symbian-qemu-0.9.1-12/python-2.6.1/Modules/datetimemodule.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Modules/datetimemodule.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,5082 @@
+/*  C implementation for the date/time type documented at
+ *  http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
+ */
+
+#define PY_SSIZE_T_CLEAN
+
+#include "Python.h"
+#include "modsupport.h"
+#include "structmember.h"
+
+#include <time.h>
+
+#include "timefuncs.h"
+
+/* Differentiate between building the core module and building extension
+ * modules.
+ */
+#ifndef Py_BUILD_CORE
+#define Py_BUILD_CORE
+#endif
+#include "datetime.h"
+#undef Py_BUILD_CORE
+
+/* We require that C int be at least 32 bits, and use int virtually
+ * everywhere.  In just a few cases we use a temp long, where a Python
+ * API returns a C long.  In such cases, we have to ensure that the
+ * final result fits in a C int (this can be an issue on 64-bit boxes).
+ */
+#if SIZEOF_INT < 4
+#	error "datetime.c requires that C int have at least 32 bits"
+#endif
+
+#define MINYEAR 1
+#define MAXYEAR 9999
+
+/* Nine decimal digits is easy to communicate, and leaves enough room
+ * so that two delta days can be added w/o fear of overflowing a signed
+ * 32-bit int, and with plenty of room left over to absorb any possible
+ * carries from adding seconds.
+ */
+#define MAX_DELTA_DAYS 999999999
+
+/* Rename the long macros in datetime.h to more reasonable short names. */
+#define GET_YEAR		PyDateTime_GET_YEAR
+#define GET_MONTH		PyDateTime_GET_MONTH
+#define GET_DAY			PyDateTime_GET_DAY
+#define DATE_GET_HOUR		PyDateTime_DATE_GET_HOUR
+#define DATE_GET_MINUTE		PyDateTime_DATE_GET_MINUTE
+#define DATE_GET_SECOND		PyDateTime_DATE_GET_SECOND
+#define DATE_GET_MICROSECOND	PyDateTime_DATE_GET_MICROSECOND
+
+/* Date accessors for date and datetime. */
+#define SET_YEAR(o, v)		(((o)->data[0] = ((v) & 0xff00) >> 8), \
+                                 ((o)->data[1] = ((v) & 0x00ff)))
+#define SET_MONTH(o, v)		(PyDateTime_GET_MONTH(o) = (v))
+#define SET_DAY(o, v)		(PyDateTime_GET_DAY(o) = (v))
+
+/* Date/Time accessors for datetime. */
+#define DATE_SET_HOUR(o, v)	(PyDateTime_DATE_GET_HOUR(o) = (v))
+#define DATE_SET_MINUTE(o, v)	(PyDateTime_DATE_GET_MINUTE(o) = (v))
+#define DATE_SET_SECOND(o, v)	(PyDateTime_DATE_GET_SECOND(o) = (v))
+#define DATE_SET_MICROSECOND(o, v)	\
+	(((o)->data[7] = ((v) & 0xff0000) >> 16), \
+         ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
+         ((o)->data[9] = ((v) & 0x0000ff)))
+
+/* Time accessors for time. */
+#define TIME_GET_HOUR		PyDateTime_TIME_GET_HOUR
+#define TIME_GET_MINUTE		PyDateTime_TIME_GET_MINUTE
+#define TIME_GET_SECOND		PyDateTime_TIME_GET_SECOND
+#define TIME_GET_MICROSECOND	PyDateTime_TIME_GET_MICROSECOND
+#define TIME_SET_HOUR(o, v)	(PyDateTime_TIME_GET_HOUR(o) = (v))
+#define TIME_SET_MINUTE(o, v)	(PyDateTime_TIME_GET_MINUTE(o) = (v))
+#define TIME_SET_SECOND(o, v)	(PyDateTime_TIME_GET_SECOND(o) = (v))
+#define TIME_SET_MICROSECOND(o, v)	\
+	(((o)->data[3] = ((v) & 0xff0000) >> 16), \
+         ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
+         ((o)->data[5] = ((v) & 0x0000ff)))
+
+/* Delta accessors for timedelta. */
+#define GET_TD_DAYS(o)		(((PyDateTime_Delta *)(o))->days)
+#define GET_TD_SECONDS(o)	(((PyDateTime_Delta *)(o))->seconds)
+#define GET_TD_MICROSECONDS(o)	(((PyDateTime_Delta *)(o))->microseconds)
+
+#define SET_TD_DAYS(o, v)	((o)->days = (v))
+#define SET_TD_SECONDS(o, v)	((o)->seconds = (v))
+#define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
+
+/* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
+ * p->hastzinfo.
+ */
+#define HASTZINFO(p)		(((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
+
+/* M is a char or int claiming to be a valid month.  The macro is equivalent
+ * to the two-sided Python test
+ *	1 <= M <= 12
+ */
+#define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
+
+/* Forward declarations. */
+static PyTypeObject PyDateTime_DateType;
+static PyTypeObject PyDateTime_DateTimeType;
+static PyTypeObject PyDateTime_DeltaType;
+static PyTypeObject PyDateTime_TimeType;
+static PyTypeObject PyDateTime_TZInfoType;
+
+/* ---------------------------------------------------------------------------
+ * Math utilities.
+ */
+
+/* k = i+j overflows iff k differs in sign from both inputs,
+ * iff k^i has sign bit set and k^j has sign bit set,
+ * iff (k^i)&(k^j) has sign bit set.
+ */
+#define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
+	((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
+
+/* Compute Python divmod(x, y), returning the quotient and storing the
+ * remainder into *r.  The quotient is the floor of x/y, and that's
+ * the real point of this.  C will probably truncate instead (C99
+ * requires truncation; C89 left it implementation-defined).
+ * Simplification:  we *require* that y > 0 here.  That's appropriate
+ * for all the uses made of it.  This simplifies the code and makes
+ * the overflow case impossible (divmod(LONG_MIN, -1) is the only
+ * overflow case).
+ */
+static int
+divmod(int x, int y, int *r)
+{
+	int quo;
+
+	assert(y > 0);
+	quo = x / y;
+	*r = x - quo * y;
+	if (*r < 0) {
+		--quo;
+		*r += y;
+	}
+	assert(0 <= *r && *r < y);
+	return quo;
+}
+
+/* Round a double to the nearest long.  |x| must be small enough to fit
+ * in a C long; this is not checked.
+ */
+static long
+round_to_long(double x)
+{
+	if (x >= 0.0)
+		x = floor(x + 0.5);
+	else
+		x = ceil(x - 0.5);
+	return (long)x;
+}
+
+/* ---------------------------------------------------------------------------
+ * General calendrical helper functions
+ */
+
+/* For each month ordinal in 1..12, the number of days in that month,
+ * and the number of days before that month in the same year.  These
+ * are correct for non-leap years only.
+ */
+static int _days_in_month[] = {
+	0, /* unused; this vector uses 1-based indexing */
+	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+static int _days_before_month[] = {
+	0, /* unused; this vector uses 1-based indexing */
+	0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
+};
+
+/* year -> 1 if leap year, else 0. */
+static int
+is_leap(int year)
+{
+	/* Cast year to unsigned.  The result is the same either way, but
+	 * C can generate faster code for unsigned mod than for signed
+	 * mod (especially for % 4 -- a good compiler should just grab
+	 * the last 2 bits when the LHS is unsigned).
+	 */
+	const unsigned int ayear = (unsigned int)year;
+	return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
+}
+
+/* year, month -> number of days in that month in that year */
+static int
+days_in_month(int year, int month)
+{
+	assert(month >= 1);
+	assert(month <= 12);
+	if (month == 2 && is_leap(year))
+		return 29;
+	else
+		return _days_in_month[month];
+}
+
+/* year, month -> number of days in year preceeding first day of month */
+static int
+days_before_month(int year, int month)
+{
+	int days;
+
+	assert(month >= 1);
+	assert(month <= 12);
+	days = _days_before_month[month];
+	if (month > 2 && is_leap(year))
+		++days;
+	return days;
+}
+
+/* year -> number of days before January 1st of year.  Remember that we
+ * start with year 1, so days_before_year(1) == 0.
+ */
+static int
+days_before_year(int year)
+{
+	int y = year - 1;
+	/* This is incorrect if year <= 0; we really want the floor
+	 * here.  But so long as MINYEAR is 1, the smallest year this
+	 * can see is 0 (this can happen in some normalization endcases),
+	 * so we'll just special-case that.
+	 */
+	assert (year >= 0);
+	if (y >= 0)
+		return y*365 + y/4 - y/100 + y/400;
+	else {
+		assert(y == -1);
+		return -366;
+	}
+}
+
+/* Number of days in 4, 100, and 400 year cycles.  That these have
+ * the correct values is asserted in the module init function.
+ */
+#define DI4Y	1461	/* days_before_year(5); days in 4 years */
+#define DI100Y	36524	/* days_before_year(101); days in 100 years */
+#define DI400Y	146097	/* days_before_year(401); days in 400 years  */
+
+/* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
+static void
+ord_to_ymd(int ordinal, int *year, int *month, int *day)
+{
+	int n, n1, n4, n100, n400, leapyear, preceding;
+
+	/* ordinal is a 1-based index, starting at 1-Jan-1.  The pattern of
+	 * leap years repeats exactly every 400 years.  The basic strategy is
+	 * to find the closest 400-year boundary at or before ordinal, then
+	 * work with the offset from that boundary to ordinal.  Life is much
+	 * clearer if we subtract 1 from ordinal first -- then the values
+	 * of ordinal at 400-year boundaries are exactly those divisible
+	 * by DI400Y:
+	 *
+	 *    D  M   Y            n              n-1
+	 *    -- --- ----        ----------     ----------------
+	 *    31 Dec -400        -DI400Y       -DI400Y -1
+	 *     1 Jan -399         -DI400Y +1   -DI400Y      400-year boundary
+	 *    ...
+	 *    30 Dec  000        -1             -2
+	 *    31 Dec  000         0             -1
+	 *     1 Jan  001         1              0          400-year boundary
+	 *     2 Jan  001         2              1
+	 *     3 Jan  001         3              2
+	 *    ...
+	 *    31 Dec  400         DI400Y        DI400Y -1
+	 *     1 Jan  401         DI400Y +1     DI400Y      400-year boundary
+	 */
+	assert(ordinal >= 1);
+	--ordinal;
+	n400 = ordinal / DI400Y;
+	n = ordinal % DI400Y;
+	*year = n400 * 400 + 1;
+
+	/* Now n is the (non-negative) offset, in days, from January 1 of
+	 * year, to the desired date.  Now compute how many 100-year cycles
+	 * precede n.
+	 * Note that it's possible for n100 to equal 4!  In that case 4 full
+	 * 100-year cycles precede the desired day, which implies the
+	 * desired day is December 31 at the end of a 400-year cycle.
+	 */
+	n100 = n / DI100Y;
+	n = n % DI100Y;
+
+	/* Now compute how many 4-year cycles precede it. */
+	n4 = n / DI4Y;
+	n = n % DI4Y;
+
+	/* And now how many single years.  Again n1 can be 4, and again
+	 * meaning that the desired day is December 31 at the end of the
+	 * 4-year cycle.
+	 */
+	n1 = n / 365;
+	n = n % 365;
+
+	*year += n100 * 100 + n4 * 4 + n1;
+	if (n1 == 4 || n100 == 4) {
+		assert(n == 0);
+		*year -= 1;
+		*month = 12;
+		*day = 31;
+		return;
+	}
+
+	/* Now the year is correct, and n is the offset from January 1.  We
+	 * find the month via an estimate that's either exact or one too
+	 * large.
+	 */
+	leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
+	assert(leapyear == is_leap(*year));
+	*month = (n + 50) >> 5;
+	preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
+	if (preceding > n) {
+		/* estimate is too large */
+		*month -= 1;
+		preceding -= days_in_month(*year, *month);
+	}
+	n -= preceding;
+	assert(0 <= n);
+	assert(n < days_in_month(*year, *month));
+
+	*day = n + 1;
+}
+
+/* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
+static int
+ymd_to_ord(int year, int month, int day)
+{
+	return days_before_year(year) + days_before_month(year, month) + day;
+}
+
+/* Day of week, where Monday==0, ..., Sunday==6.  1/1/1 was a Monday. */
+static int
+weekday(int year, int month, int day)
+{
+	return (ymd_to_ord(year, month, day) + 6) % 7;
+}
+
+/* Ordinal of the Monday starting week 1 of the ISO year.  Week 1 is the
+ * first calendar week containing a Thursday.
+ */
+static int
+iso_week1_monday(int year)
+{
+	int first_day = ymd_to_ord(year, 1, 1);	/* ord of 1/1 */
+	/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
+	int first_weekday = (first_day + 6) % 7;
+	/* ordinal of closest Monday at or before 1/1 */
+	int week1_monday  = first_day - first_weekday;
+
+	if (first_weekday > 3)	/* if 1/1 was Fri, Sat, Sun */
+		week1_monday += 7;
+	return week1_monday;
+}
+
+/* ---------------------------------------------------------------------------
+ * Range checkers.
+ */
+
+/* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS.  If so, return 0.
+ * If not, raise OverflowError and return -1.
+ */
+static int
+check_delta_day_range(int days)
+{
+	if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
+		return 0;
+	PyErr_Format(PyExc_OverflowError,
+		     "days=%d; must have magnitude <= %d",
+		     days, MAX_DELTA_DAYS);
+	return -1;
+}
+
+/* Check that date arguments are in range.  Return 0 if they are.  If they
+ * aren't, raise ValueError and return -1.
+ */
+static int
+check_date_args(int year, int month, int day)
+{
+
+	if (year < MINYEAR || year > MAXYEAR) {
+		PyErr_SetString(PyExc_ValueError,
+				"year is out of range");
+		return -1;
+	}
+	if (month < 1 || month > 12) {
+		PyErr_SetString(PyExc_ValueError,
+				"month must be in 1..12");
+		return -1;
+	}
+	if (day < 1 || day > days_in_month(year, month)) {
+		PyErr_SetString(PyExc_ValueError,
+				"day is out of range for month");
+		return -1;
+	}
+	return 0;
+}
+
+/* Check that time arguments are in range.  Return 0 if they are.  If they
+ * aren't, raise ValueError and return -1.
+ */
+static int
+check_time_args(int h, int m, int s, int us)
+{
+	if (h < 0 || h > 23) {
+		PyErr_SetString(PyExc_ValueError,
+				"hour must be in 0..23");
+		return -1;
+	}
+	if (m < 0 || m > 59) {
+		PyErr_SetString(PyExc_ValueError,
+				"minute must be in 0..59");
+		return -1;
+	}
+	if (s < 0 || s > 59) {
+		PyErr_SetString(PyExc_ValueError,
+				"second must be in 0..59");
+		return -1;
+	}
+	if (us < 0 || us > 999999) {
+		PyErr_SetString(PyExc_ValueError,
+				"microsecond must be in 0..999999");
+		return -1;
+	}
+	return 0;
+}
+
+/* ---------------------------------------------------------------------------
+ * Normalization utilities.
+ */
+
+/* One step of a mixed-radix conversion.  A "hi" unit is equivalent to
+ * factor "lo" units.  factor must be > 0.  If *lo is less than 0, or
+ * at least factor, enough of *lo is converted into "hi" units so that
+ * 0 <= *lo < factor.  The input values must be such that int overflow
+ * is impossible.
+ */
+static void
+normalize_pair(int *hi, int *lo, int factor)
+{
+	assert(factor > 0);
+	assert(lo != hi);
+	if (*lo < 0 || *lo >= factor) {
+		const int num_hi = divmod(*lo, factor, lo);
+		const int new_hi = *hi + num_hi;
+		assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
+		*hi = new_hi;
+	}
+	assert(0 <= *lo && *lo < factor);
+}
+
+/* Fiddle days (d), seconds (s), and microseconds (us) so that
+ * 	0 <= *s < 24*3600
+ * 	0 <= *us < 1000000
+ * The input values must be such that the internals don't overflow.
+ * The way this routine is used, we don't get close.
+ */
+static void
+normalize_d_s_us(int *d, int *s, int *us)
+{
+	if (*us < 0 || *us >= 1000000) {
+		normalize_pair(s, us, 1000000);
+		/* |s| can't be bigger than about
+		 * |original s| + |original us|/1000000 now.
+		 */
+
+	}
+	if (*s < 0 || *s >= 24*3600) {
+		normalize_pair(d, s, 24*3600);
+		/* |d| can't be bigger than about
+		 * |original d| +
+		 * (|original s| + |original us|/1000000) / (24*3600) now.
+		 */
+	}
+	assert(0 <= *s && *s < 24*3600);
+	assert(0 <= *us && *us < 1000000);
+}
+
+/* Fiddle years (y), months (m), and days (d) so that
+ * 	1 <= *m <= 12
+ * 	1 <= *d <= days_in_month(*y, *m)
+ * The input values must be such that the internals don't overflow.
+ * The way this routine is used, we don't get close.
+ */
+static void
+normalize_y_m_d(int *y, int *m, int *d)
+{
+	int dim;	/* # of days in month */
+
+	/* This gets muddy:  the proper range for day can't be determined
+	 * without knowing the correct month and year, but if day is, e.g.,
+	 * plus or minus a million, the current month and year values make
+	 * no sense (and may also be out of bounds themselves).
+	 * Saying 12 months == 1 year should be non-controversial.
+	 */
+	if (*m < 1 || *m > 12) {
+		--*m;
+		normalize_pair(y, m, 12);
+		++*m;
+		/* |y| can't be bigger than about
+		 * |original y| + |original m|/12 now.
+		 */
+	}
+	assert(1 <= *m && *m <= 12);
+
+	/* Now only day can be out of bounds (year may also be out of bounds
+	 * for a datetime object, but we don't care about that here).
+	 * If day is out of bounds, what to do is arguable, but at least the
+	 * method here is principled and explainable.
+	 */
+	dim = days_in_month(*y, *m);
+	if (*d < 1 || *d > dim) {
+		/* Move day-1 days from the first of the month.  First try to
+		 * get off cheap if we're only one day out of range
+		 * (adjustments for timezone alone can't be worse than that).
+		 */
+		if (*d == 0) {
+			--*m;
+			if (*m > 0)
+				*d = days_in_month(*y, *m);
+			else {
+				--*y;
+				*m = 12;
+				*d = 31;
+			}
+		}
+		else if (*d == dim + 1) {
+			/* move forward a day */
+			++*m;
+			*d = 1;
+			if (*m > 12) {
+				*m = 1;
+				++*y;
+			}
+		}
+		else {
+			int ordinal = ymd_to_ord(*y, *m, 1) +
+						  *d - 1;
+			ord_to_ymd(ordinal, y, m, d);
+		}
+	}
+	assert(*m > 0);
+	assert(*d > 0);
+}
+
+/* Fiddle out-of-bounds months and days so that the result makes some kind
+ * of sense.  The parameters are both inputs and outputs.  Returns < 0 on
+ * failure, where failure means the adjusted year is out of bounds.
+ */
+static int
+normalize_date(int *year, int *month, int *day)
+{
+	int result;
+
+	normalize_y_m_d(year, month, day);
+	if (MINYEAR <= *year && *year <= MAXYEAR)
+		result = 0;
+	else {
+		PyErr_SetString(PyExc_OverflowError,
+				"date value out of range");
+		result = -1;
+	}
+	return result;
+}
+
+/* Force all the datetime fields into range.  The parameters are both
+ * inputs and outputs.  Returns < 0 on error.
