460,     428,     396,
+       372,     356,     340,     324,     308,     292,     276,
+       260,     244,     228,     212,     196,     180,     164,
+       148,     132,     120,     112,     104,      96,      88,
+        80,      72,      64,      56,      48,      40,      32,
+        24,      16,       8,       0
+};
+
+/*
+ * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
+ * stored in a unsigned char.  This function should only be called with
+ * the data shifted such that it only contains information in the lower
+ * 14-bits.
+ *
+ * In order to simplify the encoding process, the original linear magnitude
+ * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
+ * (33 - 8191). The result can be seen in the following encoding table:
+ *
+ *      Biased Linear Input Code        Compressed Code
+ *      ------------------------        ---------------
+ *      00000001wxyza                   000wxyz
+ *      0000001wxyzab                   001wxyz
+ *      000001wxyzabc                   010wxyz
+ *      00001wxyzabcd                   011wxyz
+ *      0001wxyzabcde                   100wxyz
+ *      001wxyzabcdef                   101wxyz
+ *      01wxyzabcdefg                   110wxyz
+ *      1wxyzabcdefgh                   111wxyz
+ *
+ * Each biased linear code has a leading 1 which identifies the segment
+ * number. The value of the segment number is equal to 7 minus the number
+ * of leading 0's. The quantization interval is directly available as the
+ * four bits wxyz.  * The trailing bits (a - h) are ignored.
+ *
+ * Ordinarily the complement of the resulting code word is used for
+ * transmission, and so the code word is complemented before it is returned.
+ *
+ * For further information see John C. Bellamy's Digital Telephony, 1982,
+ * John Wiley & Sons, pps 98-111 and 472-476.
+ */
+static unsigned char
+st_14linear2ulaw(PyInt16 pcm_val)	/* 2's complement (14-bit range) */
+{
+        PyInt16         mask;
+        PyInt16         seg;
+        unsigned char   uval;
+
+        /* The original sox code does this in the calling function, not here */
+        pcm_val = pcm_val >> 2;
+
+        /* u-law inverts all bits */
+        /* Get the sign and the magnitude of the value. */
+        if (pcm_val < 0) {
+                pcm_val = -pcm_val;
+                mask = 0x7F;
+        } else {
+                mask = 0xFF;
+        }
+        if ( pcm_val > CLIP ) pcm_val = CLIP;           /* clip the magnitude */
+        pcm_val += (BIAS >> 2);
+
+        /* Convert the scaled magnitude to segment number. */
+        seg = search(pcm_val, seg_uend, 8);
+
+        /*
+         * Combine the sign, segment, quantization bits;
+         * and complement the code word.
+         */
+        if (seg >= 8)           /* out of range, return maximum value. */
+                return (unsigned char) (0x7F ^ mask);
+        else {
+                uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
+                return (uval ^ mask);
+        }
+
+}
+
+static PyInt16 _st_alaw2linear16[256] = {
+     -5504,   -5248,   -6016,   -5760,   -4480,   -4224,   -4992,
+     -4736,   -7552,   -7296,   -8064,   -7808,   -6528,   -6272,
+     -7040,   -6784,   -2752,   -2624,   -3008,   -2880,   -2240,
+     -2112,   -2496,   -2368,   -3776,   -3648,   -4032,   -3904,
+     -3264,   -3136,   -3520,   -3392,  -22016,  -20992,  -24064,
+    -23040,  -17920,  -16896,  -19968,  -18944,  -30208,  -29184,
+    -32256,  -31232,  -26112,  -25088,  -28160,  -27136,  -11008,
+    -10496,  -12032,  -11520,   -8960,   -8448,   -9984,   -9472,
+    -15104,  -14592,  -16128,  -15616,  -13056,  -12544,  -14080,
+    -13568,    -344,    -328,    -376,    -360,    -280,    -264,
+      -312,    -296,    -472,    -456,    -504,    -488,    -408,
+      -392,    -440,    -424,     -88,     -72,    -120,    -104,
+       -24,      -8,     -56,     -40,    -216,    -200,    -248,
+      -232,    -152,    -136,    -184,    -168,   -1376,   -1312,
+     -1504,   -1440,   -1120,   -1056,   -1248,   -1184,   -1888,
+     -1824,   -2016,   -1952,   -1632,   -1568,   -1760,   -1696,
+      -688,    -656,    -752,    -720,    -560,    -528,    -624,
+      -592,    -944,    -912,   -1008,    -976,    -816,    -784,
+      -880,    -848,    5504,    5248,    6016,    5760,    4480,
+      4224,    4992,    4736,    7552,    7296,    8064,    7808,
+      6528,    6272,    7040,    6784,    2752,    2624,    3008,
+      2880,    2240,    2112,    2496,    2368,    3776,    3648,
+      4032,    3904,    3264,    3136,    3520,    3392,   22016,
+     20992,   24064,   23040,   17920,   16896,   19968,   18944,
+     30208,   29184,   32256,   31232,   26112,   25088,   28160,
+     27136,   11008,   10496,   12032,   11520,    8960,    8448,
+      9984,    9472,   15104,   14592,   16128,   15616,   13056,
+     12544,   14080,   13568,     344,     328,     376,     360,
+       280,     264,     312,     296,     472,     456,     504,
+       488,     408,     392,     440,     424,      88,      72,
+       120,     104,      24,       8,      56,      40,     216,
+       200,     248,     232,     152,     136,     184,     168,
+      1376,    1312,    1504,    1440,    1120,    1056,    1248,
+      1184,    1888,    1824,    2016,    1952,    1632,    1568,
+      1760,    1696,     688,     656,     752,     720,     560,
+       528,     624,     592,     944,     912,    1008,     976,
+       816,     784,     880,     848
+};
+
+/*
+ * linear2alaw() accepts an 13-bit signed integer and encodes it as A-law data
+ * stored in a unsigned char.  This function should only be called with
+ * the data shifted such that it only contains information in the lower
+ * 13-bits.
