--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Objects/complexobject.c Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1273 @@
+
+/* Complex object implementation */
+
+/* Borrows heavily from floatobject.c */
+
+/* Submitted by Jim Hugunin */
+
+#include "Python.h"
+#include "structmember.h"
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+#ifndef WITHOUT_COMPLEX
+
+/* Precisions used by repr() and str(), respectively.
+
+ The repr() precision (17 significant decimal digits) is the minimal number
+ that is guaranteed to have enough precision so that if the number is read
+ back in the exact same binary value is recreated. This is true for IEEE
+ floating point by design, and also happens to work for all other modern
+ hardware.
+
+ The str() precision is chosen so that in most cases, the rounding noise
+ created by various operations is suppressed, while giving plenty of
+ precision for practical use.
+*/
+
+#define PREC_REPR 17
+#define PREC_STR 12
+
+/* elementary operations on complex numbers */
+
+static Py_complex c_1 = {1., 0.};
+
+Py_complex
+c_sum(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real + b.real;
+ r.imag = a.imag + b.imag;
+ return r;
+}
+
+Py_complex
+c_diff(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real - b.real;
+ r.imag = a.imag - b.imag;
+ return r;
+}
+
+Py_complex
+c_neg(Py_complex a)
+{
+ Py_complex r;
+ r.real = -a.real;
+ r.imag = -a.imag;
+ return r;
+}
+
+Py_complex
+c_prod(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real*b.real - a.imag*b.imag;
+ r.imag = a.real*b.imag + a.imag*b.real;
+ return r;
+}
+
+Py_complex
+c_quot(Py_complex a, Py_complex b)
+{
+ /******************************************************************
+ This was the original algorithm. It's grossly prone to spurious
+ overflow and underflow errors. It also merrily divides by 0 despite
+ checking for that(!). The code still serves a doc purpose here, as
+ the algorithm following is a simple by-cases transformation of this
+ one:
+
+ Py_complex r;
+ double d = b.real*b.real + b.imag*b.imag;
+ if (d == 0.)
+ errno = EDOM;
+ r.real = (a.real*b.real + a.imag*b.imag)/d;
+ r.imag = (a.imag*b.real - a.real*b.imag)/d;
+ return r;
+ ******************************************************************/
+
+ /* This algorithm is better, and is pretty obvious: first divide the
+ * numerators and denominator by whichever of {b.real, b.imag} has
+ * larger magnitude. The earliest reference I found was to CACM
+ * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
+ * University). As usual, though, we're still ignoring all IEEE
+ * endcases.
+ */
+ Py_complex r; /* the result */
+ const double abs_breal = b.real < 0 ? -b.real : b.real;
+ const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
+
+ if (abs_breal >= abs_bimag) {
+ /* divide tops and bottom by b.real */
+ if (abs_breal == 0.0) {
+ errno = EDOM;
+ r.real = r.imag = 0.0;
+ }
+ else {
+ const double ratio = b.imag / b.real;
+ const double denom = b.real + b.imag * ratio;
+ r.real = (a.real + a.imag * ratio) / denom;
+ r.imag = (a.imag - a.real * ratio) / denom;
+ }
+ }
+ else {
+ /* divide tops and bottom by b.imag */
+ const double ratio = b.real / b.imag;
+ const double denom = b.real * ratio + b.imag;
+ assert(b.imag != 0.0);
+ r.real = (a.real * ratio + a.imag) / denom;
+ r.imag = (a.imag * ratio - a.real) / denom;
+ }
+ return r;
+}
+
+Py_complex
+c_pow(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ double vabs,len,at,phase;
+ if (b.real == 0. && b.imag == 0.) {
+ r.real = 1.;
+ r.imag = 0.;
+ }
+ else if (a.real == 0. && a.imag == 0.) {
+ if (b.imag != 0. || b.real < 0.)