+ */
+static int
+normalize_datetime(int *year, int *month, int *day,
+                   int *hour, int *minute, int *second,
+                   int *microsecond)
+{
+	normalize_pair(second, microsecond, 1000000);
+	normalize_pair(minute, second, 60);
+	normalize_pair(hour, minute, 60);
+	normalize_pair(day, hour, 24);
+	return normalize_date(year, month, day);
+}
+
+/* ---------------------------------------------------------------------------
+ * Basic object allocation:  tp_alloc implementations.  These allocate
+ * Python objects of the right size and type, and do the Python object-
+ * initialization bit.  If there's not enough memory, they return NULL after
+ * setting MemoryError.  All data members remain uninitialized trash.
+ *
+ * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
+ * member is needed.  This is ugly, imprecise, and possibly insecure.
+ * tp_basicsize for the time and datetime types is set to the size of the
+ * struct that has room for the tzinfo member, so subclasses in Python will
+ * allocate enough space for a tzinfo member whether or not one is actually
+ * needed.  That's the "ugly and imprecise" parts.  The "possibly insecure"
+ * part is that PyType_GenericAlloc() (which subclasses in Python end up
+ * using) just happens today to effectively ignore the nitems argument
+ * when tp_itemsize is 0, which it is for these type objects.  If that
+ * changes, perhaps the callers of tp_alloc slots in this file should
+ * be changed to force a 0 nitems argument unless the type being allocated
+ * is a base type implemented in this file (so that tp_alloc is time_alloc
+ * or datetime_alloc below, which know about the nitems abuse).
+ */
+
+static PyObject *
+time_alloc(PyTypeObject *type, Py_ssize_t aware)
+{
+	PyObject *self;
+
+	self = (PyObject *)
+		PyObject_MALLOC(aware ?
+				sizeof(PyDateTime_Time) :
+				sizeof(_PyDateTime_BaseTime));
+	if (self == NULL)
+		return (PyObject *)PyErr_NoMemory();
+	PyObject_INIT(self, type);
+	return self;
+}
+
+static PyObject *
+datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
+{
+	PyObject *self;
+
+	self = (PyObject *)
+		PyObject_MALLOC(aware ?
+				sizeof(PyDateTime_DateTime) :
+				sizeof(_PyDateTime_BaseDateTime));
+	if (self == NULL)
+		return (PyObject *)PyErr_NoMemory();
+	PyObject_INIT(self, type);
+	return self;
+}
+
+/* ---------------------------------------------------------------------------
+ * Helpers for setting object fields.  These work on pointers to the
+ * appropriate base class.
+ */
+
+/* For date and datetime. */
+static void
+set_date_fields(PyDateTime_Date *self, int y, int m, int d)
+{
+	self->hashcode = -1;
+	SET_YEAR(self, y);
+	SET_MONTH(self, m);
+	SET_DAY(self, d);
+}
+
+/* ---------------------------------------------------------------------------
+ * Create various objects, mostly without range checking.
+ */
+
+/* Create a date instance with no range checking. */
+static PyObject *
+new_date_ex(int year, int month, int day, PyTypeObject *type)
+{
+	PyDateTime_Date *self;
+
+	self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
+	if (self != NULL)
+		set_date_fields(self, year, month, day);
+	return (PyObject *) self;
+}
+
+#define new_date(year, month, day) \
+	new_date_ex(year, month, day, &PyDateTime_DateType)
+
+/* Create a datetime instance with no range checking. */
+static PyObject *
+new_datetime_ex(int year, int month, int day, int hour, int minute,
+	     int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
+{
+	PyDateTime_DateTime *self;
+	char aware = tzinfo != Py_None;
+
+	self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
+	if (self != NULL) {
+		self->hastzinfo = aware;
+		set_date_fields((PyDateTime_Date *)self, year, month, day);
+		DATE_SET_HOUR(self, hour);
+		DATE_SET_MINUTE(self, minute);
+		DATE_SET_SECOND(self, second);
+		DATE_SET_MICROSECOND(self, usecond);
+		if (aware) {
+			Py_INCREF(tzinfo);
+			self->tzinfo = tzinfo;
+		}
+	}
+	return (PyObject *)self;
+}
+
+#define new_datetime(y, m, d, hh, mm, ss, us, tzinfo)		\
+	new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo,	\
+			&PyDateTime_DateTimeType)
+
+/* Create a time instance with no range checking. */
+static PyObject *
+new_time_ex(int hour, int minute, int second, int usecond,
+	    PyObject *tzinfo, PyTypeObject *type)
+{
+	PyDateTime_Time *self;
+	char aware = tzinfo != Py_None;
+
+	self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
+	if (self != NULL) {
+		self->hastzinfo = aware;
+		self->hashcode = -1;
+		TIME_SET_HOUR(self, hour);
+		TIME_SET_MINUTE(self, minute);
+		TIME_SET_SECOND(self, second);
+		TIME_SET_MICROSECOND(self, usecond);
+		if (aware) {
+			Py_INCREF(tzinfo);
+			self->tzinfo = tzinfo;
+		}
+	}
+	return (PyObject *)self;
+}
+
+#define new_time(hh, mm, ss, us, tzinfo)		\
+	new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
+
+/* Create a timedelta instance.  Normalize the members iff normalize is
+ * true.  Passing false is a speed optimization, if you know for sure
+ * that seconds and microseconds are already in their proper ranges.  In any
+ * case, raises OverflowError and returns NULL if the normalized days is out
+ * of range).
+ */
+static PyObject *
+new_delta_ex(int days, int seconds, int microseconds, int normalize,
+	     PyTypeObject *type)
+{
+	PyDateTime_Delta *self;
+
+	if (normalize)
+		normalize_d_s_us(&days, &seconds, &microseconds);
+	assert(0 <= seconds && seconds < 24*3600);
+	assert(0 <= microseconds && microseconds < 1000000);
+
+ 	if (check_delta_day_range(days) < 0)
+ 		return NULL;
+
+	self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
+	if (self != NULL) {
+		self->hashcode = -1;
+		SET_TD_DAYS(self, days);
+		SET_TD_SECONDS(self, seconds);
+		SET_TD_MICROSECONDS(self, microseconds);
+	}
+	return (PyObject *) self;
+}
+
+#define new_delta(d, s, us, normalize)	\
+	new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
+
+/* ---------------------------------------------------------------------------
+ * tzinfo helpers.
+ */
+
+/* Ensure that p is None or of a tzinfo subclass.  Return 0 if OK; if not
+ * raise TypeError and return -1.
+ */
+static int
+check_tzinfo_subclass(PyObject *p)
+{
+	if (p == Py_None || PyTZInfo_Check(p))
+		return 0;
+	PyErr_Format(PyExc_TypeError,
+		     "tzinfo argument must be None or of a tzinfo subclass, "
+		     "not type '%s'",
+		     Py_TYPE(p)->tp_name);
+	return -1;
+}
+
+/* Return tzinfo.methname(tzinfoarg), without any checking of results.
+ * If tzinfo is None, returns None.
+ */
+static PyObject *
+call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
+{
+	PyObject *result;
+
+	assert(tzinfo && methname && tzinfoarg);
+	assert(check_tzinfo_subclass(tzinfo) >= 0);
+	if (tzinfo == Py_None) {
+		result = Py_None;
+		Py_INCREF(result);
+	}
+	else
+		result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
+	return result;
+}
+
+/* If self has a tzinfo member, return a BORROWED reference to it.  Else
+ * return NULL, which is NOT AN ERROR.  There are no error returns here,
+ * and the caller must not decref the result.
+ */
+static PyObject *
+get_tzinfo_member(PyObject *self)
+{
+	PyObject *tzinfo = NULL;
+
+	if (PyDateTime_Check(self) && HASTZINFO(self))
+		tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
+	else if (PyTime_Check(self) && HASTZINFO(self))
+		tzinfo = ((PyDateTime_Time *)self)->tzinfo;
+
+	return tzinfo;
+}
+
+/* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
+ * result.  tzinfo must be an instance of the tzinfo class.  If the method
+ * returns None, this returns 0 and sets *none to 1.  If the method doesn't
+ * return None or timedelta, TypeError is raised and this returns -1.  If it
+ * returnsa timedelta and the value is out of range or isn't a whole number
+ * of minutes, ValueError is raised and this returns -1.
+ * Else *none is set to 0 and the integer method result is returned.
+ */
+static int
+call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
+		       int *none)
+{
+	PyObject *u;
+	int result = -1;
+
+	assert(tzinfo != NULL);
+	assert(PyTZInfo_Check(tzinfo));
+	assert(tzinfoarg != NULL);
+
+	*none = 0;
+	u = call_tzinfo_method(tzinfo, name, tzinfoarg);
+	if (u == NULL)
+		return -1;
+
+	else if (u == Py_None) {
+		result = 0;
+		*none = 1;
+	}
+	else if (PyDelta_Check(u)) {
+		const int days = GET_TD_DAYS(u);
+		if (days < -1 || days > 0)
+			result = 24*60;	/* trigger ValueError below */
+		else {
+			/* next line can't overflow because we know days
+			 * is -1 or 0 now
+			 */
+			int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
+			result = divmod(ss, 60, &ss);
+			if (ss || GET_TD_MICROSECONDS(u)) {
+				PyErr_Format(PyExc_ValueError,
+					     "tzinfo.%s() must return a "
+					     "whole number of minutes",
+					     name);
+				result = -1;
+			}
+		}
+	}
+	else {
+		PyErr_Format(PyExc_TypeError,
+			     "tzinfo.%s() must return None or "
+			     "timedelta, not '%s'",
+			     name, Py_TYPE(u)->tp_name);
+	}
+
+	Py_DECREF(u);
+	if (result < -1439 || result > 1439) {
+		PyErr_Format(PyExc_ValueError,
+			     "tzinfo.%s() returned %d; must be in "
+			     "-1439 .. 1439",
+			     name, result);
+		result = -1;
+	}
+	return result;
+}
+
+/* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
+ * result.  tzinfo must be an instance of the tzinfo class.  If utcoffset()
+ * returns None, call_utcoffset returns 0 and sets *none to 1.  If uctoffset()
+ * doesn't return None or timedelta, TypeError is raised and this returns -1.
+ * If utcoffset() returns an invalid timedelta (out of range, or not a whole
+ * # of minutes), ValueError is raised and this returns -1.  Else *none is
+ * set to 0 and the offset is returned (as int # of minutes east of UTC).
+ */
+static int
+call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
+{
+	return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
+}
+
+/* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
+ */
+static PyObject *
+offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
+	PyObject *result;
+
+	assert(tzinfo && name && tzinfoarg);
+	if (tzinfo == Py_None) {
+		result = Py_None;
+		Py_INCREF(result);
+	}
+	else {
+		int none;
+		int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
+						    &none);
+		if (offset < 0 && PyErr_Occurred())
+			return NULL;
+		if (none) {
+			result = Py_None;
+			Py_INCREF(result);
+		}
+		else
+			result = new_delta(0, offset * 60, 0, 1);
+	}
+	return result;
+}
+
+/* Call tzinfo.dst(tzinfoarg), and extract an integer from the
+ * result.  tzinfo must be an instance of the tzinfo class.  If dst()
+ * returns None, call_dst returns 0 and sets *none to 1.  If dst()
+ & doesn't return None or timedelta, TypeError is raised and this
+ * returns -1.  If dst() returns an invalid timedelta for a UTC offset,
+ * ValueError is raised and this returns -1.  Else *none is set to 0 and
+ * the offset is returned (as an int # of minutes east of UTC).
+ */
+static int
+call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
+{
+	return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
+}
+
+/* Call tzinfo.tzname(tzinfoarg), and return the result.  tzinfo must be
+ * an instance of the tzinfo class or None.  If tzinfo isn't None, and
+ * tzname() doesn't return None or a string, TypeError is raised and this
+ * returns NULL.
+ */
+static PyObject *
+call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
+{
+	PyObject *result;
+
+	assert(tzinfo != NULL);
+	assert(check_tzinfo_subclass(tzinfo) >= 0);
+	assert(tzinfoarg != NULL);
+
+	if (tzinfo == Py_None) {
+		result = Py_None;
+		Py_INCREF(result);
+	}
+	else
+		result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
+
+	if (result != NULL && result != Py_None && ! PyString_Check(result)) {
+		PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
+			     "return None or a string, not '%s'",
+			     Py_TYPE(result)->tp_name);
+		Py_DECREF(result);
+		result = NULL;
+	}
+	return result;
+}
+
+typedef enum {
+	      /* an exception has been set; the caller should pass it on */
+	      OFFSET_ERROR,
+
+	      /* type isn't date, datetime, or time subclass */
+	      OFFSET_UNKNOWN,
+
+	      /* date,
+	       * datetime with !hastzinfo
+	       * datetime with None tzinfo,
+	       * datetime where utcoffset() returns None
+	       * time with !hastzinfo
+	       * time with None tzinfo,
+	       * time where utcoffset() returns None
+	       */
+	      OFFSET_NAIVE,
+
+	      /* time or datetime where utcoffset() doesn't return None */
+	      OFFSET_AWARE
+} naivety;
+
+/* Classify an object as to whether it's naive or offset-aware.  See
+ * the "naivety" typedef for details.  If the type is aware, *offset is set
+ * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
+ * If the type is offset-naive (or unknown, or error), *offset is set to 0.
+ * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
+ */
+static naivety
+classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
+{
+	int none;
+	PyObject *tzinfo;
+
+	assert(tzinfoarg != NULL);
+	*offset = 0;
+	tzinfo = get_tzinfo_member(op);	/* NULL means no tzinfo, not error */
+	if (tzinfo == Py_None)
+		return OFFSET_NAIVE;
+	if (tzinfo == NULL) {
+		/* note that a datetime passes the PyDate_Check test */
+		return (PyTime_Check(op) || PyDate_Check(op)) ?
+		       OFFSET_NAIVE : OFFSET_UNKNOWN;
+	}
+	*offset = call_utcoffset(tzinfo, tzinfoarg, &none);
+	if (*offset == -1 && PyErr_Occurred())
+		return OFFSET_ERROR;
+	return none ? OFFSET_NAIVE : OFFSET_AWARE;
+}
+
+/* Classify two objects as to whether they're naive or offset-aware.
+ * This isn't quite the same as calling classify_utcoffset() twice:  for
+ * binary operations (comparison and subtraction), we generally want to
+ * ignore the tzinfo members if they're identical.  This is by design,
+ * so that results match "naive" expectations when mixing objects from a
+ * single timezone.  So in that case, this sets both offsets to 0 and
+ * both naiveties to OFFSET_NAIVE.
+ * The function returns 0 if everything's OK, and -1 on error.
+ */
+static int
+classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
+			PyObject *tzinfoarg1,
+			PyObject *o2, int *offset2, naivety *n2,
+			PyObject *tzinfoarg2)
+{
+	if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
+		*offset1 = *offset2 = 0;
+		*n1 = *n2 = OFFSET_NAIVE;
+	}
+	else {
+		*n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
+		if (*n1 == OFFSET_ERROR)
+			return -1;
+		*n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
+		if (*n2 == OFFSET_ERROR)
+			return -1;
+	}
+	return 0;
+}
+
+/* repr is like "someclass(arg1, arg2)".  If tzinfo isn't None,
+ * stuff
+ *     ", tzinfo=" + repr(tzinfo)
+ * before the closing ")".
+ */
+static PyObject *
+append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
+{
+	PyObject *temp;
+
+	assert(PyString_Check(repr));
+	assert(tzinfo);
+	if (tzinfo == Py_None)
+		return repr;
+	/* Get rid of the trailing ')'. */
+	assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')');
+	temp = PyString_FromStringAndSize(PyString_AsString(repr),
+					  PyString_Size(repr) - 1);
+	Py_DECREF(repr);
+	if (temp == NULL)
+		return NULL;
+	repr = temp;
+
+	/* Append ", tzinfo=". */
+	PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo="));
+
+	/* Append repr(tzinfo). */
+	PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo));
+
+	/* Add a closing paren. */
+	PyString_ConcatAndDel(&repr, PyString_FromString(")"));
+	return repr;
+}
+
+/* ---------------------------------------------------------------------------
+ * String format helpers.
+ */
+
+static PyObject *
+format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
+{
+	static const char *DayNames[] = {
+		"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
+	};
+	static const char *MonthNames[] = {
+		"Jan", "Feb", "Mar", "Apr", "May", "Jun",
+		"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
+	};
+
+	char buffer[128];
+	int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
+
+	PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d",
+		      DayNames[wday], MonthNames[GET_MONTH(date) - 1],
+		      GET_DAY(date), hours, minutes, seconds,
+		      GET_YEAR(date));
+	return PyString_FromString(buffer);
+}
+
+/* Add an hours & minutes UTC offset string to buf.  buf has no more than
+ * buflen bytes remaining.  The UTC offset is gotten by calling
+ * tzinfo.uctoffset(tzinfoarg).  If that returns None, \0 is stored into
+ * *buf, and that's all.  Else the returned value is checked for sanity (an
+ * integer in range), and if that's OK it's converted to an hours & minutes
+ * string of the form
+ *   sign HH sep MM
+ * Returns 0 if everything is OK.  If the return value from utcoffset() is
+ * bogus, an appropriate exception is set and -1 is returned.
+ */
+static int
+format_utcoffset(char *buf, size_t buflen, const char *sep,
+		PyObject *tzinfo, PyObject *tzinfoarg)
+{
+	int offset;
+	int hours;
+	int minutes;
+	char sign;
+	int none;
+
+	assert(buflen >= 1);
+
+	offset = call_utcoffset(tzinfo, tzinfoarg, &none);
+	if (offset == -1 && PyErr_Occurred())
+		return -1;
+	if (none) {
+		*buf = '\0';
+		return 0;
+	}
+	sign = '+';
+	if (offset < 0) {
+		sign = '-';
+		offset = - offset;
+	}
+	hours = divmod(offset, 60, &minutes);
+	PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
+	return 0;
+}
+
+static PyObject *
+make_freplacement(PyObject *object)
+{
+	char freplacement[64];
+	if (PyTime_Check(object))
+	    sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
+	else if (PyDateTime_Check(object))
+	    sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
+	else
+	    sprintf(freplacement, "%06d", 0);
+
+	return PyString_FromStringAndSize(freplacement, strlen(freplacement));
+}
+
+/* I sure don't want to reproduce the strftime code from the time module,
+ * so this imports the module and calls it.  All the hair is due to
+ * giving special meanings to the %z, %Z and %f format codes via a
+ * preprocessing step on the format string.
+ * tzinfoarg is the argument to pass to the object's tzinfo method, if
+ * needed.
+ */
+static PyObject *
+wrap_strftime(PyObject *object, const char *format, size_t format_len,
+		PyObject *timetuple, PyObject *tzinfoarg)
+{
+	PyObject *result = NULL;	/* guilty until proved innocent */
+
+	PyObject *zreplacement = NULL;	/* py string, replacement for %z */
+	PyObject *Zreplacement = NULL;	/* py string, replacement for %Z */
+	PyObject *freplacement = NULL;	/* py string, replacement for %f */
+
+	const char *pin;	/* pointer to next char in input format */
+	char ch;		/* next char in input format */
+
+	PyObject *newfmt = NULL;	/* py string, the output format */
+	char *pnew;	/* pointer to available byte in output format */
+	size_t totalnew;	/* number bytes total in output format buffer,
+				   exclusive of trailing \0 */
+	size_t usednew;	/* number bytes used so far in output format buffer */
+
+	const char *ptoappend;	/* ptr to string to append to output buffer */
+	size_t ntoappend;	/* # of bytes to append to output buffer */
+
+	assert(object && format && timetuple);
+
+	/* Give up if the year is before 1900.
+	 * Python strftime() plays games with the year, and different
+	 * games depending on whether envar PYTHON2K is set.  This makes
+	 * years before 1900 a nightmare, even if the platform strftime
+	 * supports them (and not all do).
+	 * We could get a lot farther here by avoiding Python's strftime
+	 * wrapper and calling the C strftime() directly, but that isn't
+	 * an option in the Python implementation of this module.