+ *
+ *              Linear Input Code       Compressed Code
+ *      ------------------------        ---------------
+ *      0000000wxyza                    000wxyz
+ *      0000001wxyza                    001wxyz
+ *      000001wxyzab                    010wxyz
+ *      00001wxyzabc                    011wxyz
+ *      0001wxyzabcd                    100wxyz
+ *      001wxyzabcde                    101wxyz
+ *      01wxyzabcdef                    110wxyz
+ *      1wxyzabcdefg                    111wxyz
+ *
+ * For further information see John C. Bellamy's Digital Telephony, 1982,
+ * John Wiley & Sons, pps 98-111 and 472-476.
+ */
+static unsigned char
+st_linear2alaw(PyInt16 pcm_val)	/* 2's complement (13-bit range) */
+{
+        PyInt16         mask;
+        short           seg;
+        unsigned char   aval;
+
+        /* The original sox code does this in the calling function, not here */
+        pcm_val = pcm_val >> 3;
+
+        /* A-law using even bit inversion */
+        if (pcm_val >= 0) {
+                mask = 0xD5;            /* sign (7th) bit = 1 */
+        } else {
+                mask = 0x55;            /* sign bit = 0 */
+                pcm_val = -pcm_val - 1;
+        }
+
+        /* Convert the scaled magnitude to segment number. */
+        seg = search(pcm_val, seg_aend, 8);
+
+        /* Combine the sign, segment, and quantization bits. */
+
+        if (seg >= 8)           /* out of range, return maximum value. */
+                return (unsigned char) (0x7F ^ mask);
+        else {
+                aval = (unsigned char) seg << SEG_SHIFT;
+                if (seg < 2)
+                        aval |= (pcm_val >> 1) & QUANT_MASK;
+                else
+                        aval |= (pcm_val >> seg) & QUANT_MASK;
+                return (aval ^ mask);
+        }
+}
+/* End of code taken from sox */
+
+/* Intel ADPCM step variation table */
+static int indexTable[16] = {
+        -1, -1, -1, -1, 2, 4, 6, 8,
+        -1, -1, -1, -1, 2, 4, 6, 8,
+};
+
+static int stepsizeTable[89] = {
+        7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+        19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+        50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+        130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+        337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+        876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+        2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+        5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+        15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
+};
+    
+#define CHARP(cp, i) ((signed char *)(cp+i))
+#define SHORTP(cp, i) ((short *)(cp+i))
+#define LONGP(cp, i) ((Py_Int32 *)(cp+i))
+
+
+
+static PyObject *AudioopError;
+
+static PyObject *
+audioop_getsample(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#ii:getsample", &cp, &len, &size, &i) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        if ( i < 0 || i >= len/size ) {
+                PyErr_SetString(AudioopError, "Index out of range");
+                return 0;
+        }
+        if ( size == 1 )      val = (int)*CHARP(cp, i);
+        else if ( size == 2 ) val = (int)*SHORTP(cp, i*2);
+        else if ( size == 4 ) val = (int)*LONGP(cp, i*4);
+        return PyInt_FromLong(val);
+}
+
+static PyObject *
+audioop_max(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+        int max = 0;
+
+        if ( !PyArg_ParseTuple(args, "s#i:max", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        for ( i=0; i<len; i+= size) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                if ( val < 0 ) val = (-val);
+                if ( val > max ) max = val;
+        }
+        return PyInt_FromLong(max);
+}
+
+static PyObject *
+audioop_minmax(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+        int min = 0x7fffffff, max = -0x7fffffff;
+
+        if (!PyArg_ParseTuple(args, "s#i:minmax", &cp, &len, &size))
+                return NULL;
+        if (size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return NULL;
+        }
+        for (i = 0; i < len; i += size) {
+                if (size == 1) val = (int) *CHARP(cp, i);
+                else if (size == 2) val = (int) *SHORTP(cp, i);
+                else if (size == 4) val = (int) *LONGP(cp, i);
+                if (val > max) max = val;
+                if (val < min) min = val;
+        }
+        return Py_BuildValue("(ii)", min, max);
+}
+
+static PyObject *
+audioop_avg(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+        double avg = 0.0;
+
+        if ( !PyArg_ParseTuple(args, "s#i:avg", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        for ( i=0; i<len; i+= size) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                avg += val;
+        }
+        if ( len == 0 )
+                val = 0;
+        else
+                val = (int)(avg / (double)(len/size));
+        return PyInt_FromLong(val);
+}
+
+static PyObject *
+audioop_rms(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+        double sum_squares = 0.0;
+
+        if ( !PyArg_ParseTuple(args, "s#i:rms", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        for ( i=0; i<len; i+= size) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                sum_squares += (double)val*(double)val;
+        }
+        if ( len == 0 )
+                val = 0;
+        else
+                val = (int)sqrt(sum_squares / (double)(len/size));
+        return PyInt_FromLong(val);
+}
+
+static double _sum2(short *a, short *b, int len)
+{
+        int i;
+        double sum = 0.0;
+
+        for( i=0; i<len; i++) {
+                sum = sum + (double)a[i]*(double)b[i];
+        }
+        return sum;
+}
+
+/*
+** Findfit tries to locate a sample within another sample. Its main use
+** is in echo-cancellation (to find the feedback of the output signal in
+** the input signal).
+** The method used is as follows:
+**
+** let R be the reference signal (length n) and A the input signal (length N)
+** with N > n, and let all sums be over i from 0 to n-1.