+ errno = EDOM;
+ r.real = 0.;
+ r.imag = 0.;
+ }
+ else {
+ vabs = hypot(a.real,a.imag);
+ len = pow(vabs,b.real);
+ at = atan2(a.imag, a.real);
+ phase = at*b.real;
+ if (b.imag != 0.0) {
+ len /= exp(at*b.imag);
+ phase += b.imag*log(vabs);
+ }
+ r.real = len*cos(phase);
+ r.imag = len*sin(phase);
+ }
+ return r;
+}
+
+static Py_complex
+c_powu(Py_complex x, long n)
+{
+ Py_complex r, p;
+ long mask = 1;
+ r = c_1;
+ p = x;
+ while (mask > 0 && n >= mask) {
+ if (n & mask)
+ r = c_prod(r,p);
+ mask <<= 1;
+ p = c_prod(p,p);
+ }
+ return r;
+}
+
+static Py_complex
+c_powi(Py_complex x, long n)
+{
+ Py_complex cn;
+
+ if (n > 100 || n < -100) {
+ cn.real = (double) n;
+ cn.imag = 0.;
+ return c_pow(x,cn);
+ }
+ else if (n > 0)
+ return c_powu(x,n);
+ else
+ return c_quot(c_1,c_powu(x,-n));
+
+}
+
+double
+c_abs(Py_complex z)
+{
+ /* sets errno = ERANGE on overflow; otherwise errno = 0 */
+ double result;
+
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ /* C99 rules: if either the real or the imaginary part is an
+ infinity, return infinity, even if the other part is a
+ NaN. */
+ if (Py_IS_INFINITY(z.real)) {
+ result = fabs(z.real);
+ errno = 0;
+ return result;
+ }
+ if (Py_IS_INFINITY(z.imag)) {
+ result = fabs(z.imag);
+ errno = 0;
+ return result;
+ }
+ /* either the real or imaginary part is a NaN,
+ and neither is infinite. Result should be NaN. */
+ return Py_NAN;
+ }
+ result = hypot(z.real, z.imag);
+ if (!Py_IS_FINITE(result))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return result;
+}
+
+static PyObject *
+complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
+{
+ PyObject *op;
+
+ op = type->tp_alloc(type, 0);
+ if (op != NULL)
+ ((PyComplexObject *)op)->cval = cval;
+ return op;
+}
+
+PyObject *
+PyComplex_FromCComplex(Py_complex cval)
+{
+ register PyComplexObject *op;
+
+ /* Inline PyObject_New */
+ op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
+ if (op == NULL)
+ return PyErr_NoMemory();
+ PyObject_INIT(op, &PyComplex_Type);
+ op->cval = cval;
+ return (PyObject *) op;
+}
+
+static PyObject *
+complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
+{
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return complex_subtype_from_c_complex(type, c);
+}
+
+PyObject *
+PyComplex_FromDoubles(double real, double imag)
+{
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return PyComplex_FromCComplex(c);
+}
+
+double
+PyComplex_RealAsDouble(PyObject *op)
+{
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.real;
+ }
+ else {
+ return PyFloat_AsDouble(op);
+ }
+}
+
+double
+PyComplex_ImagAsDouble(PyObject *op)
+{
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.imag;
+ }
+ else {
+ return 0.0;
+ }
+}
+
+Py_complex
+PyComplex_AsCComplex(PyObject *op)
+{
+ Py_complex cv;
+ PyObject *newop = NULL;
+ static PyObject *complex_str = NULL;
+
+ assert(op);
+ /* If op is already of type PyComplex_Type, return its value */
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval;
+ }
+ /* If not, use op's __complex__ method, if it exists */
+
+ /* return -1 on failure */
+ cv.real = -1.;
+ cv.imag = 0.;
+
+ if (complex_str == NULL) {
+ if (!(complex_str = PyString_InternFromString("__complex__")))
+ return cv;
+ }
+
+ if (PyInstance_Check(op)) {
+ /* this can go away in python 3000 */
+ if (PyObject_HasAttr(op, complex_str)) {
+ newop = PyObject_CallMethod(op, "__complex__", NULL);
+ if (!newop)
+ return cv;
+ }
+ /* else try __float__ */
+ } else {
+ PyObject *complexfunc;
+ complexfunc = _PyType_Lookup(op->ob_type, complex_str);
+ /* complexfunc is a borrowed reference */
+ if (complexfunc) {
+ newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
+ if (!newop)
+ return cv;
+ }
+ }
+
+ if (newop) {
+ if (!PyComplex_Check(newop)) {
+ PyErr_SetString(PyExc_TypeError,
+ "__complex__ should return a complex object");
+ Py_DECREF(newop);
+ return cv;
+ }
+ cv = ((PyComplexObject *)newop)->cval;
+ Py_DECREF(newop);
+ return cv;
+ }
+ /* If neither of the above works, interpret op as a float giving the
+ real part of the result, and fill in the imaginary part as 0. */
+ else {