+	 */
+	{
+		long year;
+		PyObject *pyyear = PySequence_GetItem(timetuple, 0);
+		if (pyyear == NULL) return NULL;
+		assert(PyInt_Check(pyyear));
+		year = PyInt_AsLong(pyyear);
+		Py_DECREF(pyyear);
+		if (year < 1900) {
+			PyErr_Format(PyExc_ValueError, "year=%ld is before "
+				     "1900; the datetime strftime() "
+	                             "methods require year >= 1900",
+	                             year);
+	                return NULL;
+		}
+	}
+
+	/* Scan the input format, looking for %z/%Z/%f escapes, building
+	 * a new format.  Since computing the replacements for those codes
+	 * is expensive, don't unless they're actually used.
+	 */
+	if (format_len > INT_MAX - 1) {
+		PyErr_NoMemory();
+		goto Done;
+	}
+
+	totalnew = format_len + 1;	/* realistic if no %z/%Z/%f */
+	newfmt = PyString_FromStringAndSize(NULL, totalnew);
+	if (newfmt == NULL) goto Done;
+	pnew = PyString_AsString(newfmt);
+	usednew = 0;
+
+	pin = format;
+	while ((ch = *pin++) != '\0') {
+		if (ch != '%') {
+			ptoappend = pin - 1;
+			ntoappend = 1;
+		}
+		else if ((ch = *pin++) == '\0') {
+			/* There's a lone trailing %; doesn't make sense. */
+			PyErr_SetString(PyExc_ValueError, "strftime format "
+					"ends with raw %");
+			goto Done;
+		}
+		/* A % has been seen and ch is the character after it. */
+		else if (ch == 'z') {
+			if (zreplacement == NULL) {
+				/* format utcoffset */
+				char buf[100];
+				PyObject *tzinfo = get_tzinfo_member(object);
+				zreplacement = PyString_FromString("");
+				if (zreplacement == NULL) goto Done;
+				if (tzinfo != Py_None && tzinfo != NULL) {
+					assert(tzinfoarg != NULL);
+					if (format_utcoffset(buf,
+							     sizeof(buf),
+							     "",
+							     tzinfo,
+							     tzinfoarg) < 0)
+						goto Done;
+					Py_DECREF(zreplacement);
+					zreplacement = PyString_FromString(buf);
+					if (zreplacement == NULL) goto Done;
+				}
+			}
+			assert(zreplacement != NULL);
+			ptoappend = PyString_AS_STRING(zreplacement);
+			ntoappend = PyString_GET_SIZE(zreplacement);
+		}
+		else if (ch == 'Z') {
+			/* format tzname */
+			if (Zreplacement == NULL) {
+				PyObject *tzinfo = get_tzinfo_member(object);
+				Zreplacement = PyString_FromString("");
+				if (Zreplacement == NULL) goto Done;
+				if (tzinfo != Py_None && tzinfo != NULL) {
+					PyObject *temp;
+					assert(tzinfoarg != NULL);
+					temp = call_tzname(tzinfo, tzinfoarg);
+					if (temp == NULL) goto Done;
+					if (temp != Py_None) {
+						assert(PyString_Check(temp));
+						/* Since the tzname is getting
+						 * stuffed into the format, we
+						 * have to double any % signs
+						 * so that strftime doesn't
+						 * treat them as format codes.
+						 */
+						Py_DECREF(Zreplacement);
+						Zreplacement = PyObject_CallMethod(
+							temp, "replace",
+							"ss", "%", "%%");
+						Py_DECREF(temp);
+						if (Zreplacement == NULL)
+							goto Done;
+						if (!PyString_Check(Zreplacement)) {
+							PyErr_SetString(PyExc_TypeError, "tzname.replace() did not return a string");
+							goto Done;
+						}
+					}
+					else
+						Py_DECREF(temp);
+				}
+			}
+			assert(Zreplacement != NULL);
+			ptoappend = PyString_AS_STRING(Zreplacement);
+			ntoappend = PyString_GET_SIZE(Zreplacement);
+		}
+		else if (ch == 'f') {
+			/* format microseconds */
+			if (freplacement == NULL) {
+				freplacement = make_freplacement(object);
+				if (freplacement == NULL)
+					goto Done;
+			}
+			assert(freplacement != NULL);
+			assert(PyString_Check(freplacement));
+			ptoappend = PyString_AS_STRING(freplacement);
+			ntoappend = PyString_GET_SIZE(freplacement);
+		}
+		else {
+			/* percent followed by neither z nor Z */
+			ptoappend = pin - 2;
+			ntoappend = 2;
+		}
+
+ 		/* Append the ntoappend chars starting at ptoappend to
+ 		 * the new format.
+ 		 */
+ 		assert(ptoappend != NULL);
+ 		assert(ntoappend >= 0);
+ 		if (ntoappend == 0)
+ 			continue;
+ 		while (usednew + ntoappend > totalnew) {
+ 			size_t bigger = totalnew << 1;
+ 			if ((bigger >> 1) != totalnew) { /* overflow */
+ 				PyErr_NoMemory();
+ 				goto Done;
+ 			}
+ 			if (_PyString_Resize(&newfmt, bigger) < 0)
+ 				goto Done;
+ 			totalnew = bigger;
+ 			pnew = PyString_AsString(newfmt) + usednew;
+ 		}
+		memcpy(pnew, ptoappend, ntoappend);
+		pnew += ntoappend;
+		usednew += ntoappend;
+		assert(usednew <= totalnew);
+	}  /* end while() */
+
+	if (_PyString_Resize(&newfmt, usednew) < 0)
+		goto Done;
+	{
+		PyObject *time = PyImport_ImportModuleNoBlock("time");
+		if (time == NULL)
+			goto Done;
+		result = PyObject_CallMethod(time, "strftime", "OO",
+					     newfmt, timetuple);
+		Py_DECREF(time);
+    	}
+ Done:
+	Py_XDECREF(freplacement);
+	Py_XDECREF(zreplacement);
+	Py_XDECREF(Zreplacement);
+	Py_XDECREF(newfmt);
+    	return result;
+}
+
+static char *
+isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen)
+{
+	int x;
+	x = PyOS_snprintf(buffer, bufflen,
+			  "%04d-%02d-%02d",
+			  GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt));
+	return buffer + x;
+}
+
+static void
+isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen)
+{
+	int us = DATE_GET_MICROSECOND(dt);
+
+	PyOS_snprintf(buffer, bufflen,
+		      "%02d:%02d:%02d",	/* 8 characters */
+		      DATE_GET_HOUR(dt),
+		      DATE_GET_MINUTE(dt),
+		      DATE_GET_SECOND(dt));
+	if (us)
+		PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us);
+}
+
+/* ---------------------------------------------------------------------------
+ * Wrap functions from the time module.  These aren't directly available
+ * from C.  Perhaps they should be.
+ */
+
+/* Call time.time() and return its result (a Python float). */
+static PyObject *
+time_time(void)
+{
+	PyObject *result = NULL;
+	PyObject *time = PyImport_ImportModuleNoBlock("time");
+
+	if (time != NULL) {
+		result = PyObject_CallMethod(time, "time", "()");
+		Py_DECREF(time);
+	}
+	return result;
+}
+
+/* Build a time.struct_time.  The weekday and day number are automatically
+ * computed from the y,m,d args.
+ */
+static PyObject *
+build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
+{
+	PyObject *time;
+	PyObject *result = NULL;
+
+	time = PyImport_ImportModuleNoBlock("time");
+	if (time != NULL) {
+		result = PyObject_CallMethod(time, "struct_time",
+					     "((iiiiiiiii))",
+					     y, m, d,
+					     hh, mm, ss,
+				 	     weekday(y, m, d),
+				 	     days_before_month(y, m) + d,
+				 	     dstflag);
+		Py_DECREF(time);
+	}
+	return result;
+}
+
+/* ---------------------------------------------------------------------------
+ * Miscellaneous helpers.
+ */
+
+/* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
+ * The comparisons here all most naturally compute a cmp()-like result.
+ * This little helper turns that into a bool result for rich comparisons.
+ */
+static PyObject *
+diff_to_bool(int diff, int op)
+{
+	PyObject *result;
+	int istrue;
+
+	switch (op) {
+		case Py_EQ: istrue = diff == 0; break;
+		case Py_NE: istrue = diff != 0; break;
+		case Py_LE: istrue = diff <= 0; break;
+		case Py_GE: istrue = diff >= 0; break;
+		case Py_LT: istrue = diff < 0; break;
+		case Py_GT: istrue = diff > 0; break;
+		default:
+			assert(! "op unknown");
+			istrue = 0; /* To shut up compiler */
+	}
+	result = istrue ? Py_True : Py_False;
+	Py_INCREF(result);
+	return result;
+}
+
+/* Raises a "can't compare" TypeError and returns NULL. */
+static PyObject *
+cmperror(PyObject *a, PyObject *b)
+{
+	PyErr_Format(PyExc_TypeError,
+		     "can't compare %s to %s",
+		     Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
+	return NULL;
+}
+
+/* ---------------------------------------------------------------------------
+ * Cached Python objects; these are set by the module init function.
+ */
+
+/* Conversion factors. */
+static PyObject *us_per_us = NULL;	/* 1 */
+static PyObject *us_per_ms = NULL;	/* 1000 */
+static PyObject *us_per_second = NULL;	/* 1000000 */
+static PyObject *us_per_minute = NULL;	/* 1e6 * 60 as Python int */
+static PyObject *us_per_hour = NULL;	/* 1e6 * 3600 as Python long */
+static PyObject *us_per_day = NULL;	/* 1e6 * 3600 * 24 as Python long */
+static PyObject *us_per_week = NULL;	/* 1e6*3600*24*7 as Python long */
+static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
+
+/* ---------------------------------------------------------------------------
+ * Class implementations.
+ */
+
+/*
+ * PyDateTime_Delta implementation.
+ */
+
+/* Convert a timedelta to a number of us,
+ * 	(24*3600*self.days + self.seconds)*1000000 + self.microseconds
+ * as a Python int or long.
+ * Doing mixed-radix arithmetic by hand instead is excruciating in C,
+ * due to ubiquitous overflow possibilities.
+ */
+static PyObject *
+delta_to_microseconds(PyDateTime_Delta *self)
+{
+	PyObject *x1 = NULL;
+	PyObject *x2 = NULL;
+	PyObject *x3 = NULL;
+	PyObject *result = NULL;
+
+	x1 = PyInt_FromLong(GET_TD_DAYS(self));
+	if (x1 == NULL)
+		goto Done;
+	x2 = PyNumber_Multiply(x1, seconds_per_day);	/* days in seconds */
+	if (x2 == NULL)
+		goto Done;
+	Py_DECREF(x1);
+	x1 = NULL;
+
+	/* x2 has days in seconds */
+	x1 = PyInt_FromLong(GET_TD_SECONDS(self));	/* seconds */
+	if (x1 == NULL)
+		goto Done;
+	x3 = PyNumber_Add(x1, x2);	/* days and seconds in seconds */
+	if (x3 == NULL)
+		goto Done;
+	Py_DECREF(x1);
+	Py_DECREF(x2);
+	x1 = x2 = NULL;
+
+	/* x3 has days+seconds in seconds */
+	x1 = PyNumber_Multiply(x3, us_per_second);	/* us */
+	if (x1 == NULL)
+		goto Done;
+	Py_DECREF(x3);
+	x3 = NULL;
+
+	/* x1 has days+seconds in us */
+	x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self));
+	if (x2 == NULL)
+		goto Done;
+	result = PyNumber_Add(x1, x2);
+
+Done:
+	Py_XDECREF(x1);
+	Py_XDECREF(x2);
+	Py_XDECREF(x3);
+	return result;
+}
+
+/* Convert a number of us (as a Python int or long) to a timedelta.
+ */
+static PyObject *
+microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
+{
+	int us;
+	int s;
+	int d;
+	long temp;
+
+	PyObject *tuple = NULL;
+	PyObject *num = NULL;
+	PyObject *result = NULL;
+
+	tuple = PyNumber_Divmod(pyus, us_per_second);
+	if (tuple == NULL)
+		goto Done;
+
+	num = PyTuple_GetItem(tuple, 1);	/* us */
+	if (num == NULL)
+		goto Done;
+	temp = PyLong_AsLong(num);
+	num = NULL;
+	if (temp == -1 && PyErr_Occurred())
+		goto Done;
+	assert(0 <= temp && temp < 1000000);
+	us = (int)temp;
+	if (us < 0) {
+		/* The divisor was positive, so this must be an error. */
+		assert(PyErr_Occurred());
+		goto Done;
+	}
+
+	num = PyTuple_GetItem(tuple, 0);	/* leftover seconds */
+	if (num == NULL)
+		goto Done;
+	Py_INCREF(num);
+	Py_DECREF(tuple);
+
+	tuple = PyNumber_Divmod(num, seconds_per_day);
+	if (tuple == NULL)
+		goto Done;
+	Py_DECREF(num);
+
+	num = PyTuple_GetItem(tuple, 1); 	/* seconds */
+	if (num == NULL)
+		goto Done;
+	temp = PyLong_AsLong(num);
+	num = NULL;
+	if (temp == -1 && PyErr_Occurred())
+		goto Done;
+	assert(0 <= temp && temp < 24*3600);
+	s = (int)temp;
+
+	if (s < 0) {
+		/* The divisor was positive, so this must be an error. */
+		assert(PyErr_Occurred());
+		goto Done;
+	}
+
+	num = PyTuple_GetItem(tuple, 0);	/* leftover days */
+	if (num == NULL)
+		goto Done;
+	Py_INCREF(num);
+	temp = PyLong_AsLong(num);
+	if (temp == -1 && PyErr_Occurred())
+		goto Done;
+	d = (int)temp;
+	if ((long)d != temp) {
+		PyErr_SetString(PyExc_OverflowError, "normalized days too "
+				"large to fit in a C int");
+		goto Done;
+	}
+	result = new_delta_ex(d, s, us, 0, type);
+
+Done:
+	Py_XDECREF(tuple);
+	Py_XDECREF(num);
+	return result;
+}
+
+#define microseconds_to_delta(pymicros)	\
+	microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
+
+static PyObject *
+multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
+{
+	PyObject *pyus_in;
+	PyObject *pyus_out;
+	PyObject *result;
+
+	pyus_in = delta_to_microseconds(delta);
+	if (pyus_in == NULL)
+		return NULL;
+
+	pyus_out = PyNumber_Multiply(pyus_in, intobj);
+	Py_DECREF(pyus_in);
+	if (pyus_out == NULL)
+		return NULL;
+
+	result = microseconds_to_delta(pyus_out);
+	Py_DECREF(pyus_out);
+	return result;
+}
+
+static PyObject *
+divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
+{
+	PyObject *pyus_in;
+	PyObject *pyus_out;
+	PyObject *result;
+
+	pyus_in = delta_to_microseconds(delta);
+	if (pyus_in == NULL)
+		return NULL;
+
+	pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
+	Py_DECREF(pyus_in);
+	if (pyus_out == NULL)
+		return NULL;
+
+	result = microseconds_to_delta(pyus_out);
+	Py_DECREF(pyus_out);
+	return result;
+}
+
+static PyObject *
+delta_add(PyObject *left, PyObject *right)
+{
+	PyObject *result = Py_NotImplemented;
+
+	if (PyDelta_Check(left) && PyDelta_Check(right)) {
+		/* delta + delta */
+		/* The C-level additions can't overflow because of the
+		 * invariant bounds.
+		 */
+		int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
+		int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
+		int microseconds = GET_TD_MICROSECONDS(left) +
+				   GET_TD_MICROSECONDS(right);
+		result = new_delta(days, seconds, microseconds, 1);
+	}
+
+	if (result == Py_NotImplemented)
+		Py_INCREF(result);
+	return result;
+}
+
+static PyObject *
+delta_negative(PyDateTime_Delta *self)
+{
+	return new_delta(-GET_TD_DAYS(self),
+			 -GET_TD_SECONDS(self),
+			 -GET_TD_MICROSECONDS(self),
+			 1);
+}
+
+static PyObject *
+delta_positive(PyDateTime_Delta *self)
+{
+	/* Could optimize this (by returning self) if this isn't a
+	 * subclass -- but who uses unary + ?  Approximately nobody.
+	 */
+	return new_delta(GET_TD_DAYS(self),
+			 GET_TD_SECONDS(self),
+			 GET_TD_MICROSECONDS(self),
+			 0);
+}
+
+static PyObject *
+delta_abs(PyDateTime_Delta *self)
+{
+	PyObject *result;
+
+	assert(GET_TD_MICROSECONDS(self) >= 0);
+	assert(GET_TD_SECONDS(self) >= 0);
+
+	if (GET_TD_DAYS(self) < 0)
+		result = delta_negative(self);
+	else
+		result = delta_positive(self);
+
+	return result;
+}
+
+static PyObject *
+delta_subtract(PyObject *left, PyObject *right)
+{
+	PyObject *result = Py_NotImplemented;
+
+	if (PyDelta_Check(left) && PyDelta_Check(right)) {
+	    	/* delta - delta */
+	    	PyObject *minus_right = PyNumber_Negative(right);
+	    	if (minus_right) {
+	    		result = delta_add(left, minus_right);
+	    		Py_DECREF(minus_right);
+	    	}
+	    	else
+	    		result = NULL;
+	}
+
+	if (result == Py_NotImplemented)
+		Py_INCREF(result);
+	return result;
+}
+
+/* This is more natural as a tp_compare, but doesn't work then:  for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op)
+{
+	int diff = 42;	/* nonsense */
+
+	if (PyDelta_Check(other)) {
+		diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
+		if (diff == 0) {
+			diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
+			if (diff == 0)
+				diff = GET_TD_MICROSECONDS(self) -
+				       GET_TD_MICROSECONDS(other);
+		}
+	}
+	else if (op == Py_EQ || op == Py_NE)
+		diff = 1;	/* any non-zero value will do */
+
+	else /* stop this from falling back to address comparison */
+		return cmperror((PyObject *)self, other);
+
+	return diff_to_bool(diff, op);
+}
+
+static PyObject *delta_getstate(PyDateTime_Delta *self);
+
+static long
+delta_hash(PyDateTime_Delta *self)
+{
+	if (self->hashcode == -1) {
+		PyObject *temp = delta_getstate(self);
+		if (temp != NULL) {
+			self->hashcode = PyObject_Hash(temp);
+			Py_DECREF(temp);
+		}
+	}
+	return self->hashcode;
+}
+
+static PyObject *
+delta_multiply(PyObject *left, PyObject *right)
+{
+	PyObject *result = Py_NotImplemented;
+
+	if (PyDelta_Check(left)) {
+		/* delta * ??? */
+		if (PyInt_Check(right) || PyLong_Check(right))
+			result = multiply_int_timedelta(right,
+					(PyDateTime_Delta *) left);
+	}
+	else if (PyInt_Check(left) || PyLong_Check(left))
+		result = multiply_int_timedelta(left,
+						(PyDateTime_Delta *) right);
+
+	if (result == Py_NotImplemented)
+		Py_INCREF(result);
+	return result;
+}
+
+static PyObject *
+delta_divide(PyObject *left, PyObject *right)
+{
+	PyObject *result = Py_NotImplemented;
+
+	if (PyDelta_Check(left)) {
+		/* delta * ??? */
+		if (PyInt_Check(right) || PyLong_Check(right))
+			result = divide_timedelta_int(
+					(PyDateTime_Delta *)left,
+					right);
+	}
+
+	if (result == Py_NotImplemented)
+		Py_INCREF(result);
+	return result;
+}
+
+/* Fold in the value of the tag ("seconds", "weeks", etc) component of a
+ * timedelta constructor.  sofar is the # of microseconds accounted for
+ * so far, and there are factor microseconds per current unit, the number
+ * of which is given by num.  num * factor is added to sofar in a
+ * numerically careful way, and that's the result.  Any fractional
+ * microseconds left over (this can happen if num is a float type) are
+ * added into *leftover.