+**
+** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
+** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
+** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
+**
+** Next, we compute the relative distance between the original signal and
+** the modified signal and minimize that over j:
+** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 )  =>
+** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
+**
+** In the code variables correspond as follows:
+** cp1          A
+** cp2          R
+** len1         N
+** len2         n
+** aj_m1        A[j-1]
+** aj_lm1       A[j+n-1]
+** sum_ri_2     sum(R[i]^2)
+** sum_aij_2    sum(A[i+j]^2)
+** sum_aij_ri   sum(A[i+j]R[i])
+**
+** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
+** is completely recalculated each step.
+*/
+static PyObject *
+audioop_findfit(PyObject *self, PyObject *args)
+{
+        short *cp1, *cp2;
+        int len1, len2;
+        int j, best_j;
+        double aj_m1, aj_lm1;
+        double sum_ri_2, sum_aij_2, sum_aij_ri, result, best_result, factor;
+
+	/* Passing a short** for an 's' argument is correct only
+	   if the string contents is aligned for interpretation
+	   as short[]. Due to the definition of PyStringObject,
+	   this is currently (Python 2.6) the case. */
+        if ( !PyArg_ParseTuple(args, "s#s#:findfit",
+	                       (char**)&cp1, &len1, (char**)&cp2, &len2) )
+                return 0;
+        if ( len1 & 1 || len2 & 1 ) {
+                PyErr_SetString(AudioopError, "Strings should be even-sized");
+                return 0;
+        }
+        len1 >>= 1;
+        len2 >>= 1;
+    
+        if ( len1 < len2 ) {
+                PyErr_SetString(AudioopError, "First sample should be longer");
+                return 0;
+        }
+        sum_ri_2 = _sum2(cp2, cp2, len2);
+        sum_aij_2 = _sum2(cp1, cp1, len2);
+        sum_aij_ri = _sum2(cp1, cp2, len2);
+
+        result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri) / sum_aij_2;
+
+        best_result = result;
+        best_j = 0;
+        j = 0;
+
+        for ( j=1; j<=len1-len2; j++) {
+                aj_m1 = (double)cp1[j-1];
+                aj_lm1 = (double)cp1[j+len2-1];
+
+                sum_aij_2 = sum_aij_2 + aj_lm1*aj_lm1 - aj_m1*aj_m1;
+                sum_aij_ri = _sum2(cp1+j, cp2, len2);
+
+                result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri)
+                        / sum_aij_2;
+
+                if ( result < best_result ) {
+                        best_result = result;
+                        best_j = j;
+                }
+        
+        }
+
+        factor = _sum2(cp1+best_j, cp2, len2) / sum_ri_2;
+    
+        return Py_BuildValue("(if)", best_j, factor);
+}
+
+/*
+** findfactor finds a factor f so that the energy in A-fB is minimal.
+** See the comment for findfit for details.
+*/
+static PyObject *
+audioop_findfactor(PyObject *self, PyObject *args)
+{
+        short *cp1, *cp2;
+        int len1, len2;
+        double sum_ri_2, sum_aij_ri, result;
+
+        if ( !PyArg_ParseTuple(args, "s#s#:findfactor",
+	                       (char**)&cp1, &len1, (char**)&cp2, &len2) )
+                return 0;
+        if ( len1 & 1 || len2 & 1 ) {
+                PyErr_SetString(AudioopError, "Strings should be even-sized");
+                return 0;
+        }
+        if ( len1 != len2 ) {
+                PyErr_SetString(AudioopError, "Samples should be same size");
+                return 0;
+        }
+        len2 >>= 1;
+        sum_ri_2 = _sum2(cp2, cp2, len2);
+        sum_aij_ri = _sum2(cp1, cp2, len2);
+
+        result = sum_aij_ri / sum_ri_2;
+
+        return PyFloat_FromDouble(result);
+}
+
+/*
+** findmax returns the index of the n-sized segment of the input sample
+** that contains the most energy.
+*/
+static PyObject *
+audioop_findmax(PyObject *self, PyObject *args)
+{
+        short *cp1;
+        int len1, len2;
+        int j, best_j;
+        double aj_m1, aj_lm1;
+        double result, best_result;
+
+        if ( !PyArg_ParseTuple(args, "s#i:findmax", 
+			       (char**)&cp1, &len1, &len2) )
+                return 0;
+        if ( len1 & 1 ) {
+                PyErr_SetString(AudioopError, "Strings should be even-sized");
+                return 0;
+        }
+        len1 >>= 1;
+    
+        if ( len2 < 0 || len1 < len2 ) {
+                PyErr_SetString(AudioopError, "Input sample should be longer");
+                return 0;
+        }
+
+        result = _sum2(cp1, cp1, len2);
+
+        best_result = result;
+        best_j = 0;
+        j = 0;
+
+        for ( j=1; j<=len1-len2; j++) {
+                aj_m1 = (double)cp1[j-1];
+                aj_lm1 = (double)cp1[j+len2-1];
+
+                result = result + aj_lm1*aj_lm1 - aj_m1*aj_m1;
+
+                if ( result > best_result ) {
+                        best_result = result;
+                        best_j = j;
+                }
+        
+        }
+
+        return PyInt_FromLong(best_j);
+}
+
+static PyObject *
+audioop_avgpp(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0, prevval = 0, prevextremevalid = 0,
+                prevextreme = 0;
+        int i;
+        double avg = 0.0;
+        int diff, prevdiff, extremediff, nextreme = 0;
+
+        if ( !PyArg_ParseTuple(args, "s#i:avgpp", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        /* Compute first delta value ahead. Also automatically makes us
+        ** skip the first extreme value
+        */
+        if ( size == 1 )      prevval = (int)*CHARP(cp, 0);
+        else if ( size == 2 ) prevval = (int)*SHORTP(cp, 0);
+        else if ( size == 4 ) prevval = (int)*LONGP(cp, 0);
+        if ( size == 1 )      val = (int)*CHARP(cp, size);
+        else if ( size == 2 ) val = (int)*SHORTP(cp, size);
+        else if ( size == 4 ) val = (int)*LONGP(cp, size);
+        prevdiff = val - prevval;
+    
+        for ( i=size; i<len; i+= size) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                diff = val - prevval;
+                if ( diff*prevdiff < 0 ) {
+                        /* Derivative changed sign. Compute difference to last
+                        ** extreme value and remember.