+ /* PyFloat_AsDouble will return -1 on failure */
+ cv.real = PyFloat_AsDouble(op);
+ return cv;
+ }
+}
+
+static void
+complex_dealloc(PyObject *op)
+{
+ op->ob_type->tp_free(op);
+}
+
+
+static void
+complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
+{
+ char format[32];
+ if (v->cval.real == 0.) {
+ if (!Py_IS_FINITE(v->cval.imag)) {
+ if (Py_IS_NAN(v->cval.imag))
+ strncpy(buf, "nan*j", 6);
+ else if (copysign(1, v->cval.imag) == 1)
+ strncpy(buf, "inf*j", 6);
+ else
+ strncpy(buf, "-inf*j", 7);
+ }
+ else {
+ PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
+ PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
+ strncat(buf, "j", 1);
+ }
+ } else {
+ char re[64], im[64];
+ /* Format imaginary part with sign, real part without */
+ if (!Py_IS_FINITE(v->cval.real)) {
+ if (Py_IS_NAN(v->cval.real))
+ strncpy(re, "nan", 4);
+ /* else if (copysign(1, v->cval.real) == 1) */
+ else if (v->cval.real > 0)
+ strncpy(re, "inf", 4);
+ else
+ strncpy(re, "-inf", 5);
+ }
+ else {
+ PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
+ PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
+ }
+ if (!Py_IS_FINITE(v->cval.imag)) {
+ if (Py_IS_NAN(v->cval.imag))
+ strncpy(im, "+nan*", 6);
+ /* else if (copysign(1, v->cval.imag) == 1) */
+ else if (v->cval.imag > 0)
+ strncpy(im, "+inf*", 6);
+ else
+ strncpy(im, "-inf*", 6);
+ }
+ else {
+ PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
+ PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
+ }
+ PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
+ }
+}
+
+static int
+complex_print(PyComplexObject *v, FILE *fp, int flags)
+{
+ char buf[100];
+ complex_to_buf(buf, sizeof(buf), v,
+ (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
+ Py_BEGIN_ALLOW_THREADS
+ fputs(buf, fp);
+ Py_END_ALLOW_THREADS
+ return 0;
+}
+
+static PyObject *
+complex_repr(PyComplexObject *v)
+{
+ char buf[100];
+ complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
+ return PyString_FromString(buf);
+}
+
+static PyObject *
+complex_str(PyComplexObject *v)
+{
+ char buf[100];
+ complex_to_buf(buf, sizeof(buf), v, PREC_STR);
+ return PyString_FromString(buf);
+}
+
+static long
+complex_hash(PyComplexObject *v)
+{
+ long hashreal, hashimag, combined;
+ hashreal = _Py_HashDouble(v->cval.real);
+ if (hashreal == -1)
+ return -1;
+ hashimag = _Py_HashDouble(v->cval.imag);
+ if (hashimag == -1)
+ return -1;
+ /* Note: if the imaginary part is 0, hashimag is 0 now,
+ * so the following returns hashreal unchanged. This is
+ * important because numbers of different types that
+ * compare equal must have the same hash value, so that
+ * hash(x + 0*j) must equal hash(x).
+ */
+ combined = hashreal + 1000003 * hashimag;
+ if (combined == -1)
+ combined = -2;
+ return combined;
+}
+
+/* This macro may return! */
+#define TO_COMPLEX(obj, c) \
+ if (PyComplex_Check(obj)) \
+ c = ((PyComplexObject *)(obj))->cval; \
+ else if (to_complex(&(obj), &(c)) < 0) \
+ return (obj)
+
+static int
+to_complex(PyObject **pobj, Py_complex *pc)
+{
+ PyObject *obj = *pobj;
+
+ pc->real = pc->imag = 0.0;
+ if (PyInt_Check(obj)) {
+ pc->real = PyInt_AS_LONG(obj);
+ return 0;
+ }
+ if (PyLong_Check(obj)) {
+ pc->real = PyLong_AsDouble(obj);
+ if (pc->real == -1.0 && PyErr_Occurred()) {
+ *pobj = NULL;
+ return -1;
+ }
+ return 0;
+ }
+ if (PyFloat_Check(obj)) {
+ pc->real = PyFloat_AsDouble(obj);
+ return 0;
+ }
+ Py_INCREF(Py_NotImplemented);
+ *pobj = Py_NotImplemented;
+ return -1;
+}
+
+
+static PyObject *
+complex_add(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex result;
+ PyFPE_START_PROTECT("complex_add", return 0)
+ result = c_sum(v->cval,w->cval);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_sub(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex result;
+ PyFPE_START_PROTECT("complex_sub", return 0)
+ result = c_diff(v->cval,w->cval);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_mul(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex result;
+ PyFPE_START_PROTECT("complex_mul", return 0)
+ result = c_prod(v->cval,w->cval);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_div(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex quot;