+ * Note that there are many ways this can give an error (NULL) return.
+ */
+static PyObject *
+accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
+      double *leftover)
+{
+	PyObject *prod;
+	PyObject *sum;
+
+	assert(num != NULL);
+
+	if (PyInt_Check(num) || PyLong_Check(num)) {
+		prod = PyNumber_Multiply(num, factor);
+		if (prod == NULL)
+			return NULL;
+		sum = PyNumber_Add(sofar, prod);
+		Py_DECREF(prod);
+		return sum;
+	}
+
+	if (PyFloat_Check(num)) {
+		double dnum;
+		double fracpart;
+		double intpart;
+		PyObject *x;
+		PyObject *y;
+
+		/* The Plan:  decompose num into an integer part and a
+		 * fractional part, num = intpart + fracpart.
+		 * Then num * factor ==
+		 *      intpart * factor + fracpart * factor
+		 * and the LHS can be computed exactly in long arithmetic.
+		 * The RHS is again broken into an int part and frac part.
+		 * and the frac part is added into *leftover.
+		 */
+		dnum = PyFloat_AsDouble(num);
+		if (dnum == -1.0 && PyErr_Occurred())
+			return NULL;
+		fracpart = modf(dnum, &intpart);
+		x = PyLong_FromDouble(intpart);
+		if (x == NULL)
+			return NULL;
+
+		prod = PyNumber_Multiply(x, factor);
+		Py_DECREF(x);
+		if (prod == NULL)
+			return NULL;
+
+		sum = PyNumber_Add(sofar, prod);
+		Py_DECREF(prod);
+		if (sum == NULL)
+			return NULL;
+
+		if (fracpart == 0.0)
+			return sum;
+		/* So far we've lost no information.  Dealing with the
+		 * fractional part requires float arithmetic, and may
+		 * lose a little info.
+		 */
+		assert(PyInt_Check(factor) || PyLong_Check(factor));
+		if (PyInt_Check(factor))
+			dnum = (double)PyInt_AsLong(factor);
+		else
+			dnum = PyLong_AsDouble(factor);
+
+		dnum *= fracpart;
+		fracpart = modf(dnum, &intpart);
+		x = PyLong_FromDouble(intpart);
+		if (x == NULL) {
+			Py_DECREF(sum);
+			return NULL;
+		}
+
+		y = PyNumber_Add(sum, x);
+		Py_DECREF(sum);
+		Py_DECREF(x);
+		*leftover += fracpart;
+		return y;
+	}
+
+	PyErr_Format(PyExc_TypeError,
+		     "unsupported type for timedelta %s component: %s",
+		     tag, Py_TYPE(num)->tp_name);
+	return NULL;
+}
+
+static PyObject *
+delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+	PyObject *self = NULL;
+
+	/* Argument objects. */
+	PyObject *day = NULL;
+	PyObject *second = NULL;
+	PyObject *us = NULL;
+	PyObject *ms = NULL;
+	PyObject *minute = NULL;
+	PyObject *hour = NULL;
+	PyObject *week = NULL;
+
+	PyObject *x = NULL;	/* running sum of microseconds */
+	PyObject *y = NULL;	/* temp sum of microseconds */
+	double leftover_us = 0.0;
+
+	static char *keywords[] = {
+		"days", "seconds", "microseconds", "milliseconds",
+		"minutes", "hours", "weeks", NULL
+	};
+
+	if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
+					keywords,
+					&day, &second, &us,
+					&ms, &minute, &hour, &week) == 0)
+		goto Done;
+
+	x = PyInt_FromLong(0);
+	if (x == NULL)
+		goto Done;
+
+#define CLEANUP 	\
+	Py_DECREF(x);	\
+	x = y;		\
+	if (x == NULL)	\
+		goto Done
+
+	if (us) {
+		y = accum("microseconds", x, us, us_per_us, &leftover_us);
+		CLEANUP;
+	}
+	if (ms) {
+		y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
+		CLEANUP;
+	}
+	if (second) {
+		y = accum("seconds", x, second, us_per_second, &leftover_us);
+		CLEANUP;
+	}
+	if (minute) {
+		y = accum("minutes", x, minute, us_per_minute, &leftover_us);
+		CLEANUP;
+	}
+	if (hour) {
+		y = accum("hours", x, hour, us_per_hour, &leftover_us);
+		CLEANUP;
+	}
+	if (day) {
+		y = accum("days", x, day, us_per_day, &leftover_us);
+		CLEANUP;
+	}
+	if (week) {
+		y = accum("weeks", x, week, us_per_week, &leftover_us);
+		CLEANUP;
+	}
+	if (leftover_us) {
+		/* Round to nearest whole # of us, and add into x. */
+		PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
+		if (temp == NULL) {
+			Py_DECREF(x);
+			goto Done;
+		}
+		y = PyNumber_Add(x, temp);
+		Py_DECREF(temp);
+		CLEANUP;
+	}
+
+	self = microseconds_to_delta_ex(x, type);
+	Py_DECREF(x);
+Done:
+	return self;
+
+#undef CLEANUP
+}
+
+static int
+delta_nonzero(PyDateTime_Delta *self)
+{
+	return (GET_TD_DAYS(self) != 0
+		|| GET_TD_SECONDS(self) != 0
+		|| GET_TD_MICROSECONDS(self) != 0);
+}
+
+static PyObject *
+delta_repr(PyDateTime_Delta *self)
+{
+	if (GET_TD_MICROSECONDS(self) != 0)
+		return PyString_FromFormat("%s(%d, %d, %d)",
+					   Py_TYPE(self)->tp_name,
+					   GET_TD_DAYS(self),
+					   GET_TD_SECONDS(self),
+					   GET_TD_MICROSECONDS(self));
+	if (GET_TD_SECONDS(self) != 0)
+		return PyString_FromFormat("%s(%d, %d)",
+					   Py_TYPE(self)->tp_name,
+					   GET_TD_DAYS(self),
+					   GET_TD_SECONDS(self));
+
+	return PyString_FromFormat("%s(%d)",
+				   Py_TYPE(self)->tp_name,
+				   GET_TD_DAYS(self));
+}
+
+static PyObject *
+delta_str(PyDateTime_Delta *self)
+{
+	int days = GET_TD_DAYS(self);
+	int seconds = GET_TD_SECONDS(self);
+	int us = GET_TD_MICROSECONDS(self);
+	int hours;
+	int minutes;
+	char buf[100];
+	char *pbuf = buf;
+	size_t buflen = sizeof(buf);
+	int n;
+
+	minutes = divmod(seconds, 60, &seconds);
+	hours = divmod(minutes, 60, &minutes);
+
+	if (days) {
+		n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days,
+				  (days == 1 || days == -1) ? "" : "s");
+		if (n < 0 || (size_t)n >= buflen)
+			goto Fail;
+		pbuf += n;
+		buflen -= (size_t)n;
+	}
+
+	n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d",
+			  hours, minutes, seconds);
+	if (n < 0 || (size_t)n >= buflen)
+		goto Fail;
+	pbuf += n;
+	buflen -= (size_t)n;
+
+	if (us) {
+		n = PyOS_snprintf(pbuf, buflen, ".%06d", us);
+		if (n < 0 || (size_t)n >= buflen)
+			goto Fail;
+		pbuf += n;
+	}
+
+	return PyString_FromStringAndSize(buf, pbuf - buf);
+
+ Fail:
+	PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf");
+	return NULL;
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* __getstate__ isn't exposed */
+static PyObject *
+delta_getstate(PyDateTime_Delta *self)
+{
+	return Py_BuildValue("iii", GET_TD_DAYS(self),
+				    GET_TD_SECONDS(self),
+				    GET_TD_MICROSECONDS(self));
+}
+
+static PyObject *
+delta_reduce(PyDateTime_Delta* self)
+{
+	return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
+}
+
+#define OFFSET(field)  offsetof(PyDateTime_Delta, field)
+
+static PyMemberDef delta_members[] = {
+
+	{"days",         T_INT, OFFSET(days),         READONLY,
+	 PyDoc_STR("Number of days.")},
+
+	{"seconds",      T_INT, OFFSET(seconds),      READONLY,
+	 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
+
+	{"microseconds", T_INT, OFFSET(microseconds), READONLY,
+	 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
+	{NULL}
+};
+
+static PyMethodDef delta_methods[] = {
+	{"__reduce__", (PyCFunction)delta_reduce,     METH_NOARGS,
+	 PyDoc_STR("__reduce__() -> (cls, state)")},
+
+	{NULL,	NULL},
+};
+
+static char delta_doc[] =
+PyDoc_STR("Difference between two datetime values.");
+
+static PyNumberMethods delta_as_number = {
+	delta_add,				/* nb_add */
+	delta_subtract,				/* nb_subtract */
+	delta_multiply,				/* nb_multiply */
+	delta_divide,				/* nb_divide */
+	0,					/* nb_remainder */
+	0,					/* nb_divmod */
+	0,					/* nb_power */
+	(unaryfunc)delta_negative,		/* nb_negative */
+	(unaryfunc)delta_positive,		/* nb_positive */
+	(unaryfunc)delta_abs,			/* nb_absolute */
+	(inquiry)delta_nonzero,			/* nb_nonzero */
+	0,					/*nb_invert*/
+	0,					/*nb_lshift*/
+	0,					/*nb_rshift*/
+	0,					/*nb_and*/
+	0,					/*nb_xor*/
+	0,					/*nb_or*/
+	0,					/*nb_coerce*/
+	0,					/*nb_int*/
+	0,					/*nb_long*/
+	0,					/*nb_float*/
+	0,					/*nb_oct*/
+	0, 					/*nb_hex*/
+	0,					/*nb_inplace_add*/
+	0,					/*nb_inplace_subtract*/
+	0,					/*nb_inplace_multiply*/
+	0,					/*nb_inplace_divide*/
+	0,					/*nb_inplace_remainder*/
+	0,					/*nb_inplace_power*/
+	0,					/*nb_inplace_lshift*/
+	0,					/*nb_inplace_rshift*/
+	0,					/*nb_inplace_and*/
+	0,					/*nb_inplace_xor*/
+	0,					/*nb_inplace_or*/
+	delta_divide,				/* nb_floor_divide */
+	0,					/* nb_true_divide */
+	0,					/* nb_inplace_floor_divide */
+	0,					/* nb_inplace_true_divide */
+};
+
+static PyTypeObject PyDateTime_DeltaType = {
+	PyVarObject_HEAD_INIT(NULL, 0)
+	"datetime.timedelta",				/* tp_name */
+	sizeof(PyDateTime_Delta),			/* tp_basicsize */
+	0,						/* tp_itemsize */
+	0,						/* tp_dealloc */
+	0,						/* tp_print */
+	0,						/* tp_getattr */
+	0,						/* tp_setattr */
+	0,						/* tp_compare */
+	(reprfunc)delta_repr,				/* tp_repr */
+	&delta_as_number,				/* tp_as_number */
+	0,						/* tp_as_sequence */
+	0,						/* tp_as_mapping */
+	(hashfunc)delta_hash,				/* tp_hash */
+	0,              				/* tp_call */
+	(reprfunc)delta_str,				/* tp_str */
+	PyObject_GenericGetAttr,			/* tp_getattro */
+	0,						/* tp_setattro */
+	0,						/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+	        Py_TPFLAGS_BASETYPE,			/* tp_flags */
+	delta_doc,					/* tp_doc */
+	0,						/* tp_traverse */
+	0,						/* tp_clear */
+	(richcmpfunc)delta_richcompare,			/* tp_richcompare */
+	0,						/* tp_weaklistoffset */
+	0,						/* tp_iter */
+	0,						/* tp_iternext */
+	delta_methods,					/* tp_methods */
+	delta_members,					/* tp_members */
+	0,						/* tp_getset */
+	0,						/* tp_base */
+	0,						/* tp_dict */
+	0,						/* tp_descr_get */
+	0,						/* tp_descr_set */
+	0,						/* tp_dictoffset */
+	0,						/* tp_init */
+	0,						/* tp_alloc */
+	delta_new,					/* tp_new */
+	0,						/* tp_free */
+};
+
+/*
+ * PyDateTime_Date implementation.
+ */
+
+/* Accessor properties. */
+
+static PyObject *
+date_year(PyDateTime_Date *self, void *unused)
+{
+	return PyInt_FromLong(GET_YEAR(self));
+}
+
+static PyObject *
+date_month(PyDateTime_Date *self, void *unused)
+{
+	return PyInt_FromLong(GET_MONTH(self));
+}
+
+static PyObject *
+date_day(PyDateTime_Date *self, void *unused)
+{
+	return PyInt_FromLong(GET_DAY(self));
+}
+
+static PyGetSetDef date_getset[] = {
+	{"year",        (getter)date_year},
+	{"month",       (getter)date_month},
+	{"day",         (getter)date_day},
+	{NULL}
+};
+
+/* Constructors. */
+
+static char *date_kws[] = {"year", "month", "day", NULL};
+
+static PyObject *
+date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+	PyObject *self = NULL;
+	PyObject *state;
+	int year;
+	int month;
+	int day;
+
+	/* Check for invocation from pickle with __getstate__ state */
+	if (PyTuple_GET_SIZE(args) == 1 &&
+	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+	    PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
+	    MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
+	{
+	    	PyDateTime_Date *me;
+
+		me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
+		if (me != NULL) {
+			char *pdata = PyString_AS_STRING(state);
+			memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
+			me->hashcode = -1;
+		}
+		return (PyObject *)me;
+	}
+
+	if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
+					&year, &month, &day)) {
+		if (check_date_args(year, month, day) < 0)
+			return NULL;
+		self = new_date_ex(year, month, day, type);
+	}
+	return self;
+}
+
+/* Return new date from localtime(t). */
+static PyObject *
+date_local_from_time_t(PyObject *cls, double ts)
+{
+	struct tm *tm;
+	time_t t;
+	PyObject *result = NULL;
+
+	t = _PyTime_DoubleToTimet(ts);
+	if (t == (time_t)-1 && PyErr_Occurred())
+		return NULL;
+	tm = localtime(&t);
+	if (tm)
+		result = PyObject_CallFunction(cls, "iii",
+					       tm->tm_year + 1900,
+					       tm->tm_mon + 1,
+					       tm->tm_mday);
+	else
+		PyErr_SetString(PyExc_ValueError,
+				"timestamp out of range for "
+				"platform localtime() function");
+	return result;
+}
+
+/* Return new date from current time.
+ * We say this is equivalent to fromtimestamp(time.time()), and the
+ * only way to be sure of that is to *call* time.time().  That's not
+ * generally the same as calling C's time.
+ */
+static PyObject *
+date_today(PyObject *cls, PyObject *dummy)
+{
+	PyObject *time;
+	PyObject *result;
+
+	time = time_time();
+	if (time == NULL)
+		return NULL;
+
+	/* Note well:  today() is a class method, so this may not call
+	 * date.fromtimestamp.  For example, it may call
+	 * datetime.fromtimestamp.  That's why we need all the accuracy
+	 * time.time() delivers; if someone were gonzo about optimization,
+	 * date.today() could get away with plain C time().
+	 */
+	result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
+	Py_DECREF(time);
+	return result;
+}
+
+/* Return new date from given timestamp (Python timestamp -- a double). */
+static PyObject *
+date_fromtimestamp(PyObject *cls, PyObject *args)
+{
+	double timestamp;
+	PyObject *result = NULL;
+
+	if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
+		result = date_local_from_time_t(cls, timestamp);
+	return result;
+}
+
+/* Return new date from proleptic Gregorian ordinal.  Raises ValueError if
+ * the ordinal is out of range.
+ */
+static PyObject *
+date_fromordinal(PyObject *cls, PyObject *args)
+{
+	PyObject *result = NULL;
+	int ordinal;
+
+	if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
+		int year;
+		int month;
+		int day;
+
+		if (ordinal < 1)
+			PyErr_SetString(PyExc_ValueError, "ordinal must be "
+							  ">= 1");
+		else {
+			ord_to_ymd(ordinal, &year, &month, &day);
+			result = PyObject_CallFunction(cls, "iii",
+						       year, month, day);
+		}
+	}
+	return result;
+}
+
+/*
+ * Date arithmetic.
+ */
+
+/* date + timedelta -> date.  If arg negate is true, subtract the timedelta
+ * instead.
+ */
+static PyObject *
+add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
+{
+	PyObject *result = NULL;
+	int year = GET_YEAR(date);
+	int month = GET_MONTH(date);
+	int deltadays = GET_TD_DAYS(delta);
+	/* C-level overflow is impossible because |deltadays| < 1e9. */
+	int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
+
+	if (normalize_date(&year, &month, &day) >= 0)
+		result = new_date(year, month, day);
+	return result;
+}
+
+static PyObject *
+date_add(PyObject *left, PyObject *right)
+{
+	if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
+		Py_INCREF(Py_NotImplemented);
+		return Py_NotImplemented;
+	}
+	if (PyDate_Check(left)) {
+		/* date + ??? */
+		if (PyDelta_Check(right))
+			/* date + delta */
+			return add_date_timedelta((PyDateTime_Date *) left,
+						  (PyDateTime_Delta *) right,
+						  0);
+	}
+	else {
+		/* ??? + date
+		 * 'right' must be one of us, or we wouldn't have been called
+		 */
+		if (PyDelta_Check(left))
+			/* delta + date */
+			return add_date_timedelta((PyDateTime_Date *) right,
+						  (PyDateTime_Delta *) left,
+						  0);
+	}
+	Py_INCREF(Py_NotImplemented);
+	return Py_NotImplemented;
+}
+
+static PyObject *
+date_subtract(PyObject *left, PyObject *right)
+{
+	if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
+		Py_INCREF(Py_NotImplemented);
+		return Py_NotImplemented;
+	}
+	if (PyDate_Check(left)) {
+		if (PyDate_Check(right)) {
+			/* date - date */
+			int left_ord = ymd_to_ord(GET_YEAR(left),
+						  GET_MONTH(left),
+						  GET_DAY(left));
+			int right_ord = ymd_to_ord(GET_YEAR(right),
+						   GET_MONTH(right),
+						   GET_DAY(right));
+			return new_delta(left_ord - right_ord, 0, 0, 0);
+		}
+		if (PyDelta_Check(right)) {
+			/* date - delta */
+			return add_date_timedelta((PyDateTime_Date *) left,
+						  (PyDateTime_Delta *) right,
+						  1);
+		}
+	}
+	Py_INCREF(Py_NotImplemented);
+	return Py_NotImplemented;
+}
+
+
+/* Various ways to turn a date into a string. */
+
+static PyObject *
+date_repr(PyDateTime_Date *self)
+{
+	char buffer[1028];
+	const char *type_name;
+
+	type_name = Py_TYPE(self)->tp_name;
+	PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)",
+		      type_name,
+		      GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+	return PyString_FromString(buffer);
+}
+
+static PyObject *
+date_isoformat(PyDateTime_Date *self)
+{
+	char buffer[128];
+
+	isoformat_date(self, buffer, sizeof(buffer));
+	return PyString_FromString(buffer);
+}
+
+/* str() calls the appropriate isoformat() method. */
+static PyObject *
+date_str(PyDateTime_Date *self)
+{
+	return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
+}
+
+
+static PyObject *
+date_ctime(PyDateTime_Date *self)
+{
+	return format_ctime(self, 0, 0, 0);
+}
+
+static PyObject *
+date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
+{
+	/* This method can be inherited, and needs to call the
+	 * timetuple() method appropriate to self's class.