+                        */
+                        if ( prevextremevalid ) {
+                                extremediff = prevval - prevextreme;
+                                if ( extremediff < 0 )
+                                        extremediff = -extremediff;
+                                avg += extremediff;
+                                nextreme++;
+                        }
+                        prevextremevalid = 1;
+                        prevextreme = prevval;
+                }
+                prevval = val;
+                if ( diff != 0 )
+                        prevdiff = diff;        
+        }
+        if ( nextreme == 0 )
+                val = 0;
+        else
+                val = (int)(avg / (double)nextreme);
+        return PyInt_FromLong(val);
+}
+
+static PyObject *
+audioop_maxpp(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0, prevval = 0, prevextremevalid = 0,
+                prevextreme = 0;
+        int i;
+        int max = 0;
+        int diff, prevdiff, extremediff;
+
+        if ( !PyArg_ParseTuple(args, "s#i:maxpp", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        /* Compute first delta value ahead. Also automatically makes us
+        ** skip the first extreme value
+        */
+        if ( size == 1 )      prevval = (int)*CHARP(cp, 0);
+        else if ( size == 2 ) prevval = (int)*SHORTP(cp, 0);
+        else if ( size == 4 ) prevval = (int)*LONGP(cp, 0);
+        if ( size == 1 )      val = (int)*CHARP(cp, size);
+        else if ( size == 2 ) val = (int)*SHORTP(cp, size);
+        else if ( size == 4 ) val = (int)*LONGP(cp, size);
+        prevdiff = val - prevval;
+
+        for ( i=size; i<len; i+= size) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                diff = val - prevval;
+                if ( diff*prevdiff < 0 ) {
+                        /* Derivative changed sign. Compute difference to
+                        ** last extreme value and remember.
+                        */
+                        if ( prevextremevalid ) {
+                                extremediff = prevval - prevextreme;
+                                if ( extremediff < 0 )
+                                        extremediff = -extremediff;
+                                if ( extremediff > max )
+                                        max = extremediff;
+                        }
+                        prevextremevalid = 1;
+                        prevextreme = prevval;
+                }
+                prevval = val;
+                if ( diff != 0 )
+                        prevdiff = diff;
+        }
+        return PyInt_FromLong(max);
+}
+
+static PyObject *
+audioop_cross(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        int len, size, val = 0;
+        int i;
+        int prevval, ncross;
+
+        if ( !PyArg_ParseTuple(args, "s#i:cross", &cp, &len, &size) )
+                return 0;
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+        ncross = -1;
+        prevval = 17; /* Anything <> 0,1 */
+        for ( i=0; i<len; i+= size) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) >> 7;
+                else if ( size == 2 ) val = ((int)*SHORTP(cp, i)) >> 15;
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 31;
+                val = val & 1;
+                if ( val != prevval ) ncross++;
+                prevval = val;
+        }
+        return PyInt_FromLong(ncross);
+}
+
+static PyObject *
+audioop_mul(PyObject *self, PyObject *args)
+{
+        signed char *cp, *ncp;
+        int len, size, val = 0;
+        double factor, fval, maxval;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#id:mul", &cp, &len, &size, &factor ) )
+                return 0;
+    
+        if ( size == 1 ) maxval = (double) 0x7f;
+        else if ( size == 2 ) maxval = (double) 0x7fff;
+        else if ( size == 4 ) maxval = (double) 0x7fffffff;
+        else {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+                fval = (double)val*factor;
+                if ( fval > maxval ) fval = maxval;
+                else if ( fval < -maxval ) fval = -maxval;
+                val = (int)fval;
+                if ( size == 1 )      *CHARP(ncp, i) = (signed char)val;
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)val;
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)val;
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_tomono(PyObject *self, PyObject *args)
+{
+        signed char *cp, *ncp;
+        int len, size, val1 = 0, val2 = 0;
+        double fac1, fac2, fval, maxval;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#idd:tomono",
+	                       &cp, &len, &size, &fac1, &fac2 ) )
+                return 0;
+    
+        if ( size == 1 ) maxval = (double) 0x7f;
+        else if ( size == 2 ) maxval = (double) 0x7fff;
+        else if ( size == 4 ) maxval = (double) 0x7fffffff;
+        else {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len/2);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+    
+        for ( i=0; i < len; i += size*2 ) {
+                if ( size == 1 )      val1 = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val1 = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val1 = (int)*LONGP(cp, i);
+                if ( size == 1 )      val2 = (int)*CHARP(cp, i+1);
+                else if ( size == 2 ) val2 = (int)*SHORTP(cp, i+2);
+                else if ( size == 4 ) val2 = (int)*LONGP(cp, i+4);
+                fval = (double)val1*fac1 + (double)val2*fac2;
+                if ( fval > maxval ) fval = maxval;
+                else if ( fval < -maxval ) fval = -maxval;
+                val1 = (int)fval;
+                if ( size == 1 )      *CHARP(ncp, i/2) = (signed char)val1;
+                else if ( size == 2 ) *SHORTP(ncp, i/2) = (short)val1;
+                else if ( size == 4 ) *LONGP(ncp, i/2)= (Py_Int32)val1;
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_tostereo(PyObject *self, PyObject *args)
+{
+        signed char *cp, *ncp;
+        int len, new_len, size, val1, val2, val = 0;
+        double fac1, fac2, fval, maxval;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#idd:tostereo",
+	                       &cp, &len, &size, &fac1, &fac2 ) )
+                return 0;
+    
+        if ( size == 1 ) maxval = (double) 0x7f;
+        else if ( size == 2 ) maxval = (double) 0x7fff;
+        else if ( size == 4 ) maxval = (double) 0x7fffffff;
+        else {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        new_len = len*2;
+        if (new_len < 0) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+
+        rv = PyString_FromStringAndSize(NULL, new_len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+
+                fval = (double)val*fac1;
+                if ( fval > maxval ) fval = maxval;
+                else if ( fval < -maxval ) fval = -maxval;
+                val1 = (int)fval;
+
+                fval = (double)val*fac2;
+                if ( fval > maxval ) fval = maxval;
+                else if ( fval < -maxval ) fval = -maxval;
+                val2 = (int)fval;
+
+                if ( size == 1 )      *CHARP(ncp, i*2) = (signed char)val1;
+                else if ( size == 2 ) *SHORTP(ncp, i*2) = (short)val1;
+                else if ( size == 4 ) *LONGP(ncp, i*2) = (Py_Int32)val1;
+
+                if ( size == 1 )      *CHARP(ncp, i*2+1) = (signed char)val2;
+                else if ( size == 2 ) *SHORTP(ncp, i*2+2) = (short)val2;
+                else if ( size == 4 ) *LONGP(ncp, i*2+4) = (Py_Int32)val2;
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_add(PyObject *self, PyObject *args)
+{
+        signed char *cp1, *cp2, *ncp;
+        int len1, len2, size, val1 = 0, val2 = 0, maxval, newval;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#s#i:add",
+                          &cp1, &len1, &cp2, &len2, &size ) )
+                return 0;
+
+        if ( len1 != len2 ) {
+                PyErr_SetString(AudioopError, "Lengths should be the same");
+                return 0;
+        }
+    
+        if ( size == 1 ) maxval = 0x7f;
+        else if ( size == 2 ) maxval = 0x7fff;
+        else if ( size == 4 ) maxval = 0x7fffffff;
+        else {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+
+        rv = PyString_FromStringAndSize(NULL, len1);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+
+        for ( i=0; i < len1; i += size ) {
+                if ( size == 1 )      val1 = (int)*CHARP(cp1, i);
+                else if ( size == 2 ) val1 = (int)*SHORTP(cp1, i);
+                else if ( size == 4 ) val1 = (int)*LONGP(cp1, i);
+        
+                if ( size == 1 )      val2 = (int)*CHARP(cp2, i);
+                else if ( size == 2 ) val2 = (int)*SHORTP(cp2, i);
+                else if ( size == 4 ) val2 = (int)*LONGP(cp2, i);
+
+                newval = val1 + val2;
+                /* truncate in case of overflow */
+                if (newval > maxval) newval = maxval;
+                else if (newval < -maxval) newval = -maxval;
+                else if (size == 4 && (newval^val1) < 0 && (newval^val2) < 0)
+                        newval = val1 > 0 ? maxval : - maxval;
+
+                if ( size == 1 )      *CHARP(ncp, i) = (signed char)newval;
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)newval;
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)newval;
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_bias(PyObject *self, PyObject *args)
+{
+        signed char *cp, *ncp;
+        int len, size, val = 0;
+        PyObject *rv;
+        int i;
+        int bias;
+
+        if ( !PyArg_ParseTuple(args, "s#ii:bias",
+                          &cp, &len, &size , &bias) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = (int)*CHARP(cp, i);
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = (int)*LONGP(cp, i);
+        
+                if ( size == 1 )      *CHARP(ncp, i) = (signed char)(val+bias);
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val+bias);
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val+bias);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_reverse(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        unsigned char *ncp;
+        int len, size, val = 0;
+        PyObject *rv;
+        int i, j;
+
+        if ( !PyArg_ParseTuple(args, "s#i:reverse",
+                          &cp, &len, &size) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4 ) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (unsigned char *)PyString_AsString(rv);
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
+
+                j = len - i - size;
+        
+                if ( size == 1 )      *CHARP(ncp, j) = (signed char)(val >> 8);
+                else if ( size == 2 ) *SHORTP(ncp, j) = (short)(val);
+                else if ( size == 4 ) *LONGP(ncp, j) = (Py_Int32)(val<<16);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_lin2lin(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        unsigned char *ncp;
+        int len, new_len, size, size2, val = 0;
+        PyObject *rv;
+        int i, j;
+
+        if ( !PyArg_ParseTuple(args, "s#ii:lin2lin",
+                          &cp, &len, &size, &size2) )
+                return 0;
+
+        if ( (size != 1 && size != 2 && size != 4) ||
+             (size2 != 1 && size2 != 2 && size2 != 4)) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        new_len = (len/size)*size2;
+        if (new_len < 0) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+        rv = PyString_FromStringAndSize(NULL, new_len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (unsigned char *)PyString_AsString(rv);
+    
+        for ( i=0, j=0; i < len; i += size, j += size2 ) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
+
+                if ( size2 == 1 )  *CHARP(ncp, j) = (signed char)(val >> 8);
+                else if ( size2 == 2 ) *SHORTP(ncp, j) = (short)(val);
+                else if ( size2 == 4 ) *LONGP(ncp, j) = (Py_Int32)(val<<16);
+        }
+        return rv;
+}
+
+static int
+gcd(int a, int b)
+{
+        while (b > 0) {
+                int tmp = a % b;
+                a = b;
+                b = tmp;
+        }
+        return a;
+}
+
+static PyObject *
+audioop_ratecv(PyObject *self, PyObject *args)
+{
+        char *cp, *ncp;
+        int len, size, nchannels, inrate, outrate, weightA, weightB;
+        int chan, d, *prev_i, *cur_i, cur_o;
+        PyObject *state, *samps, *str, *rv = NULL;
+        int bytes_per_frame;
+        size_t alloc_size;
+
+        weightA = 1;
+        weightB = 0;
+        if (!PyArg_ParseTuple(args, "s#iiiiO|ii:ratecv", &cp, &len, &size,
+	                      &nchannels, &inrate, &outrate, &state,
+			      &weightA, &weightB))
+                return NULL;
+        if (size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return NULL;
+        }
+        if (nchannels < 1) {