+	 */
+	PyObject *result;
+	PyObject *tuple;
+	const char *format;
+	Py_ssize_t format_len;
+	static char *keywords[] = {"format", NULL};
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "s#:strftime", keywords,
+					  &format, &format_len))
+		return NULL;
+
+	tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
+	if (tuple == NULL)
+		return NULL;
+	result = wrap_strftime((PyObject *)self, format, format_len, tuple,
+			       (PyObject *)self);
+	Py_DECREF(tuple);
+	return result;
+}
+
+static PyObject *
+date_format(PyDateTime_Date *self, PyObject *args)
+{
+	PyObject *format;
+
+	if (!PyArg_ParseTuple(args, "O:__format__", &format))
+		return NULL;
+
+	/* Check for str or unicode */
+	if (PyString_Check(format)) {
+                /* If format is zero length, return str(self) */
+		if (PyString_GET_SIZE(format) == 0)
+			return PyObject_Str((PyObject *)self);
+	} else if (PyUnicode_Check(format)) {
+                /* If format is zero length, return str(self) */
+		if (PyUnicode_GET_SIZE(format) == 0)
+			return PyObject_Unicode((PyObject *)self);
+	} else {
+		PyErr_Format(PyExc_ValueError,
+			     "__format__ expects str or unicode, not %.200s",
+			     Py_TYPE(format)->tp_name);
+		return NULL;
+	}
+	return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
+}
+
+/* ISO methods. */
+
+static PyObject *
+date_isoweekday(PyDateTime_Date *self)
+{
+	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+	return PyInt_FromLong(dow + 1);
+}
+
+static PyObject *
+date_isocalendar(PyDateTime_Date *self)
+{
+	int  year         = GET_YEAR(self);
+	int  week1_monday = iso_week1_monday(year);
+	int today         = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
+	int  week;
+	int  day;
+
+	week = divmod(today - week1_monday, 7, &day);
+	if (week < 0) {
+		--year;
+		week1_monday = iso_week1_monday(year);
+		week = divmod(today - week1_monday, 7, &day);
+	}
+	else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
+		++year;
+		week = 0;
+	}
+	return Py_BuildValue("iii", year, week + 1, day + 1);
+}
+
+/* Miscellaneous methods. */
+
+/* This is more natural as a tp_compare, but doesn't work then:  for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+date_richcompare(PyDateTime_Date *self, PyObject *other, int op)
+{
+	int diff = 42;	/* nonsense */
+
+	if (PyDate_Check(other))
+		diff = memcmp(self->data, ((PyDateTime_Date *)other)->data,
+			      _PyDateTime_DATE_DATASIZE);
+
+	else if (PyObject_HasAttrString(other, "timetuple")) {
+		/* A hook for other kinds of date objects. */
+		Py_INCREF(Py_NotImplemented);
+		return Py_NotImplemented;
+	}
+	else if (op == Py_EQ || op == Py_NE)
+		diff = 1;	/* any non-zero value will do */
+
+	else /* stop this from falling back to address comparison */
+		return cmperror((PyObject *)self, other);
+
+	return diff_to_bool(diff, op);
+}
+
+static PyObject *
+date_timetuple(PyDateTime_Date *self)
+{
+	return build_struct_time(GET_YEAR(self),
+				 GET_MONTH(self),
+				 GET_DAY(self),
+				 0, 0, 0, -1);
+}
+
+static PyObject *
+date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
+{
+	PyObject *clone;
+	PyObject *tuple;
+	int year = GET_YEAR(self);
+	int month = GET_MONTH(self);
+	int day = GET_DAY(self);
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
+					  &year, &month, &day))
+		return NULL;
+	tuple = Py_BuildValue("iii", year, month, day);
+	if (tuple == NULL)
+		return NULL;
+	clone = date_new(Py_TYPE(self), tuple, NULL);
+	Py_DECREF(tuple);
+	return clone;
+}
+
+static PyObject *date_getstate(PyDateTime_Date *self);
+
+static long
+date_hash(PyDateTime_Date *self)
+{
+	if (self->hashcode == -1) {
+		PyObject *temp = date_getstate(self);
+		if (temp != NULL) {
+			self->hashcode = PyObject_Hash(temp);
+			Py_DECREF(temp);
+		}
+	}
+	return self->hashcode;
+}
+
+static PyObject *
+date_toordinal(PyDateTime_Date *self)
+{
+	return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
+					 GET_DAY(self)));
+}
+
+static PyObject *
+date_weekday(PyDateTime_Date *self)
+{
+	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
+
+	return PyInt_FromLong(dow);
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* __getstate__ isn't exposed */
+static PyObject *
+date_getstate(PyDateTime_Date *self)
+{
+	return Py_BuildValue(
+		"(N)",
+		PyString_FromStringAndSize((char *)self->data,
+					   _PyDateTime_DATE_DATASIZE));
+}
+
+static PyObject *
+date_reduce(PyDateTime_Date *self, PyObject *arg)
+{
+	return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
+}
+
+static PyMethodDef date_methods[] = {
+
+	/* Class methods: */
+
+	{"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
+							   METH_CLASS,
+	 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
+	 	   "time.time()).")},
+
+	{"fromordinal", (PyCFunction)date_fromordinal,	METH_VARARGS |
+							METH_CLASS,
+	 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
+	 	   "ordinal.")},
+
+	{"today",         (PyCFunction)date_today,   METH_NOARGS | METH_CLASS,
+	 PyDoc_STR("Current date or datetime:  same as "
+	 	   "self.__class__.fromtimestamp(time.time()).")},
+
+	/* Instance methods: */
+
+	{"ctime",       (PyCFunction)date_ctime,        METH_NOARGS,
+	 PyDoc_STR("Return ctime() style string.")},
+
+	{"strftime",   	(PyCFunction)date_strftime,	METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("format -> strftime() style string.")},
+
+	{"__format__", 	(PyCFunction)date_format,	METH_VARARGS,
+	 PyDoc_STR("Formats self with strftime.")},
+
+	{"timetuple",   (PyCFunction)date_timetuple,    METH_NOARGS,
+         PyDoc_STR("Return time tuple, compatible with time.localtime().")},
+
+	{"isocalendar", (PyCFunction)date_isocalendar,  METH_NOARGS,
+	 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
+	 	   "weekday.")},
+
+	{"isoformat",   (PyCFunction)date_isoformat,	METH_NOARGS,
+	 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
+
+	{"isoweekday",  (PyCFunction)date_isoweekday,   METH_NOARGS,
+	 PyDoc_STR("Return the day of the week represented by the date.\n"
+	 	   "Monday == 1 ... Sunday == 7")},
+
+	{"toordinal",   (PyCFunction)date_toordinal,    METH_NOARGS,
+	 PyDoc_STR("Return proleptic Gregorian ordinal.  January 1 of year "
+	 	   "1 is day 1.")},
+
+	{"weekday",     (PyCFunction)date_weekday,      METH_NOARGS,
+	 PyDoc_STR("Return the day of the week represented by the date.\n"
+		   "Monday == 0 ... Sunday == 6")},
+
+	{"replace",     (PyCFunction)date_replace,      METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("Return date with new specified fields.")},
+
+	{"__reduce__", (PyCFunction)date_reduce,        METH_NOARGS,
+	 PyDoc_STR("__reduce__() -> (cls, state)")},
+
+	{NULL,	NULL}
+};
+
+static char date_doc[] =
+PyDoc_STR("date(year, month, day) --> date object");
+
+static PyNumberMethods date_as_number = {
+	date_add,					/* nb_add */
+	date_subtract,					/* nb_subtract */
+	0,						/* nb_multiply */
+	0,						/* nb_divide */
+	0,						/* nb_remainder */
+	0,						/* nb_divmod */
+	0,						/* nb_power */
+	0,						/* nb_negative */
+	0,						/* nb_positive */
+	0,						/* nb_absolute */
+	0,						/* nb_nonzero */
+};
+
+static PyTypeObject PyDateTime_DateType = {
+	PyVarObject_HEAD_INIT(NULL, 0)
+	"datetime.date",				/* tp_name */
+	sizeof(PyDateTime_Date),			/* tp_basicsize */
+	0,						/* tp_itemsize */
+	0,						/* tp_dealloc */
+	0,						/* tp_print */
+	0,						/* tp_getattr */
+	0,						/* tp_setattr */
+	0,						/* tp_compare */
+	(reprfunc)date_repr,				/* tp_repr */
+	&date_as_number,				/* tp_as_number */
+	0,						/* tp_as_sequence */
+	0,						/* tp_as_mapping */
+	(hashfunc)date_hash,				/* tp_hash */
+	0,              				/* tp_call */
+	(reprfunc)date_str,				/* tp_str */
+	PyObject_GenericGetAttr,			/* tp_getattro */
+	0,						/* tp_setattro */
+	0,						/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+        Py_TPFLAGS_BASETYPE,				/* tp_flags */
+	date_doc,					/* tp_doc */
+	0,						/* tp_traverse */
+	0,						/* tp_clear */
+	(richcmpfunc)date_richcompare,			/* tp_richcompare */
+	0,						/* tp_weaklistoffset */
+	0,						/* tp_iter */
+	0,						/* tp_iternext */
+	date_methods,					/* tp_methods */
+	0,						/* tp_members */
+	date_getset,					/* tp_getset */
+	0,						/* tp_base */
+	0,						/* tp_dict */
+	0,						/* tp_descr_get */
+	0,						/* tp_descr_set */
+	0,						/* tp_dictoffset */
+	0,						/* tp_init */
+	0,						/* tp_alloc */
+	date_new,					/* tp_new */
+	0,						/* tp_free */
+};
+
+/*
+ * PyDateTime_TZInfo implementation.
+ */
+
+/* This is a pure abstract base class, so doesn't do anything beyond
+ * raising NotImplemented exceptions.  Real tzinfo classes need
+ * to derive from this.  This is mostly for clarity, and for efficiency in
+ * datetime and time constructors (their tzinfo arguments need to
+ * be subclasses of this tzinfo class, which is easy and quick to check).
+ *
+ * Note:  For reasons having to do with pickling of subclasses, we have
+ * to allow tzinfo objects to be instantiated.  This wasn't an issue
+ * in the Python implementation (__init__() could raise NotImplementedError
+ * there without ill effect), but doing so in the C implementation hit a
+ * brick wall.
+ */
+
+static PyObject *
+tzinfo_nogo(const char* methodname)
+{
+	PyErr_Format(PyExc_NotImplementedError,
+		     "a tzinfo subclass must implement %s()",
+		     methodname);
+	return NULL;
+}
+
+/* Methods.  A subclass must implement these. */
+
+static PyObject *
+tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
+{
+	return tzinfo_nogo("tzname");
+}
+
+static PyObject *
+tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
+{
+	return tzinfo_nogo("utcoffset");
+}
+
+static PyObject *
+tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
+{
+	return tzinfo_nogo("dst");
+}
+
+static PyObject *
+tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
+{
+	int y, m, d, hh, mm, ss, us;
+
+	PyObject *result;
+	int off, dst;
+	int none;
+	int delta;
+
+	if (! PyDateTime_Check(dt)) {
+		PyErr_SetString(PyExc_TypeError,
+				"fromutc: argument must be a datetime");
+		return NULL;
+	}
+	if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
+	    	PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
+	    			"is not self");
+	    	return NULL;
+	}
+
+	off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
+	if (off == -1 && PyErr_Occurred())
+		return NULL;
+	if (none) {
+		PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
+				"utcoffset() result required");
+		return NULL;
+	}
+
+	dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
+	if (dst == -1 && PyErr_Occurred())
+		return NULL;
+	if (none) {
+		PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
+				"dst() result required");
+		return NULL;
+	}
+
+	y = GET_YEAR(dt);
+	m = GET_MONTH(dt);
+	d = GET_DAY(dt);
+	hh = DATE_GET_HOUR(dt);
+	mm = DATE_GET_MINUTE(dt);
+	ss = DATE_GET_SECOND(dt);
+	us = DATE_GET_MICROSECOND(dt);
+
+	delta = off - dst;
+	mm += delta;
+	if ((mm < 0 || mm >= 60) &&
+	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+		return NULL;
+	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
+	if (result == NULL)
+		return result;
+
+	dst = call_dst(dt->tzinfo, result, &none);
+	if (dst == -1 && PyErr_Occurred())
+		goto Fail;
+	if (none)
+		goto Inconsistent;
+	if (dst == 0)
+		return result;
+
+	mm += dst;
+	if ((mm < 0 || mm >= 60) &&
+	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+		goto Fail;
+	Py_DECREF(result);
+	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
+	return result;
+
+Inconsistent:
+	PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
+			"inconsistent results; cannot convert");
+
+	/* fall thru to failure */
+Fail:
+	Py_DECREF(result);
+	return NULL;
+}
+
+/*
+ * Pickle support.  This is solely so that tzinfo subclasses can use
+ * pickling -- tzinfo itself is supposed to be uninstantiable.
+ */
+
+static PyObject *
+tzinfo_reduce(PyObject *self)
+{
+	PyObject *args, *state, *tmp;
+	PyObject *getinitargs, *getstate;
+
+	tmp = PyTuple_New(0);
+	if (tmp == NULL)
+		return NULL;
+
+	getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
+	if (getinitargs != NULL) {
+		args = PyObject_CallObject(getinitargs, tmp);
+		Py_DECREF(getinitargs);
+		if (args == NULL) {
+			Py_DECREF(tmp);
+			return NULL;
+		}
+	}
+	else {
+		PyErr_Clear();
+		args = tmp;
+		Py_INCREF(args);
+	}
+
+	getstate = PyObject_GetAttrString(self, "__getstate__");
+	if (getstate != NULL) {
+		state = PyObject_CallObject(getstate, tmp);
+		Py_DECREF(getstate);
+		if (state == NULL) {
+			Py_DECREF(args);
+			Py_DECREF(tmp);
+			return NULL;
+		}
+	}
+	else {
+		PyObject **dictptr;
+		PyErr_Clear();
+		state = Py_None;
+		dictptr = _PyObject_GetDictPtr(self);
+		if (dictptr && *dictptr && PyDict_Size(*dictptr))
+			state = *dictptr;
+		Py_INCREF(state);
+	}
+
+	Py_DECREF(tmp);
+
+	if (state == Py_None) {
+		Py_DECREF(state);
+		return Py_BuildValue("(ON)", Py_TYPE(self), args);
+	}
+	else
+		return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
+}
+
+static PyMethodDef tzinfo_methods[] = {
+
+	{"tzname",	(PyCFunction)tzinfo_tzname,		METH_O,
+	 PyDoc_STR("datetime -> string name of time zone.")},
+
+	{"utcoffset",	(PyCFunction)tzinfo_utcoffset,		METH_O,
+	 PyDoc_STR("datetime -> minutes east of UTC (negative for "
+	 	   "west of UTC).")},
+
+	{"dst",		(PyCFunction)tzinfo_dst,		METH_O,
+	 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
+
+	{"fromutc",	(PyCFunction)tzinfo_fromutc,		METH_O,
+	 PyDoc_STR("datetime in UTC -> datetime in local time.")},
+
+	{"__reduce__",  (PyCFunction)tzinfo_reduce,             METH_NOARGS,
+	 PyDoc_STR("-> (cls, state)")},
+
+	{NULL, NULL}
+};
+
+static char tzinfo_doc[] =
+PyDoc_STR("Abstract base class for time zone info objects.");
+
+statichere PyTypeObject PyDateTime_TZInfoType = {
+	PyObject_HEAD_INIT(NULL)
+	0,					/* ob_size */
+	"datetime.tzinfo",			/* tp_name */
+	sizeof(PyDateTime_TZInfo),		/* tp_basicsize */
+	0,					/* tp_itemsize */
+	0,					/* tp_dealloc */
+	0,					/* tp_print */
+	0,					/* tp_getattr */
+	0,					/* tp_setattr */
+	0,					/* tp_compare */
+	0,					/* tp_repr */
+	0,					/* tp_as_number */
+	0,					/* tp_as_sequence */
+	0,					/* tp_as_mapping */
+	0,					/* tp_hash */
+	0,              			/* tp_call */
+	0,					/* tp_str */
+	PyObject_GenericGetAttr,		/* tp_getattro */
+	0,					/* tp_setattro */
+	0,					/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+        Py_TPFLAGS_BASETYPE,			/* tp_flags */
+	tzinfo_doc,				/* tp_doc */
+	0,					/* tp_traverse */
+	0,					/* tp_clear */
+	0,					/* tp_richcompare */
+	0,					/* tp_weaklistoffset */
+	0,					/* tp_iter */
+	0,					/* tp_iternext */
+	tzinfo_methods,				/* tp_methods */
+	0,					/* tp_members */
+	0,					/* tp_getset */
+	0,					/* tp_base */
+	0,					/* tp_dict */
+	0,					/* tp_descr_get */
+	0,					/* tp_descr_set */
+	0,					/* tp_dictoffset */
+	0,					/* tp_init */
+	0,					/* tp_alloc */
+	PyType_GenericNew,			/* tp_new */
+	0,					/* tp_free */
+};
+
+/*
+ * PyDateTime_Time implementation.
+ */
+
+/* Accessor properties.
+ */
+
+static PyObject *
+time_hour(PyDateTime_Time *self, void *unused)
+{
+	return PyInt_FromLong(TIME_GET_HOUR(self));
+}
+
+static PyObject *
+time_minute(PyDateTime_Time *self, void *unused)
+{
+	return PyInt_FromLong(TIME_GET_MINUTE(self));
+}
+
+/* The name time_second conflicted with some platform header file. */
+static PyObject *
+py_time_second(PyDateTime_Time *self, void *unused)
+{
+	return PyInt_FromLong(TIME_GET_SECOND(self));
+}
+
+static PyObject *
+time_microsecond(PyDateTime_Time *self, void *unused)
+{
+	return PyInt_FromLong(TIME_GET_MICROSECOND(self));
+}
+
+static PyObject *
+time_tzinfo(PyDateTime_Time *self, void *unused)
+{
+	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
+	Py_INCREF(result);
+	return result;
+}
+
+static PyGetSetDef time_getset[] = {
+	{"hour",        (getter)time_hour},
+	{"minute",      (getter)time_minute},
+	{"second",      (getter)py_time_second},
+	{"microsecond", (getter)time_microsecond},
+	{"tzinfo",	(getter)time_tzinfo},
+	{NULL}
+};
+
+/*
+ * Constructors.
+ */
+
+static char *time_kws[] = {"hour", "minute", "second", "microsecond",
+			   "tzinfo", NULL};
+
+static PyObject *
+time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+	PyObject *self = NULL;
+	PyObject *state;
+	int hour = 0;
+	int minute = 0;
+	int second = 0;
+	int usecond = 0;
+	PyObject *tzinfo = Py_None;
+
+	/* Check for invocation from pickle with __getstate__ state */
+	if (PyTuple_GET_SIZE(args) >= 1 &&
+	    PyTuple_GET_SIZE(args) <= 2 &&
+	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+	    PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
+	    ((unsigned char) (PyString_AS_STRING(state)[0])) < 24)
+	{
+		PyDateTime_Time *me;
+		char aware;
+
+		if (PyTuple_GET_SIZE(args) == 2) {
+			tzinfo = PyTuple_GET_ITEM(args, 1);
+			if (check_tzinfo_subclass(tzinfo) < 0) {
+				PyErr_SetString(PyExc_TypeError, "bad "
+					"tzinfo state arg");
+				return NULL;
+			}
+		}
+		aware = (char)(tzinfo != Py_None);
+		me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
+		if (me != NULL) {
+			char *pdata = PyString_AS_STRING(state);
+
+			memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
+			me->hashcode = -1;
+			me->hastzinfo = aware;
+			if (aware) {
+				Py_INCREF(tzinfo);
+				me->tzinfo = tzinfo;
+			}
+		}
+		return (PyObject *)me;
+	}
+
+	if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
+					&hour, &minute, &second, &usecond,
+					&tzinfo)) {
+		if (check_time_args(hour, minute, second, usecond) < 0)
+			return NULL;
+		if (check_tzinfo_subclass(tzinfo) < 0)
+			return NULL;
+		self = new_time_ex(hour, minute, second, usecond, tzinfo,
+				   type);
+	}
+	return self;
+}
+
+/*
+ * Destructor.