+                PyErr_SetString(AudioopError, "# of channels should be >= 1");
+                return NULL;
+        }
+        bytes_per_frame = size * nchannels;
+        if (bytes_per_frame / nchannels != size) {
+                /* This overflow test is rigorously correct because
+                   both multiplicands are >= 1.  Use the argument names
+                   from the docs for the error msg. */
+                PyErr_SetString(PyExc_OverflowError,
+                                "width * nchannels too big for a C int");
+                return NULL;
+        }
+        if (weightA < 1 || weightB < 0) {
+                PyErr_SetString(AudioopError,
+                        "weightA should be >= 1, weightB should be >= 0");
+                return NULL;
+        }
+        if (len % bytes_per_frame != 0) {
+                PyErr_SetString(AudioopError, "not a whole number of frames");
+                return NULL;
+        }
+        if (inrate <= 0 || outrate <= 0) {
+                PyErr_SetString(AudioopError, "sampling rate not > 0");
+                return NULL;
+        }
+        /* divide inrate and outrate by their greatest common divisor */
+        d = gcd(inrate, outrate);
+        inrate /= d;
+        outrate /= d;
+
+        alloc_size = sizeof(int) * (unsigned)nchannels;
+        if (alloc_size < nchannels) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+        prev_i = (int *) malloc(alloc_size);
+        cur_i = (int *) malloc(alloc_size);
+        if (prev_i == NULL || cur_i == NULL) {
+                (void) PyErr_NoMemory();
+                goto exit;
+        }
+
+        len /= bytes_per_frame; /* # of frames */
+
+        if (state == Py_None) {
+                d = -outrate;
+                for (chan = 0; chan < nchannels; chan++)
+                        prev_i[chan] = cur_i[chan] = 0;
+        }
+        else {
+                if (!PyArg_ParseTuple(state,
+                                "iO!;audioop.ratecv: illegal state argument",
+                                &d, &PyTuple_Type, &samps))
+                        goto exit;
+                if (PyTuple_Size(samps) != nchannels) {
+                        PyErr_SetString(AudioopError,
+                                        "illegal state argument");
+                        goto exit;
+                }
+                for (chan = 0; chan < nchannels; chan++) {
+                        if (!PyArg_ParseTuple(PyTuple_GetItem(samps, chan),
+                                              "ii:ratecv", &prev_i[chan], 
+					                   &cur_i[chan]))
+                                goto exit;
+                }
+        }
+
+        /* str <- Space for the output buffer. */
+        {
+                /* There are len input frames, so we need (mathematically)
+                   ceiling(len*outrate/inrate) output frames, and each frame
+                   requires bytes_per_frame bytes.  Computing this
+                   without spurious overflow is the challenge; we can
+                   settle for a reasonable upper bound, though. */
+                int ceiling;   /* the number of output frames */
+                int nbytes;    /* the number of output bytes needed */
+                int q = len / inrate;
+                /* Now len = q * inrate + r exactly (with r = len % inrate),
+                   and this is less than q * inrate + inrate = (q+1)*inrate.
+                   So a reasonable upper bound on len*outrate/inrate is
+                   ((q+1)*inrate)*outrate/inrate =
+                   (q+1)*outrate.
+                */
+                ceiling = (q+1) * outrate;
+                nbytes = ceiling * bytes_per_frame;
+                /* See whether anything overflowed; if not, get the space. */
+                if (q+1 < 0 ||
+                    ceiling / outrate != q+1 ||
+                    nbytes / bytes_per_frame != ceiling)
+                        str = NULL;
+                else
+                        str = PyString_FromStringAndSize(NULL, nbytes);
+
+                if (str == NULL) {
+                        PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                        goto exit;
+                }
+        }
+        ncp = PyString_AsString(str);
+
+        for (;;) {
+                while (d < 0) {
+                        if (len == 0) {
+                                samps = PyTuple_New(nchannels);
+                                if (samps == NULL)
+                                        goto exit;
+                                for (chan = 0; chan < nchannels; chan++)
+                                        PyTuple_SetItem(samps, chan,
+                                                Py_BuildValue("(ii)",
+                                                              prev_i[chan],
+                                                              cur_i[chan]));
+                                if (PyErr_Occurred())
+                                        goto exit;
+                                /* We have checked before that the length
+                                 * of the string fits into int. */
+                                len = (int)(ncp - PyString_AsString(str));
+                                if (len == 0) {
+                                        /*don't want to resize to zero length*/
+                                        rv = PyString_FromStringAndSize("", 0);
+                                        Py_DECREF(str);
+                                        str = rv;
+                                } else if (_PyString_Resize(&str, len) < 0)
+                                        goto exit;
+                                rv = Py_BuildValue("(O(iO))", str, d, samps);
+                                Py_DECREF(samps);
+                                Py_DECREF(str);
+                                goto exit; /* return rv */
+                        }
+                        for (chan = 0; chan < nchannels; chan++) {
+                                prev_i[chan] = cur_i[chan];
+                                if (size == 1)
+                                    cur_i[chan] = ((int)*CHARP(cp, 0)) << 8;
+                                else if (size == 2)
+                                    cur_i[chan] = (int)*SHORTP(cp, 0);
+                                else if (size == 4)
+                                    cur_i[chan] = ((int)*LONGP(cp, 0)) >> 16;
+                                cp += size;