+ */
+
+static void
+time_dealloc(PyDateTime_Time *self)
+{
+	if (HASTZINFO(self)) {
+		Py_XDECREF(self->tzinfo);
+	}
+	Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+/*
+ * Indirect access to tzinfo methods.
+ */
+
+/* These are all METH_NOARGS, so don't need to check the arglist. */
+static PyObject *
+time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
+	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+				   "utcoffset", Py_None);
+}
+
+static PyObject *
+time_dst(PyDateTime_Time *self, PyObject *unused) {
+	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+				   "dst", Py_None);
+}
+
+static PyObject *
+time_tzname(PyDateTime_Time *self, PyObject *unused) {
+	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
+			   Py_None);
+}
+
+/*
+ * Various ways to turn a time into a string.
+ */
+
+static PyObject *
+time_repr(PyDateTime_Time *self)
+{
+	char buffer[100];
+	const char *type_name = Py_TYPE(self)->tp_name;
+	int h = TIME_GET_HOUR(self);
+	int m = TIME_GET_MINUTE(self);
+	int s = TIME_GET_SECOND(self);
+	int us = TIME_GET_MICROSECOND(self);
+	PyObject *result = NULL;
+
+	if (us)
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d, %d, %d)", type_name, h, m, s, us);
+	else if (s)
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d, %d)", type_name, h, m, s);
+	else
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d)", type_name, h, m);
+	result = PyString_FromString(buffer);
+	if (result != NULL && HASTZINFO(self))
+		result = append_keyword_tzinfo(result, self->tzinfo);
+	return result;
+}
+
+static PyObject *
+time_str(PyDateTime_Time *self)
+{
+	return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
+}
+
+static PyObject *
+time_isoformat(PyDateTime_Time *self, PyObject *unused)
+{
+	char buf[100];
+	PyObject *result;
+	/* Reuse the time format code from the datetime type. */
+	PyDateTime_DateTime datetime;
+	PyDateTime_DateTime *pdatetime = &datetime;
+
+	/* Copy over just the time bytes. */
+	memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE,
+	       self->data,
+	       _PyDateTime_TIME_DATASIZE);
+
+	isoformat_time(pdatetime, buf, sizeof(buf));
+	result = PyString_FromString(buf);
+	if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
+		return result;
+
+	/* We need to append the UTC offset. */
+	if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
+			     Py_None) < 0) {
+		Py_DECREF(result);
+		return NULL;
+	}
+	PyString_ConcatAndDel(&result, PyString_FromString(buf));
+	return result;
+}
+
+static PyObject *
+time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
+{
+	PyObject *result;
+	PyObject *tuple;
+	const char *format;
+	Py_ssize_t format_len;
+	static char *keywords[] = {"format", NULL};
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "s#:strftime", keywords,
+					  &format, &format_len))
+		return NULL;
+
+	/* Python's strftime does insane things with the year part of the
+	 * timetuple.  The year is forced to (the otherwise nonsensical)
+	 * 1900 to worm around that.
+	 */
+	tuple = Py_BuildValue("iiiiiiiii",
+		              1900, 1, 1, /* year, month, day */
+			      TIME_GET_HOUR(self),
+			      TIME_GET_MINUTE(self),
+			      TIME_GET_SECOND(self),
+			      0, 1, -1); /* weekday, daynum, dst */
+	if (tuple == NULL)
+		return NULL;
+	assert(PyTuple_Size(tuple) == 9);
+	result = wrap_strftime((PyObject *)self, format, format_len, tuple,
+			       Py_None);
+	Py_DECREF(tuple);
+	return result;
+}
+
+/*
+ * Miscellaneous methods.
+ */
+
+/* This is more natural as a tp_compare, but doesn't work then:  for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+time_richcompare(PyDateTime_Time *self, PyObject *other, int op)
+{
+	int diff;
+	naivety n1, n2;
+	int offset1, offset2;
+
+	if (! PyTime_Check(other)) {
+		if (op == Py_EQ || op == Py_NE) {
+			PyObject *result = op == Py_EQ ? Py_False : Py_True;
+			Py_INCREF(result);
+			return result;
+		}
+		/* Stop this from falling back to address comparison. */
+		return cmperror((PyObject *)self, other);
+	}
+	if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, Py_None,
+				     other, &offset2, &n2, Py_None) < 0)
+		return NULL;
+	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+	/* If they're both naive, or both aware and have the same offsets,
+	 * we get off cheap.  Note that if they're both naive, offset1 ==
+	 * offset2 == 0 at this point.
+	 */
+	if (n1 == n2 && offset1 == offset2) {
+		diff = memcmp(self->data, ((PyDateTime_Time *)other)->data,
+			      _PyDateTime_TIME_DATASIZE);
+		return diff_to_bool(diff, op);
+	}
+
+	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
+		assert(offset1 != offset2);	/* else last "if" handled it */
+		/* Convert everything except microseconds to seconds.  These
+		 * can't overflow (no more than the # of seconds in 2 days).
+		 */
+		offset1 = TIME_GET_HOUR(self) * 3600 +
+			  (TIME_GET_MINUTE(self) - offset1) * 60 +
+			  TIME_GET_SECOND(self);
+		offset2 = TIME_GET_HOUR(other) * 3600 +
+			  (TIME_GET_MINUTE(other) - offset2) * 60 +
+			  TIME_GET_SECOND(other);
+		diff = offset1 - offset2;
+		if (diff == 0)
+			diff = TIME_GET_MICROSECOND(self) -
+			       TIME_GET_MICROSECOND(other);
+		return diff_to_bool(diff, op);
+	}
+
+	assert(n1 != n2);
+	PyErr_SetString(PyExc_TypeError,
+			"can't compare offset-naive and "
+			"offset-aware times");
+	return NULL;
+}
+
+static long
+time_hash(PyDateTime_Time *self)
+{
+	if (self->hashcode == -1) {
+		naivety n;
+		int offset;
+		PyObject *temp;
+
+		n = classify_utcoffset((PyObject *)self, Py_None, &offset);
+		assert(n != OFFSET_UNKNOWN);
+		if (n == OFFSET_ERROR)
+			return -1;
+
+		/* Reduce this to a hash of another object. */
+		if (offset == 0)
+			temp = PyString_FromStringAndSize((char *)self->data,
+						_PyDateTime_TIME_DATASIZE);
+		else {
+			int hour;
+			int minute;
+
+			assert(n == OFFSET_AWARE);
+			assert(HASTZINFO(self));
+			hour = divmod(TIME_GET_HOUR(self) * 60 +
+					TIME_GET_MINUTE(self) - offset,
+				      60,
+				      &minute);
+			if (0 <= hour && hour < 24)
+				temp = new_time(hour, minute,
+						TIME_GET_SECOND(self),
+						TIME_GET_MICROSECOND(self),
+						Py_None);
+			else
+				temp = Py_BuildValue("iiii",
+					   hour, minute,
+					   TIME_GET_SECOND(self),
+					   TIME_GET_MICROSECOND(self));
+		}
+		if (temp != NULL) {
+			self->hashcode = PyObject_Hash(temp);
+			Py_DECREF(temp);
+		}
+	}
+	return self->hashcode;
+}
+
+static PyObject *
+time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
+{
+	PyObject *clone;
+	PyObject *tuple;
+	int hh = TIME_GET_HOUR(self);
+	int mm = TIME_GET_MINUTE(self);
+	int ss = TIME_GET_SECOND(self);
+	int us = TIME_GET_MICROSECOND(self);
+	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
+					  time_kws,
+					  &hh, &mm, &ss, &us, &tzinfo))
+		return NULL;
+	tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
+	if (tuple == NULL)
+		return NULL;
+	clone = time_new(Py_TYPE(self), tuple, NULL);
+	Py_DECREF(tuple);
+	return clone;
+}
+
+static int
+time_nonzero(PyDateTime_Time *self)
+{
+	int offset;
+	int none;
+
+	if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
+		/* Since utcoffset is in whole minutes, nothing can
+		 * alter the conclusion that this is nonzero.
+		 */
+		return 1;
+	}
+	offset = 0;
+	if (HASTZINFO(self) && self->tzinfo != Py_None) {
+		offset = call_utcoffset(self->tzinfo, Py_None, &none);
+		if (offset == -1 && PyErr_Occurred())
+			return -1;
+	}
+	return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* Let basestate be the non-tzinfo data string.
+ * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
+ * So it's a tuple in any (non-error) case.
+ * __getstate__ isn't exposed.
+ */
+static PyObject *
+time_getstate(PyDateTime_Time *self)
+{
+	PyObject *basestate;
+	PyObject *result = NULL;
+
+	basestate =  PyString_FromStringAndSize((char *)self->data,
+						_PyDateTime_TIME_DATASIZE);
+	if (basestate != NULL) {
+		if (! HASTZINFO(self) || self->tzinfo == Py_None)
+			result = PyTuple_Pack(1, basestate);
+		else
+			result = PyTuple_Pack(2, basestate, self->tzinfo);
+		Py_DECREF(basestate);
+	}
+	return result;
+}
+
+static PyObject *
+time_reduce(PyDateTime_Time *self, PyObject *arg)
+{
+	return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
+}
+
+static PyMethodDef time_methods[] = {
+
+	{"isoformat",   (PyCFunction)time_isoformat,	METH_NOARGS,
+	 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
+	 	   "[+HH:MM].")},
+
+	{"strftime",   	(PyCFunction)time_strftime,	METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("format -> strftime() style string.")},
+
+	{"__format__", 	(PyCFunction)date_format,	METH_VARARGS,
+	 PyDoc_STR("Formats self with strftime.")},
+
+	{"utcoffset",	(PyCFunction)time_utcoffset,	METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
+
+	{"tzname",	(PyCFunction)time_tzname,	METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.tzname(self).")},
+
+	{"dst",		(PyCFunction)time_dst,		METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.dst(self).")},
+
+	{"replace",     (PyCFunction)time_replace,	METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("Return time with new specified fields.")},
+
+	{"__reduce__", (PyCFunction)time_reduce,        METH_NOARGS,
+	 PyDoc_STR("__reduce__() -> (cls, state)")},
+
+	{NULL,	NULL}
+};
+
+static char time_doc[] =
+PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
+\n\
+All arguments are optional. tzinfo may be None, or an instance of\n\
+a tzinfo subclass. The remaining arguments may be ints or longs.\n");
+
+static PyNumberMethods time_as_number = {
+	0,					/* nb_add */
+	0,					/* nb_subtract */
+	0,					/* nb_multiply */
+	0,					/* nb_divide */
+	0,					/* nb_remainder */
+	0,					/* nb_divmod */
+	0,					/* nb_power */
+	0,					/* nb_negative */
+	0,					/* nb_positive */
+	0,					/* nb_absolute */
+	(inquiry)time_nonzero,			/* nb_nonzero */
+};
+
+statichere PyTypeObject PyDateTime_TimeType = {
+	PyObject_HEAD_INIT(NULL)
+	0,					/* ob_size */
+	"datetime.time",			/* tp_name */
+	sizeof(PyDateTime_Time),		/* tp_basicsize */
+	0,					/* tp_itemsize */
+	(destructor)time_dealloc,		/* tp_dealloc */
+	0,					/* tp_print */
+	0,					/* tp_getattr */
+	0,					/* tp_setattr */
+	0,					/* tp_compare */
+	(reprfunc)time_repr,			/* tp_repr */
+	&time_as_number,			/* tp_as_number */
+	0,					/* tp_as_sequence */
+	0,					/* tp_as_mapping */
+	(hashfunc)time_hash,			/* tp_hash */
+	0,              			/* tp_call */
+	(reprfunc)time_str,			/* tp_str */
+	PyObject_GenericGetAttr,		/* tp_getattro */
+	0,					/* tp_setattro */
+	0,					/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+        Py_TPFLAGS_BASETYPE,			/* tp_flags */
+	time_doc,				/* tp_doc */
+	0,					/* tp_traverse */
+	0,					/* tp_clear */
+	(richcmpfunc)time_richcompare,		/* tp_richcompare */
+	0,					/* tp_weaklistoffset */
+	0,					/* tp_iter */
+	0,					/* tp_iternext */
+	time_methods,				/* tp_methods */
+	0,					/* tp_members */
+	time_getset,				/* tp_getset */
+	0,					/* tp_base */
+	0,					/* tp_dict */
+	0,					/* tp_descr_get */
+	0,					/* tp_descr_set */
+	0,					/* tp_dictoffset */
+	0,					/* tp_init */
+	time_alloc,				/* tp_alloc */
+	time_new,				/* tp_new */
+	0,					/* tp_free */
+};
+
+/*
+ * PyDateTime_DateTime implementation.
+ */
+
+/* Accessor properties.  Properties for day, month, and year are inherited
+ * from date.
+ */
+
+static PyObject *
+datetime_hour(PyDateTime_DateTime *self, void *unused)
+{
+	return PyInt_FromLong(DATE_GET_HOUR(self));
+}
+
+static PyObject *
+datetime_minute(PyDateTime_DateTime *self, void *unused)
+{
+	return PyInt_FromLong(DATE_GET_MINUTE(self));
+}
+
+static PyObject *
+datetime_second(PyDateTime_DateTime *self, void *unused)
+{
+	return PyInt_FromLong(DATE_GET_SECOND(self));
+}
+
+static PyObject *
+datetime_microsecond(PyDateTime_DateTime *self, void *unused)
+{
+	return PyInt_FromLong(DATE_GET_MICROSECOND(self));
+}
+
+static PyObject *
+datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
+{
+	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
+	Py_INCREF(result);
+	return result;
+}
+
+static PyGetSetDef datetime_getset[] = {
+	{"hour",        (getter)datetime_hour},
+	{"minute",      (getter)datetime_minute},
+	{"second",      (getter)datetime_second},
+	{"microsecond", (getter)datetime_microsecond},
+	{"tzinfo",	(getter)datetime_tzinfo},
+	{NULL}
+};
+
+/*
+ * Constructors.
+ */
+
+static char *datetime_kws[] = {
+	"year", "month", "day", "hour", "minute", "second",
+	"microsecond", "tzinfo", NULL
+};
+
+static PyObject *
+datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+	PyObject *self = NULL;
+	PyObject *state;
+	int year;
+	int month;
+	int day;
+	int hour = 0;
+	int minute = 0;
+	int second = 0;
+	int usecond = 0;
+	PyObject *tzinfo = Py_None;
+
+	/* Check for invocation from pickle with __getstate__ state */
+	if (PyTuple_GET_SIZE(args) >= 1 &&
+	    PyTuple_GET_SIZE(args) <= 2 &&
+	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
+	    PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
+	    MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
+	{
+		PyDateTime_DateTime *me;
+		char aware;
+
+		if (PyTuple_GET_SIZE(args) == 2) {
+			tzinfo = PyTuple_GET_ITEM(args, 1);
+			if (check_tzinfo_subclass(tzinfo) < 0) {
+				PyErr_SetString(PyExc_TypeError, "bad "
+					"tzinfo state arg");
+				return NULL;
+			}
+		}
+		aware = (char)(tzinfo != Py_None);
+		me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
+		if (me != NULL) {
+			char *pdata = PyString_AS_STRING(state);
+
+			memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
+			me->hashcode = -1;
+			me->hastzinfo = aware;
+			if (aware) {
+				Py_INCREF(tzinfo);
+				me->tzinfo = tzinfo;
+			}
+		}
+		return (PyObject *)me;
+	}
+
+	if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
+					&year, &month, &day, &hour, &minute,
+					&second, &usecond, &tzinfo)) {
+		if (check_date_args(year, month, day) < 0)
+			return NULL;
+		if (check_time_args(hour, minute, second, usecond) < 0)
+			return NULL;
+		if (check_tzinfo_subclass(tzinfo) < 0)
+			return NULL;
+		self = new_datetime_ex(year, month, day,
+				    	hour, minute, second, usecond,
+				    	tzinfo, type);
+	}
+	return self;
+}
+
+/* TM_FUNC is the shared type of localtime() and gmtime(). */
+typedef struct tm *(*TM_FUNC)(const time_t *timer);
+
+/* Internal helper.
+ * Build datetime from a time_t and a distinct count of microseconds.
+ * Pass localtime or gmtime for f, to control the interpretation of timet.
+ */
+static PyObject *
+datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
+			   PyObject *tzinfo)
+{
+	struct tm *tm;
+	PyObject *result = NULL;
+
+	tm = f(&timet);
+	if (tm) {
+		/* The platform localtime/gmtime may insert leap seconds,
+		 * indicated by tm->tm_sec > 59.  We don't care about them,
+		 * except to the extent that passing them on to the datetime
+		 * constructor would raise ValueError for a reason that
+		 * made no sense to the user.
+		 */
+		if (tm->tm_sec > 59)
+			tm->tm_sec = 59;
+		result = PyObject_CallFunction(cls, "iiiiiiiO",
+					       tm->tm_year + 1900,
+					       tm->tm_mon + 1,
+					       tm->tm_mday,
+					       tm->tm_hour,
+					       tm->tm_min,
+					       tm->tm_sec,
+					       us,
+					       tzinfo);
+	}
+	else
+		PyErr_SetString(PyExc_ValueError,
+				"timestamp out of range for "
+				"platform localtime()/gmtime() function");
+	return result;
+}
+
+/* Internal helper.
+ * Build datetime from a Python timestamp.  Pass localtime or gmtime for f,
+ * to control the interpretation of the timestamp.  Since a double doesn't
+ * have enough bits to cover a datetime's full range of precision, it's
+ * better to call datetime_from_timet_and_us provided you have a way
+ * to get that much precision (e.g., C time() isn't good enough).
+ */
+static PyObject *
+datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
+			PyObject *tzinfo)
+{
+	time_t timet;
+	double fraction;
+	int us;
+
+	timet = _PyTime_DoubleToTimet(timestamp);
+	if (timet == (time_t)-1 && PyErr_Occurred())
+		return NULL;
+	fraction = timestamp - (double)timet;
+	us = (int)round_to_long(fraction * 1e6);
+	if (us < 0) {
+		/* Truncation towards zero is not what we wanted
+		   for negative numbers (Python's mod semantics) */
+		timet -= 1;
+		us += 1000000;
+	}
+	/* If timestamp is less than one microsecond smaller than a
+	 * full second, round up. Otherwise, ValueErrors are raised
+	 * for some floats. */
+	if (us == 1000000) {
+		timet += 1;
+		us = 0;
+	}
+	return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
+}
+
+/* Internal helper.
+ * Build most accurate possible datetime for current time.  Pass localtime or
+ * gmtime for f as appropriate.
+ */
+static PyObject *
+datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
+{
+#ifdef HAVE_GETTIMEOFDAY
+	struct timeval t;
+
+#ifdef GETTIMEOFDAY_NO_TZ
+	gettimeofday(&t);
+#else
+	gettimeofday(&t, (struct timezone *)NULL);
+#endif
+	return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
+					  tzinfo);
+
+#else	/* ! HAVE_GETTIMEOFDAY */
+	/* No flavor of gettimeofday exists on this platform.  Python's
+	 * time.time() does a lot of other platform tricks to get the
+	 * best time it can on the platform, and we're not going to do
+	 * better than that (if we could, the better code would belong
+	 * in time.time()!)  We're limited by the precision of a double,
+	 * though.
+	 */
+	PyObject *time;
+	double dtime;
+
+	time = time_time();
+    	if (time == NULL)
+    		return NULL;
+	dtime = PyFloat_AsDouble(time);
+	Py_DECREF(time);
+	if (dtime == -1.0 && PyErr_Occurred())
+		return NULL;
+	return datetime_from_timestamp(cls, f, dtime, tzinfo);
+#endif	/* ! HAVE_GETTIMEOFDAY */
+}
+
+/* Return best possible local time -- this isn't constrained by the
+ * precision of a timestamp.