+                                /* implements a simple digital filter */
+                                cur_i[chan] =
+                                        (weightA * cur_i[chan] +
+                                         weightB * prev_i[chan]) /
+                                        (weightA + weightB);
+                        }
+                        len--;
+                        d += outrate;
+                }
+                while (d >= 0) {
+                        for (chan = 0; chan < nchannels; chan++) {
+                                cur_o = (prev_i[chan] * d +
+                                         cur_i[chan] * (outrate - d)) /
+                                        outrate;
+                                if (size == 1)
+                                    *CHARP(ncp, 0) = (signed char)(cur_o >> 8);
+                                else if (size == 2)
+                                    *SHORTP(ncp, 0) = (short)(cur_o);
+                                else if (size == 4)
+                                    *LONGP(ncp, 0) = (Py_Int32)(cur_o<<16);
+                                ncp += size;
+                        }
+                        d -= inrate;
+                }
+        }
+  exit:
+        if (prev_i != NULL)
+                free(prev_i);
+        if (cur_i != NULL)
+                free(cur_i);
+        return rv;
+}
+
+static PyObject *
+audioop_lin2ulaw(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        unsigned char *ncp;
+        int len, size, val = 0;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#i:lin2ulaw",
+                               &cp, &len, &size) )
+                return 0 ;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len/size);
+        if ( rv == 0 )
+                return 0;
+        ncp = (unsigned char *)PyString_AsString(rv);
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
+
+                *ncp++ = st_14linear2ulaw(val);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_ulaw2lin(PyObject *self, PyObject *args)
+{
+        unsigned char *cp;
+        unsigned char cval;
+        signed char *ncp;
+        int len, new_len, size, val;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#i:ulaw2lin",
+                               &cp, &len, &size) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        new_len = len*size;
+        if (new_len < 0) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+        rv = PyString_FromStringAndSize(NULL, new_len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+        for ( i=0; i < new_len; i += size ) {
+                cval = *cp++;
+                val = st_ulaw2linear16(cval);
+        
+                if ( size == 1 )      *CHARP(ncp, i) = (signed char)(val >> 8);
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val);
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val<<16);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_lin2alaw(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        unsigned char *ncp;
+        int len, size, val = 0;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#i:lin2alaw",
+                               &cp, &len, &size) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        rv = PyString_FromStringAndSize(NULL, len/size);
+        if ( rv == 0 )
+                return 0;
+        ncp = (unsigned char *)PyString_AsString(rv);
+    
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
+
+                *ncp++ = st_linear2alaw(val);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_alaw2lin(PyObject *self, PyObject *args)
+{
+        unsigned char *cp;
+        unsigned char cval;
+        signed char *ncp;
+        int len, new_len, size, val;
+        PyObject *rv;
+        int i;
+
+        if ( !PyArg_ParseTuple(args, "s#i:alaw2lin",
+                               &cp, &len, &size) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        new_len = len*size;
+        if (new_len < 0) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+        rv = PyString_FromStringAndSize(NULL, new_len);
+        if ( rv == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(rv);
+    
+        for ( i=0; i < new_len; i += size ) {
+                cval = *cp++;
+                val = st_alaw2linear16(cval);
+        
+                if ( size == 1 )      *CHARP(ncp, i) = (signed char)(val >> 8);
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val);
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val<<16);
+        }
+        return rv;
+}
+
+static PyObject *
+audioop_lin2adpcm(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        signed char *ncp;
+        int len, size, val = 0, step, valpred, delta,
+                index, sign, vpdiff, diff;
+        PyObject *rv, *state, *str;
+        int i, outputbuffer = 0, bufferstep;
+
+        if ( !PyArg_ParseTuple(args, "s#iO:lin2adpcm",
+                               &cp, &len, &size, &state) )
+                return 0;
+    
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        str = PyString_FromStringAndSize(NULL, len/(size*2));
+        if ( str == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(str);
+
+        /* Decode state, should have (value, step) */
+        if ( state == Py_None ) {
+                /* First time, it seems. Set defaults */
+                valpred = 0;
+                step = 7;
+                index = 0;
+        } else if ( !PyArg_ParseTuple(state, "ii", &valpred, &index) )
+                return 0;
+
+        step = stepsizeTable[index];
+        bufferstep = 1;
+
+        for ( i=0; i < len; i += size ) {
+                if ( size == 1 )      val = ((int)*CHARP(cp, i)) << 8;
+                else if ( size == 2 ) val = (int)*SHORTP(cp, i);
+                else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
+
+                /* Step 1 - compute difference with previous value */
+                diff = val - valpred;
+                sign = (diff < 0) ? 8 : 0;
+                if ( sign ) diff = (-diff);
+
+                /* Step 2 - Divide and clamp */
+                /* Note:
+                ** This code *approximately* computes:
+                **    delta = diff*4/step;
+                **    vpdiff = (delta+0.5)*step/4;
+                ** but in shift step bits are dropped. The net result of this
+                ** is that even if you have fast mul/div hardware you cannot
+                ** put it to good use since the fixup would be too expensive.
+                */
+                delta = 0;
+                vpdiff = (step >> 3);
+        
+                if ( diff >= step ) {
+                        delta = 4;
+                        diff -= step;
+                        vpdiff += step;
+                }
+                step >>= 1;
+                if ( diff >= step  ) {
+                        delta |= 2;
+                        diff -= step;
+                        vpdiff += step;
+                }
+                step >>= 1;
+                if ( diff >= step ) {
+                        delta |= 1;
+                        vpdiff += step;
+                }
+
+                /* Step 3 - Update previous value */
+                if ( sign )
+                        valpred -= vpdiff;
+                else
+                        valpred += vpdiff;
+
+                /* Step 4 - Clamp previous value to 16 bits */
+                if ( valpred > 32767 )
+                        valpred = 32767;
+                else if ( valpred < -32768 )
+                        valpred = -32768;
+
+                /* Step 5 - Assemble value, update index and step values */
+                delta |= sign;
+        
+                index += indexTable[delta];
+                if ( index < 0 ) index = 0;
+                if ( index > 88 ) index = 88;
+                step = stepsizeTable[index];
+
+                /* Step 6 - Output value */
+                if ( bufferstep ) {
+                        outputbuffer = (delta << 4) & 0xf0;
+                } else {
+                        *ncp++ = (delta & 0x0f) | outputbuffer;
+                }
+                bufferstep = !bufferstep;
+        }
+        rv = Py_BuildValue("(O(ii))", str, valpred, index);
+        Py_DECREF(str);
+        return rv;
+}
+
+static PyObject *
+audioop_adpcm2lin(PyObject *self, PyObject *args)
+{
+        signed char *cp;
+        signed char *ncp;
+        int len, new_len, size, valpred, step, delta, index, sign, vpdiff;
+        PyObject *rv, *str, *state;
+        int i, inputbuffer = 0, bufferstep;
+
+        if ( !PyArg_ParseTuple(args, "s#iO:adpcm2lin",
+                               &cp, &len, &size, &state) )
+                return 0;
+
+        if ( size != 1 && size != 2 && size != 4) {
+                PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
+                return 0;
+        }
+    
+        /* Decode state, should have (value, step) */
+        if ( state == Py_None ) {
+                /* First time, it seems. Set defaults */
+                valpred = 0;
+                step = 7;
+                index = 0;
+        } else if ( !PyArg_ParseTuple(state, "ii", &valpred, &index) )
+                return 0;
+    
+        new_len = len*size*2;
+        if (new_len < 0) {
+                PyErr_SetString(PyExc_MemoryError,
+                                "not enough memory for output buffer");
+                return 0;
+        }
+        str = PyString_FromStringAndSize(NULL, new_len);
+        if ( str == 0 )
+                return 0;
+        ncp = (signed char *)PyString_AsString(str);
+
+        step = stepsizeTable[index];
+        bufferstep = 0;
+    
+        for ( i=0; i < new_len; i += size ) {
+                /* Step 1 - get the delta value and compute next index */
+                if ( bufferstep ) {
+                        delta = inputbuffer & 0xf;
+                } else {
+                        inputbuffer = *cp++;
+                        delta = (inputbuffer >> 4) & 0xf;
+                }
+
+                bufferstep = !bufferstep;
+
+                /* Step 2 - Find new index value (for later) */
+                index += indexTable[delta];
+                if ( index < 0 ) index = 0;
+                if ( index > 88 ) index = 88;
+
+                /* Step 3 - Separate sign and magnitude */
+                sign = delta & 8;
+                delta = delta & 7;
+
+                /* Step 4 - Compute difference and new predicted value */
+                /*
+                ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
+                ** in adpcm_coder.
+                */
+                vpdiff = step >> 3;
+                if ( delta & 4 ) vpdiff += step;
+                if ( delta & 2 ) vpdiff += step>>1;
+                if ( delta & 1 ) vpdiff += step>>2;
+
+                if ( sign )
+                        valpred -= vpdiff;
+                else
+                        valpred += vpdiff;
+
+                /* Step 5 - clamp output value */
+                if ( valpred > 32767 )
+                        valpred = 32767;
+                else if ( valpred < -32768 )
+                        valpred = -32768;
+
+                /* Step 6 - Update step value */
+                step = stepsizeTable[index];
+
+                /* Step 6 - Output value */
+                if ( size == 1 ) *CHARP(ncp, i) = (signed char)(valpred >> 8);
+                else if ( size == 2 ) *SHORTP(ncp, i) = (short)(valpred);
+                else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(valpred<<16);
+        }
+
+        rv = Py_BuildValue("(O(ii))", str, valpred, index);
+        Py_DECREF(str);
+        return rv;
+}
+
+static PyMethodDef audioop_methods[] = {
+        { "max", audioop_max, METH_VARARGS },
+        { "minmax", audioop_minmax, METH_VARARGS },
+        { "avg", audioop_avg, METH_VARARGS },
+        { "maxpp", audioop_maxpp, METH_VARARGS },
+        { "avgpp", audioop_avgpp, METH_VARARGS },
+        { "rms", audioop_rms, METH_VARARGS },
+        { "findfit", audioop_findfit, METH_VARARGS },
+        { "findmax", audioop_findmax, METH_VARARGS },
+        { "findfactor", audioop_findfactor, METH_VARARGS },
+        { "cross", audioop_cross, METH_VARARGS },
+        { "mul", audioop_mul, METH_VARARGS },
+        { "add", audioop_add, METH_VARARGS },
+        { "bias", audioop_bias, METH_VARARGS },
+        { "ulaw2lin", audioop_ulaw2lin, METH_VARARGS },
+        { "lin2ulaw", audioop_lin2ulaw, METH_VARARGS },
+        { "alaw2lin", audioop_alaw2lin, METH_VARARGS },
+        { "lin2alaw", audioop_lin2alaw, METH_VARARGS },
+        { "lin2lin", audioop_lin2lin, METH_VARARGS },
+        { "adpcm2lin", audioop_adpcm2lin, METH_VARARGS },
+        { "lin2adpcm", audioop_lin2adpcm, METH_VARARGS },
+        { "tomono", audioop_tomono, METH_VARARGS },
+        { "tostereo", audioop_tostereo, METH_VARARGS },
+        { "getsample", audioop_getsample, METH_VARARGS },
+        { "reverse", audioop_reverse, METH_VARARGS },
+        { "ratecv", audioop_ratecv, METH_VARARGS },
+        { 0,          0 }
+};
+
+PyMODINIT_FUNC
+initaudioop(void)
+{
+        PyObject *m, *d;
+        m = Py_InitModule("audioop", audioop_methods);
+        if (m == NULL)
+                return;
+        d = PyModule_GetDict(m);
+        if (d == NULL)
+                return;
+        AudioopError = PyErr_NewException("audioop.error", NULL, NULL);
+        if (AudioopError != NULL)
+             PyDict_SetItemString(d,"error",AudioopError);
+}