+ */
+static PyObject *
+datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
+{
+	PyObject *self;
+	PyObject *tzinfo = Py_None;
+	static char *keywords[] = {"tz", NULL};
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
+					  &tzinfo))
+		return NULL;
+	if (check_tzinfo_subclass(tzinfo) < 0)
+		return NULL;
+
+	self = datetime_best_possible(cls,
+				      tzinfo == Py_None ? localtime : gmtime,
+				      tzinfo);
+	if (self != NULL && tzinfo != Py_None) {
+		/* Convert UTC to tzinfo's zone. */
+		PyObject *temp = self;
+		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
+		Py_DECREF(temp);
+	}
+	return self;
+}
+
+/* Return best possible UTC time -- this isn't constrained by the
+ * precision of a timestamp.
+ */
+static PyObject *
+datetime_utcnow(PyObject *cls, PyObject *dummy)
+{
+	return datetime_best_possible(cls, gmtime, Py_None);
+}
+
+/* Return new local datetime from timestamp (Python timestamp -- a double). */
+static PyObject *
+datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
+{
+	PyObject *self;
+	double timestamp;
+	PyObject *tzinfo = Py_None;
+	static char *keywords[] = {"timestamp", "tz", NULL};
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
+					  keywords, &timestamp, &tzinfo))
+		return NULL;
+	if (check_tzinfo_subclass(tzinfo) < 0)
+		return NULL;
+
+	self = datetime_from_timestamp(cls,
+				       tzinfo == Py_None ? localtime : gmtime,
+				       timestamp,
+				       tzinfo);
+	if (self != NULL && tzinfo != Py_None) {
+		/* Convert UTC to tzinfo's zone. */
+		PyObject *temp = self;
+		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
+		Py_DECREF(temp);
+	}
+	return self;
+}
+
+/* Return new UTC datetime from timestamp (Python timestamp -- a double). */
+static PyObject *
+datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
+{
+	double timestamp;
+	PyObject *result = NULL;
+
+	if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
+		result = datetime_from_timestamp(cls, gmtime, timestamp,
+						 Py_None);
+	return result;
+}
+
+/* Return new datetime from time.strptime(). */
+static PyObject *
+datetime_strptime(PyObject *cls, PyObject *args)
+{
+	static PyObject *module = NULL;
+	PyObject *result = NULL, *obj, *st = NULL, *frac = NULL;
+	const char *string, *format;
+
+	if (!PyArg_ParseTuple(args, "ss:strptime", &string, &format))
+		return NULL;
+
+	if (module == NULL &&
+	    (module = PyImport_ImportModuleNoBlock("_strptime")) == NULL)
+		return NULL;
+
+	/* _strptime._strptime returns a two-element tuple.  The first
+	   element is a time.struct_time object.  The second is the
+	   microseconds (which are not defined for time.struct_time). */
+	obj = PyObject_CallMethod(module, "_strptime", "ss", string, format);
+	if (obj != NULL) {
+		int i, good_timetuple = 1;
+		long int ia[7];
+		if (PySequence_Check(obj) && PySequence_Size(obj) == 2) {
+			st = PySequence_GetItem(obj, 0);
+			frac = PySequence_GetItem(obj, 1);
+			if (st == NULL || frac == NULL)
+				good_timetuple = 0;
+			/* copy y/m/d/h/m/s values out of the
+			   time.struct_time */
+			if (good_timetuple &&
+			    PySequence_Check(st) &&
+			    PySequence_Size(st) >= 6) {
+				for (i=0; i < 6; i++) {
+					PyObject *p = PySequence_GetItem(st, i);
+					if (p == NULL) {
+						good_timetuple = 0;
+						break;
+					}
+					if (PyInt_Check(p))
+						ia[i] = PyInt_AsLong(p);
+					else
+						good_timetuple = 0;
+					Py_DECREF(p);
+				}
+			}
+			else
+				good_timetuple = 0;
+			/* follow that up with a little dose of microseconds */
+			if (PyInt_Check(frac))
+				ia[6] = PyInt_AsLong(frac);
+			else
+				good_timetuple = 0;
+		}
+		else
+			good_timetuple = 0;
+		if (good_timetuple)
+			result = PyObject_CallFunction(cls, "iiiiiii",
+						       ia[0], ia[1], ia[2],
+						       ia[3], ia[4], ia[5],
+						       ia[6]);
+		else
+			PyErr_SetString(PyExc_ValueError,
+				"unexpected value from _strptime._strptime");
+	}
+	Py_XDECREF(obj);
+	Py_XDECREF(st);
+	Py_XDECREF(frac);
+	return result;
+}
+
+/* Return new datetime from date/datetime and time arguments. */
+static PyObject *
+datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
+{
+ 	static char *keywords[] = {"date", "time", NULL};
+	PyObject *date;
+	PyObject *time;
+	PyObject *result = NULL;
+
+	if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
+					&PyDateTime_DateType, &date,
+					&PyDateTime_TimeType, &time)) {
+		PyObject *tzinfo = Py_None;
+
+		if (HASTZINFO(time))
+			tzinfo = ((PyDateTime_Time *)time)->tzinfo;
+		result = PyObject_CallFunction(cls, "iiiiiiiO",
+						GET_YEAR(date),
+				    		GET_MONTH(date),
+						GET_DAY(date),
+				    		TIME_GET_HOUR(time),
+				    		TIME_GET_MINUTE(time),
+				    		TIME_GET_SECOND(time),
+				    		TIME_GET_MICROSECOND(time),
+				    		tzinfo);
+	}
+	return result;
+}
+
+/*
+ * Destructor.
+ */
+
+static void
+datetime_dealloc(PyDateTime_DateTime *self)
+{
+	if (HASTZINFO(self)) {
+		Py_XDECREF(self->tzinfo);
+	}
+	Py_TYPE(self)->tp_free((PyObject *)self);
+}
+
+/*
+ * Indirect access to tzinfo methods.
+ */
+
+/* These are all METH_NOARGS, so don't need to check the arglist. */
+static PyObject *
+datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
+	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+				   "utcoffset", (PyObject *)self);
+}
+
+static PyObject *
+datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
+	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
+				   "dst", (PyObject *)self);
+}
+
+static PyObject *
+datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
+	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
+			   (PyObject *)self);
+}
+
+/*
+ * datetime arithmetic.
+ */
+
+/* factor must be 1 (to add) or -1 (to subtract).  The result inherits
+ * the tzinfo state of date.
+ */
+static PyObject *
+add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
+		       int factor)
+{
+	/* Note that the C-level additions can't overflow, because of
+	 * invariant bounds on the member values.
+	 */
+	int year = GET_YEAR(date);
+	int month = GET_MONTH(date);
+	int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
+	int hour = DATE_GET_HOUR(date);
+	int minute = DATE_GET_MINUTE(date);
+	int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
+	int microsecond = DATE_GET_MICROSECOND(date) +
+			  GET_TD_MICROSECONDS(delta) * factor;
+
+	assert(factor == 1 || factor == -1);
+	if (normalize_datetime(&year, &month, &day,
+			       &hour, &minute, &second, &microsecond) < 0)
+		return NULL;
+	else
+		return new_datetime(year, month, day,
+				    hour, minute, second, microsecond,
+				    HASTZINFO(date) ? date->tzinfo : Py_None);
+}
+
+static PyObject *
+datetime_add(PyObject *left, PyObject *right)
+{
+	if (PyDateTime_Check(left)) {
+		/* datetime + ??? */
+		if (PyDelta_Check(right))
+			/* datetime + delta */
+			return add_datetime_timedelta(
+					(PyDateTime_DateTime *)left,
+					(PyDateTime_Delta *)right,
+					1);
+	}
+	else if (PyDelta_Check(left)) {
+		/* delta + datetime */
+		return add_datetime_timedelta((PyDateTime_DateTime *) right,
+					      (PyDateTime_Delta *) left,
+					      1);
+	}
+	Py_INCREF(Py_NotImplemented);
+	return Py_NotImplemented;
+}
+
+static PyObject *
+datetime_subtract(PyObject *left, PyObject *right)
+{
+	PyObject *result = Py_NotImplemented;
+
+	if (PyDateTime_Check(left)) {
+		/* datetime - ??? */
+		if (PyDateTime_Check(right)) {
+			/* datetime - datetime */
+			naivety n1, n2;
+			int offset1, offset2;
+			int delta_d, delta_s, delta_us;
+
+			if (classify_two_utcoffsets(left, &offset1, &n1, left,
+						    right, &offset2, &n2,
+						    right) < 0)
+				return NULL;
+			assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+			if (n1 != n2) {
+				PyErr_SetString(PyExc_TypeError,
+					"can't subtract offset-naive and "
+					"offset-aware datetimes");
+				return NULL;
+			}
+			delta_d = ymd_to_ord(GET_YEAR(left),
+					     GET_MONTH(left),
+					     GET_DAY(left)) -
+				  ymd_to_ord(GET_YEAR(right),
+					     GET_MONTH(right),
+					     GET_DAY(right));
+			/* These can't overflow, since the values are
+			 * normalized.  At most this gives the number of
+			 * seconds in one day.
+			 */
+			delta_s = (DATE_GET_HOUR(left) -
+				   DATE_GET_HOUR(right)) * 3600 +
+			          (DATE_GET_MINUTE(left) -
+			           DATE_GET_MINUTE(right)) * 60 +
+				  (DATE_GET_SECOND(left) -
+				   DATE_GET_SECOND(right));
+			delta_us = DATE_GET_MICROSECOND(left) -
+				   DATE_GET_MICROSECOND(right);
+			/* (left - offset1) - (right - offset2) =
+			 * (left - right) + (offset2 - offset1)
+			 */
+			delta_s += (offset2 - offset1) * 60;
+			result = new_delta(delta_d, delta_s, delta_us, 1);
+		}
+		else if (PyDelta_Check(right)) {
+			/* datetime - delta */
+			result = add_datetime_timedelta(
+					(PyDateTime_DateTime *)left,
+					(PyDateTime_Delta *)right,
+					-1);
+		}
+	}
+
+	if (result == Py_NotImplemented)
+		Py_INCREF(result);
+	return result;
+}
+
+/* Various ways to turn a datetime into a string. */
+
+static PyObject *
+datetime_repr(PyDateTime_DateTime *self)
+{
+	char buffer[1000];
+	const char *type_name = Py_TYPE(self)->tp_name;
+	PyObject *baserepr;
+
+	if (DATE_GET_MICROSECOND(self)) {
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d, %d, %d, %d, %d, %d)",
+			      type_name,
+			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
+			      DATE_GET_SECOND(self),
+			      DATE_GET_MICROSECOND(self));
+	}
+	else if (DATE_GET_SECOND(self)) {
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d, %d, %d, %d, %d)",
+			      type_name,
+			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
+			      DATE_GET_SECOND(self));
+	}
+	else {
+		PyOS_snprintf(buffer, sizeof(buffer),
+			      "%s(%d, %d, %d, %d, %d)",
+			      type_name,
+			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
+			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
+	}
+	baserepr = PyString_FromString(buffer);
+	if (baserepr == NULL || ! HASTZINFO(self))
+		return baserepr;
+	return append_keyword_tzinfo(baserepr, self->tzinfo);
+}
+
+static PyObject *
+datetime_str(PyDateTime_DateTime *self)
+{
+	return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
+}
+
+static PyObject *
+datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+	char sep = 'T';
+	static char *keywords[] = {"sep", NULL};
+	char buffer[100];
+	char *cp;
+	PyObject *result;
+
+	if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords,
+					 &sep))
+		return NULL;
+	cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer));
+	assert(cp != NULL);
+	*cp++ = sep;
+	isoformat_time(self, cp, sizeof(buffer) - (cp - buffer));
+	result = PyString_FromString(buffer);
+	if (result == NULL || ! HASTZINFO(self))
+		return result;
+
+	/* We need to append the UTC offset. */
+	if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
+			     (PyObject *)self) < 0) {
+		Py_DECREF(result);
+		return NULL;
+	}
+	PyString_ConcatAndDel(&result, PyString_FromString(buffer));
+	return result;
+}
+
+static PyObject *
+datetime_ctime(PyDateTime_DateTime *self)
+{
+	return format_ctime((PyDateTime_Date *)self,
+			    DATE_GET_HOUR(self),
+			    DATE_GET_MINUTE(self),
+			    DATE_GET_SECOND(self));
+}
+
+/* Miscellaneous methods. */
+
+/* This is more natural as a tp_compare, but doesn't work then:  for whatever
+ * reason, Python's try_3way_compare ignores tp_compare unless
+ * PyInstance_Check returns true, but these aren't old-style classes.
+ */
+static PyObject *
+datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op)
+{
+	int diff;
+	naivety n1, n2;
+	int offset1, offset2;
+
+	if (! PyDateTime_Check(other)) {
+		/* If other has a "timetuple" attr, that's an advertised
+		 * hook for other classes to ask to get comparison control.
+		 * However, date instances have a timetuple attr, and we
+		 * don't want to allow that comparison.  Because datetime
+		 * is a subclass of date, when mixing date and datetime
+		 * in a comparison, Python gives datetime the first shot
+		 * (it's the more specific subtype).  So we can stop that
+		 * combination here reliably.
+		 */
+		if (PyObject_HasAttrString(other, "timetuple") &&
+		    ! PyDate_Check(other)) {
+			/* A hook for other kinds of datetime objects. */
+			Py_INCREF(Py_NotImplemented);
+			return Py_NotImplemented;
+		}
+		if (op == Py_EQ || op == Py_NE) {
+			PyObject *result = op == Py_EQ ? Py_False : Py_True;
+			Py_INCREF(result);
+			return result;
+		}
+		/* Stop this from falling back to address comparison. */
+		return cmperror((PyObject *)self, other);
+	}
+
+	if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1,
+				    (PyObject *)self,
+				     other, &offset2, &n2,
+				     other) < 0)
+		return NULL;
+	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
+ 	/* If they're both naive, or both aware and have the same offsets,
+	 * we get off cheap.  Note that if they're both naive, offset1 ==
+	 * offset2 == 0 at this point.
+	 */
+	if (n1 == n2 && offset1 == offset2) {
+		diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data,
+			      _PyDateTime_DATETIME_DATASIZE);
+		return diff_to_bool(diff, op);
+	}
+
+	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
+		PyDateTime_Delta *delta;
+
+		assert(offset1 != offset2);	/* else last "if" handled it */
+		delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
+							       other);
+		if (delta == NULL)
+			return NULL;
+		diff = GET_TD_DAYS(delta);
+		if (diff == 0)
+			diff = GET_TD_SECONDS(delta) |
+			       GET_TD_MICROSECONDS(delta);
+		Py_DECREF(delta);
+		return diff_to_bool(diff, op);
+	}
+
+	assert(n1 != n2);
+	PyErr_SetString(PyExc_TypeError,
+			"can't compare offset-naive and "
+			"offset-aware datetimes");
+	return NULL;
+}
+
+static long
+datetime_hash(PyDateTime_DateTime *self)
+{
+	if (self->hashcode == -1) {
+		naivety n;
+		int offset;
+		PyObject *temp;
+
+		n = classify_utcoffset((PyObject *)self, (PyObject *)self,
+				       &offset);
+		assert(n != OFFSET_UNKNOWN);
+		if (n == OFFSET_ERROR)
+			return -1;
+
+		/* Reduce this to a hash of another object. */
+		if (n == OFFSET_NAIVE)
+			temp = PyString_FromStringAndSize(
+					(char *)self->data,
+					_PyDateTime_DATETIME_DATASIZE);
+		else {
+			int days;
+			int seconds;
+
+			assert(n == OFFSET_AWARE);
+			assert(HASTZINFO(self));
+			days = ymd_to_ord(GET_YEAR(self),
+					  GET_MONTH(self),
+					  GET_DAY(self));
+			seconds = DATE_GET_HOUR(self) * 3600 +
+				  (DATE_GET_MINUTE(self) - offset) * 60 +
+				  DATE_GET_SECOND(self);
+			temp = new_delta(days,
+					 seconds,
+					 DATE_GET_MICROSECOND(self),
+					 1);
+		}
+		if (temp != NULL) {
+			self->hashcode = PyObject_Hash(temp);
+			Py_DECREF(temp);
+		}
+	}
+	return self->hashcode;
+}
+
+static PyObject *
+datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+	PyObject *clone;
+	PyObject *tuple;
+	int y = GET_YEAR(self);
+	int m = GET_MONTH(self);
+	int d = GET_DAY(self);
+	int hh = DATE_GET_HOUR(self);
+	int mm = DATE_GET_MINUTE(self);
+	int ss = DATE_GET_SECOND(self);
+	int us = DATE_GET_MICROSECOND(self);
+	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
+					  datetime_kws,
+					  &y, &m, &d, &hh, &mm, &ss, &us,
+					  &tzinfo))
+		return NULL;
+	tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
+	if (tuple == NULL)
+		return NULL;
+	clone = datetime_new(Py_TYPE(self), tuple, NULL);
+	Py_DECREF(tuple);
+	return clone;
+}
+
+static PyObject *
+datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
+{
+	int y, m, d, hh, mm, ss, us;
+	PyObject *result;
+	int offset, none;
+
+	PyObject *tzinfo;
+	static char *keywords[] = {"tz", NULL};
+
+	if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
+					  &PyDateTime_TZInfoType, &tzinfo))
+		return NULL;
+
+        if (!HASTZINFO(self) || self->tzinfo == Py_None)
+        	goto NeedAware;
+
+        /* Conversion to self's own time zone is a NOP. */
+	if (self->tzinfo == tzinfo) {
+		Py_INCREF(self);
+		return (PyObject *)self;
+	}
+
+        /* Convert self to UTC. */
+        offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
+        if (offset == -1 && PyErr_Occurred())
+        	return NULL;
+        if (none)
+        	goto NeedAware;
+
+	y = GET_YEAR(self);
+	m = GET_MONTH(self);
+	d = GET_DAY(self);
+	hh = DATE_GET_HOUR(self);
+	mm = DATE_GET_MINUTE(self);
+	ss = DATE_GET_SECOND(self);
+	us = DATE_GET_MICROSECOND(self);
+
+	mm -= offset;
+	if ((mm < 0 || mm >= 60) &&
+	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
+		return NULL;
+
+	/* Attach new tzinfo and let fromutc() do the rest. */
+	result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
+	if (result != NULL) {
+		PyObject *temp = result;
+
+		result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
+		Py_DECREF(temp);
+	}
+	return result;
+
+NeedAware:
+	PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
+					  "a naive datetime");
+	return NULL;
+}
+
+static PyObject *
+datetime_timetuple(PyDateTime_DateTime *self)
+{
+	int dstflag = -1;
+
+	if (HASTZINFO(self) && self->tzinfo != Py_None) {
+		int none;
+
+		dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
+		if (dstflag == -1 && PyErr_Occurred())
+			return NULL;
+
+		if (none)
+			dstflag = -1;
+		else if (dstflag != 0)
+			dstflag = 1;
+
+	}
+	return build_struct_time(GET_YEAR(self),
+				 GET_MONTH(self),
+				 GET_DAY(self),
+				 DATE_GET_HOUR(self),
+				 DATE_GET_MINUTE(self),
+				 DATE_GET_SECOND(self),
+				 dstflag);
+}
+
+static PyObject *
+datetime_getdate(PyDateTime_DateTime *self)
+{
+	return new_date(GET_YEAR(self),
+			GET_MONTH(self),
+			GET_DAY(self));
+}
+
+static PyObject *
+datetime_gettime(PyDateTime_DateTime *self)
+{
+	return new_time(DATE_GET_HOUR(self),
+			DATE_GET_MINUTE(self),
+			DATE_GET_SECOND(self),
+			DATE_GET_MICROSECOND(self),
+			Py_None);
+}
+
+static PyObject *
+datetime_gettimetz(PyDateTime_DateTime *self)
+{
+	return new_time(DATE_GET_HOUR(self),
+			DATE_GET_MINUTE(self),
+			DATE_GET_SECOND(self),
+			DATE_GET_MICROSECOND(self),
+			HASTZINFO(self) ? self->tzinfo : Py_None);
+}
+
+static PyObject *
+datetime_utctimetuple(PyDateTime_DateTime *self)
+{
+	int y = GET_YEAR(self);
+	int m = GET_MONTH(self);
+	int d = GET_DAY(self);
+	int hh = DATE_GET_HOUR(self);
+	int mm = DATE_GET_MINUTE(self);
+	int ss = DATE_GET_SECOND(self);
+	int us = 0;	/* microseconds are ignored in a timetuple */
+	int offset = 0;
+
+	if (HASTZINFO(self) && self->tzinfo != Py_None) {
+		int none;
+
+		offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
+		if (offset == -1 && PyErr_Occurred())
+			return NULL;
+	}
+	/* Even if offset is 0, don't call timetuple() -- tm_isdst should be
+	 * 0 in a UTC timetuple regardless of what dst() says.
+	 */
+	if (offset) {
+		/* Subtract offset minutes & normalize. */
+		int stat;
+
+		mm -= offset;
+		stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
+		if (stat < 0) {
+			/* At the edges, it's possible we overflowed
+			 * beyond MINYEAR or MAXYEAR.
+			 */
+			if (PyErr_ExceptionMatches(PyExc_OverflowError))
+				PyErr_Clear();
+			else
+				return NULL;
+		}
+	}
+	return build_struct_time(y, m, d, hh, mm, ss, 0);
+}
+
+/* Pickle support, a simple use of __reduce__. */
+
+/* Let basestate be the non-tzinfo data string.
+ * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
+ * So it's a tuple in any (non-error) case.
+ * __getstate__ isn't exposed.
+ */
+static PyObject *
+datetime_getstate(PyDateTime_DateTime *self)
+{
+	PyObject *basestate;
+	PyObject *result = NULL;
+
+	basestate = PyString_FromStringAndSize((char *)self->data,
+					  _PyDateTime_DATETIME_DATASIZE);
+	if (basestate != NULL) {
+		if (! HASTZINFO(self) || self->tzinfo == Py_None)
+			result = PyTuple_Pack(1, basestate);
+		else
+			result = PyTuple_Pack(2, basestate, self->tzinfo);
+		Py_DECREF(basestate);
+	}
+	return result;
+}
+
+static PyObject *
+datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
+{
+	return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
+}
+
+static PyMethodDef datetime_methods[] = {
+
+	/* Class methods: */
+
+	{"now",         (PyCFunction)datetime_now,
+	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+	 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
+
+	{"utcnow",         (PyCFunction)datetime_utcnow,
+	 METH_NOARGS | METH_CLASS,
+	 PyDoc_STR("Return a new datetime representing UTC day and time.")},
+
+	{"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
+	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+	 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
+
+	{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
+	 METH_VARARGS | METH_CLASS,
+	 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
+	 	   "(like time.time()).")},
+
+	{"strptime", (PyCFunction)datetime_strptime,
+	 METH_VARARGS | METH_CLASS,
+	 PyDoc_STR("string, format -> new datetime parsed from a string "
+	 	   "(like time.strptime()).")},
+
+	{"combine", (PyCFunction)datetime_combine,
+	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
+	 PyDoc_STR("date, time -> datetime with same date and time fields")},
+
+	/* Instance methods: */
+
+	{"date",   (PyCFunction)datetime_getdate, METH_NOARGS,
+         PyDoc_STR("Return date object with same year, month and day.")},
+
+	{"time",   (PyCFunction)datetime_gettime, METH_NOARGS,
+         PyDoc_STR("Return time object with same time but with tzinfo=None.")},
+
+	{"timetz",   (PyCFunction)datetime_gettimetz, METH_NOARGS,
+         PyDoc_STR("Return time object with same time and tzinfo.")},
+
+	{"ctime",       (PyCFunction)datetime_ctime,	METH_NOARGS,
+	 PyDoc_STR("Return ctime() style string.")},
+
+	{"timetuple",   (PyCFunction)datetime_timetuple, METH_NOARGS,
+         PyDoc_STR("Return time tuple, compatible with time.localtime().")},
+
+	{"utctimetuple",   (PyCFunction)datetime_utctimetuple, METH_NOARGS,
+         PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
+
+	{"isoformat",   (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("[sep] -> string in ISO 8601 format, "
+	 	   "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
+	 	   "sep is used to separate the year from the time, and "
+	 	   "defaults to 'T'.")},
+
+	{"utcoffset",	(PyCFunction)datetime_utcoffset, METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
+
+	{"tzname",	(PyCFunction)datetime_tzname,	METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.tzname(self).")},
+
+	{"dst",		(PyCFunction)datetime_dst, METH_NOARGS,
+	 PyDoc_STR("Return self.tzinfo.dst(self).")},
+
+	{"replace",     (PyCFunction)datetime_replace,	METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("Return datetime with new specified fields.")},
+
+	{"astimezone",  (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
+	 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
+
+	{"__reduce__", (PyCFunction)datetime_reduce,     METH_NOARGS,
+	 PyDoc_STR("__reduce__() -> (cls, state)")},
+
+	{NULL,	NULL}
+};
+
+static char datetime_doc[] =
+PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
+\n\
+The year, month and day arguments are required. tzinfo may be None, or an\n\
+instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
+
+static PyNumberMethods datetime_as_number = {
+	datetime_add,				/* nb_add */
+	datetime_subtract,			/* nb_subtract */
+	0,					/* nb_multiply */
+	0,					/* nb_divide */
+	0,					/* nb_remainder */
+	0,					/* nb_divmod */
+	0,					/* nb_power */
+	0,					/* nb_negative */
+	0,					/* nb_positive */
+	0,					/* nb_absolute */
+	0,					/* nb_nonzero */
+};
+
+statichere PyTypeObject PyDateTime_DateTimeType = {
+	PyObject_HEAD_INIT(NULL)
+	0,					/* ob_size */
+	"datetime.datetime",			/* tp_name */
+	sizeof(PyDateTime_DateTime),		/* tp_basicsize */
+	0,					/* tp_itemsize */
+	(destructor)datetime_dealloc,		/* tp_dealloc */
+	0,					/* tp_print */
+	0,					/* tp_getattr */
+	0,					/* tp_setattr */
+	0,					/* tp_compare */
+	(reprfunc)datetime_repr,		/* tp_repr */
+	&datetime_as_number,			/* tp_as_number */
+	0,					/* tp_as_sequence */
+	0,					/* tp_as_mapping */
+	(hashfunc)datetime_hash,		/* tp_hash */
+	0,              			/* tp_call */
+	(reprfunc)datetime_str,			/* tp_str */
+	PyObject_GenericGetAttr,		/* tp_getattro */
+	0,					/* tp_setattro */
+	0,					/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
+        Py_TPFLAGS_BASETYPE,			/* tp_flags */
+	datetime_doc,				/* tp_doc */
+	0,					/* tp_traverse */
+	0,					/* tp_clear */
+	(richcmpfunc)datetime_richcompare,	/* tp_richcompare */
+	0,					/* tp_weaklistoffset */
+	0,					/* tp_iter */
+	0,					/* tp_iternext */
+	datetime_methods,			/* tp_methods */
+	0,					/* tp_members */
+	datetime_getset,			/* tp_getset */
+	&PyDateTime_DateType,			/* tp_base */
+	0,					/* tp_dict */
+	0,					/* tp_descr_get */
+	0,					/* tp_descr_set */
+	0,					/* tp_dictoffset */
+	0,					/* tp_init */
+	datetime_alloc,				/* tp_alloc */
+	datetime_new,				/* tp_new */
+	0,					/* tp_free */
+};
+
+/* ---------------------------------------------------------------------------
+ * Module methods and initialization.
+ */
+
+static PyMethodDef module_methods[] = {
+	{NULL, NULL}
+};
+
+/* C API.  Clients get at this via PyDateTime_IMPORT, defined in
+ * datetime.h.
+ */
+static PyDateTime_CAPI CAPI = {
+        &PyDateTime_DateType,
+        &PyDateTime_DateTimeType,
+        &PyDateTime_TimeType,
+        &PyDateTime_DeltaType,
+        &PyDateTime_TZInfoType,
+        new_date_ex,
+        new_datetime_ex,
+        new_time_ex,
+        new_delta_ex,
+        datetime_fromtimestamp,
+        date_fromtimestamp
+};
+
+
+PyMODINIT_FUNC
+initdatetime(void)
+{
+	PyObject *m;	/* a module object */
+	PyObject *d;	/* its dict */
+	PyObject *x;
+
+	m = Py_InitModule3("datetime", module_methods,
+			   "Fast implementation of the datetime type.");
+	if (m == NULL)
+		return;
+
+	if (PyType_Ready(&PyDateTime_DateType) < 0)
+		return;
+	if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
+		return;
+	if (PyType_Ready(&PyDateTime_DeltaType) < 0)
+		return;
+	if (PyType_Ready(&PyDateTime_TimeType) < 0)
+		return;
+	if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
+		return;
+
+	/* timedelta values */
+	d = PyDateTime_DeltaType.tp_dict;
+
+	x = new_delta(0, 0, 1, 0);
+	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
+	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
+	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	/* date values */
+	d = PyDateTime_DateType.tp_dict;
+
+	x = new_date(1, 1, 1);
+	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_date(MAXYEAR, 12, 31);
+	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_delta(1, 0, 0, 0);
+	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	/* time values */
+	d = PyDateTime_TimeType.tp_dict;
+
+	x = new_time(0, 0, 0, 0, Py_None);
+	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_time(23, 59, 59, 999999, Py_None);
+	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_delta(0, 0, 1, 0);
+	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	/* datetime values */
+	d = PyDateTime_DateTimeType.tp_dict;
+
+	x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
+	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
+	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	x = new_delta(0, 0, 1, 0);
+	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
+		return;
+	Py_DECREF(x);
+
+	/* module initialization */
+	PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
+	PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
+
+	Py_INCREF(&PyDateTime_DateType);
+	PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
+
+	Py_INCREF(&PyDateTime_DateTimeType);
+	PyModule_AddObject(m, "datetime",
+			   (PyObject *)&PyDateTime_DateTimeType);
+
+	Py_INCREF(&PyDateTime_TimeType);
+	PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
+
+	Py_INCREF(&PyDateTime_DeltaType);
+	PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
+
+	Py_INCREF(&PyDateTime_TZInfoType);
+	PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
+
+        x = PyCObject_FromVoidPtrAndDesc(&CAPI, (void*) DATETIME_API_MAGIC,
+                NULL);
+        if (x == NULL)
+            return;
+        PyModule_AddObject(m, "datetime_CAPI", x);
+
+	/* A 4-year cycle has an extra leap day over what we'd get from
+	 * pasting together 4 single years.
+	 */
+	assert(DI4Y == 4 * 365 + 1);
+	assert(DI4Y == days_before_year(4+1));
+
+	/* Similarly, a 400-year cycle has an extra leap day over what we'd
+	 * get from pasting together 4 100-year cycles.
+	 */
+	assert(DI400Y == 4 * DI100Y + 1);
+	assert(DI400Y == days_before_year(400+1));
+
+	/* OTOH, a 100-year cycle has one fewer leap day than we'd get from
+	 * pasting together 25 4-year cycles.
+	 */
+	assert(DI100Y == 25 * DI4Y - 1);
+	assert(DI100Y == days_before_year(100+1));
+
+	us_per_us = PyInt_FromLong(1);
+	us_per_ms = PyInt_FromLong(1000);
+	us_per_second = PyInt_FromLong(1000000);
+	us_per_minute = PyInt_FromLong(60000000);
+	seconds_per_day = PyInt_FromLong(24 * 3600);
+	if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
+	    us_per_minute == NULL || seconds_per_day == NULL)
+		return;
+
+	/* The rest are too big for 32-bit ints, but even
+	 * us_per_week fits in 40 bits, so doubles should be exact.
+	 */
+	us_per_hour = PyLong_FromDouble(3600000000.0);
+	us_per_day = PyLong_FromDouble(86400000000.0);
+	us_per_week = PyLong_FromDouble(604800000000.0);
+	if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
+		return;
+}
+
+/* ---------------------------------------------------------------------------
+Some time zone algebra.  For a datetime x, let
+    x.n = x stripped of its timezone -- its naive time.
+    x.o = x.utcoffset(), and assuming that doesn't raise an exception or
+          return None
+    x.d = x.dst(), and assuming that doesn't raise an exception or
+          return None
+    x.s = x's standard offset, x.o - x.d
+
+Now some derived rules, where k is a duration (timedelta).
+
+1. x.o = x.s + x.d
+   This follows from the definition of x.s.
+
+2. If x and y have the same tzinfo member, x.s = y.s.
+   This is actually a requirement, an assumption we need to make about
+   sane tzinfo classes.
+
+3. The naive UTC time corresponding to x is x.n - x.o.
+   This is again a requirement for a sane tzinfo class.
+
+4. (x+k).s = x.s
+   This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
+
+5. (x+k).n = x.n + k
+   Again follows from how arithmetic is defined.
+
+Now we can explain tz.fromutc(x).  Let's assume it's an interesting case
+(meaning that the various tzinfo methods exist, and don't blow up or return
+None when called).
+
+The function wants to return a datetime y with timezone tz, equivalent to x.
+x is already in UTC.
+
+By #3, we want
+
+    y.n - y.o = x.n                             [1]
+
+The algorithm starts by attaching tz to x.n, and calling that y.  So
+x.n = y.n at the start.  Then it wants to add a duration k to y, so that [1]
+becomes true; in effect, we want to solve [2] for k:
+
+   (y+k).n - (y+k).o = x.n                      [2]
+
+By #1, this is the same as
+
+   (y+k).n - ((y+k).s + (y+k).d) = x.n          [3]
+
+By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
+Substituting that into [3],
+
+   x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
+   k - (y+k).s - (y+k).d = 0; rearranging,
+   k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
+   k = y.s - (y+k).d
+
+On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
+approximate k by ignoring the (y+k).d term at first.  Note that k can't be
+very large, since all offset-returning methods return a duration of magnitude
+less than 24 hours.  For that reason, if y is firmly in std time, (y+k).d must
+be 0, so ignoring it has no consequence then.
+
+In any case, the new value is
+
+    z = y + y.s                                 [4]
+
+It's helpful to step back at look at [4] from a higher level:  it's simply
+mapping from UTC to tz's standard time.
+
+At this point, if
+
+    z.n - z.o = x.n                             [5]
+
+we have an equivalent time, and are almost done.  The insecurity here is
+at the start of daylight time.  Picture US Eastern for concreteness.  The wall
+time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
+sense then.  The docs ask that an Eastern tzinfo class consider such a time to
+be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
+on the day DST starts.  We want to return the 1:MM EST spelling because that's
+the only spelling that makes sense on the local wall clock.
+
+In fact, if [5] holds at this point, we do have the standard-time spelling,
+but that takes a bit of proof.  We first prove a stronger result.  What's the
+difference between the LHS and RHS of [5]?  Let
+
+    diff = x.n - (z.n - z.o)                    [6]
+
+Now
+    z.n =                       by [4]
+    (y + y.s).n =               by #5
+    y.n + y.s =                 since y.n = x.n
+    x.n + y.s =                 since z and y are have the same tzinfo member,
+                                    y.s = z.s by #2
+    x.n + z.s
+
+Plugging that back into [6] gives
+
+    diff =
+    x.n - ((x.n + z.s) - z.o) =     expanding
+    x.n - x.n - z.s + z.o =         cancelling
+    - z.s + z.o =                   by #2
+    z.d
+
+So diff = z.d.
+
+If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
+spelling we wanted in the endcase described above.  We're done.  Contrarily,
+if z.d = 0, then we have a UTC equivalent, and are also done.
+
+If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
+add to z (in effect, z is in tz's standard time, and we need to shift the
+local clock into tz's daylight time).
+
+Let
+
+    z' = z + z.d = z + diff                     [7]
+
+and we can again ask whether
+
+    z'.n - z'.o = x.n                           [8]
+
+If so, we're done.  If not, the tzinfo class is insane, according to the
+assumptions we've made.  This also requires a bit of proof.  As before, let's
+compute the difference between the LHS and RHS of [8] (and skipping some of
+the justifications for the kinds of substitutions we've done several times
+already):
+
+    diff' = x.n - (z'.n - z'.o) =           replacing z'.n via [7]
+            x.n  - (z.n + diff - z'.o) =    replacing diff via [6]
+            x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
+            x.n - z.n - x.n + z.n - z.o + z'.o =    cancel x.n
+            - z.n + z.n - z.o + z'.o =              cancel z.n
+            - z.o + z'.o =                      #1 twice
+            -z.s - z.d + z'.s + z'.d =          z and z' have same tzinfo
+            z'.d - z.d
+
+So z' is UTC-equivalent to x iff z'.d = z.d at this point.  If they are equal,
+we've found the UTC-equivalent so are done.  In fact, we stop with [7] and
+return z', not bothering to compute z'.d.
+
+How could z.d and z'd differ?  z' = z + z.d [7], so merely moving z' by
+a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
+would have to change the result dst() returns:  we start in DST, and moving
+a little further into it takes us out of DST.
+
+There isn't a sane case where this can happen.  The closest it gets is at
+the end of DST, where there's an hour in UTC with no spelling in a hybrid
+tzinfo class.  In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT.  During
+that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
+UTC) because the docs insist on that, but 0:MM is taken as being in daylight
+time (4:MM UTC).  There is no local time mapping to 5:MM UTC.  The local
+clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
+standard time.  Since that's what the local clock *does*, we want to map both
+UTC hours 5:MM and 6:MM to 1:MM Eastern.  The result is ambiguous
+in local time, but so it goes -- it's the way the local clock works.
+
+When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
+so z=0:MM.  z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
+z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
+(correctly) concludes that z' is not UTC-equivalent to x.
+
+Because we know z.d said z was in daylight time (else [5] would have held and
+we would have stopped then), and we know z.d != z'.d (else [8] would have held
+and we would have stopped then), and there are only 2 possible values dst() can
+return in Eastern, it follows that z'.d must be 0 (which it is in the example,
+but the reasoning doesn't depend on the example -- it depends on there being
+two possible dst() outcomes, one zero and the other non-zero).  Therefore
+z' must be in standard time, and is the spelling we want in this case.
+
+Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
+concerned (because it takes z' as being in standard time rather than the
+daylight time we intend here), but returning it gives the real-life "local
+clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
+tz.
+
+When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
+the 1:MM standard time spelling we want.
+
+So how can this break?  One of the assumptions must be violated.  Two
+possibilities:
+
+1) [2] effectively says that y.s is invariant across all y belong to a given
+   time zone.  This isn't true if, for political reasons or continental drift,
+   a region decides to change its base offset from UTC.
+
+2) There may be versions of "double daylight" time where the tail end of
+   the analysis gives up a step too early.  I haven't thought about that
+   enough to say.
+
+In any case, it's clear that the default fromutc() is strong enough to handle
+"almost all" time zones:  so long as the standard offset is invariant, it
+doesn't matter if daylight time transition points change from year to year, or
+if daylight time is skipped in some years; it doesn't matter how large or
+small dst() may get within its bounds; and it doesn't even matter if some
+perverse time zone returns a negative dst()).  So a breaking case must be
+pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
+--------------------------------------------------------------------------- */