+
+ PyFPE_START_PROTECT("complex_div", return 0)
+ errno = 0;
+ quot = c_quot(v->cval,w->cval);
+ PyFPE_END_PROTECT(quot)
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(quot);
+}
+
+static PyObject *
+complex_classic_div(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex quot;
+
+ if (Py_DivisionWarningFlag >= 2 &&
+ PyErr_Warn(PyExc_DeprecationWarning,
+ "classic complex division") < 0)
+ return NULL;
+
+ PyFPE_START_PROTECT("complex_classic_div", return 0)
+ errno = 0;
+ quot = c_quot(v->cval,w->cval);
+ PyFPE_END_PROTECT(quot)
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(quot);
+}
+
+static PyObject *
+complex_remainder(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex div, mod;
+
+ if (PyErr_Warn(PyExc_DeprecationWarning,
+ "complex divmod(), // and % are deprecated") < 0)
+ return NULL;
+
+ errno = 0;
+ div = c_quot(v->cval,w->cval); /* The raw divisor value. */
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
+ return NULL;
+ }
+ div.real = floor(div.real); /* Use the floor of the real part. */
+ div.imag = 0.0;
+ mod = c_diff(v->cval, c_prod(w->cval, div));
+
+ return PyComplex_FromCComplex(mod);
+}
+
+
+static PyObject *
+complex_divmod(PyComplexObject *v, PyComplexObject *w)
+{
+ Py_complex div, mod;
+ PyObject *d, *m, *z;
+
+ if (PyErr_Warn(PyExc_DeprecationWarning,
+ "complex divmod(), // and % are deprecated") < 0)
+ return NULL;
+
+ errno = 0;
+ div = c_quot(v->cval,w->cval); /* The raw divisor value. */
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
+ return NULL;
+ }
+ div.real = floor(div.real); /* Use the floor of the real part. */
+ div.imag = 0.0;
+ mod = c_diff(v->cval, c_prod(w->cval, div));
+ d = PyComplex_FromCComplex(div);
+ m = PyComplex_FromCComplex(mod);
+ z = PyTuple_Pack(2, d, m);
+ Py_XDECREF(d);
+ Py_XDECREF(m);
+ return z;
+}
+
+static PyObject *
+complex_pow(PyObject *v, PyObject *w, PyObject *z)
+{
+ Py_complex p;
+ Py_complex exponent;
+ long int_exponent;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+
+ if (z!=Py_None) {
+ PyErr_SetString(PyExc_ValueError, "complex modulo");
+ return NULL;
+ }
+ PyFPE_START_PROTECT("complex_pow", return 0)
+ errno = 0;
+ exponent = b;
+ int_exponent = (long)exponent.real;
+ if (exponent.imag == 0. && exponent.real == int_exponent)
+ p = c_powi(a,int_exponent);
+ else
+ p = c_pow(a,exponent);
+
+ PyFPE_END_PROTECT(p)
+ Py_ADJUST_ERANGE2(p.real, p.imag);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 to a negative or complex power");
+ return NULL;
+ }
+ else if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "complex exponentiation");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(p);
+}
+
+static PyObject *
+complex_int_div(PyComplexObject *v, PyComplexObject *w)
+{
+ PyObject *t, *r;
+
+ if (PyErr_Warn(PyExc_DeprecationWarning,
+ "complex divmod(), // and % are deprecated") < 0)
+ return NULL;
+
+ t = complex_divmod(v, w);
+ if (t != NULL) {
+ r = PyTuple_GET_ITEM(t, 0);
+ Py_INCREF(r);
+ Py_DECREF(t);
+ return r;
+ }
+ return NULL;
+}
+
+static PyObject *
+complex_neg(PyComplexObject *v)
+{
+ Py_complex neg;
+ neg.real = -v->cval.real;
+ neg.imag = -v->cval.imag;
+ return PyComplex_FromCComplex(neg);
+}
+
+static PyObject *
+complex_pos(PyComplexObject *v)
+{
+ if (PyComplex_CheckExact(v)) {
+ Py_INCREF(v);
+ return (PyObject *)v;
+ }
+ else
+ return PyComplex_FromCComplex(v->cval);
+}
+
+static PyObject *
+complex_abs(PyComplexObject *v)
+{
+ double result;
+
+ PyFPE_START_PROTECT("complex_abs", return 0)
+ result = c_abs(v->cval);
+ PyFPE_END_PROTECT(result)
+
+ if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "absolute value too large");
+ return NULL;
+ }
+ return PyFloat_FromDouble(result);
+}
+
+static int
+complex_nonzero(PyComplexObject *v)
+{
+ return v->cval.real != 0.0 || v->cval.imag != 0.0;
+}
+
+static int
+complex_coerce(PyObject **pv, PyObject **pw)
+{
+ Py_complex cval;
+ cval.imag = 0.;
+ if (PyInt_Check(*pw)) {
+ cval.real = (double)PyInt_AsLong(*pw);
+ *pw = PyComplex_FromCComplex(cval);
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyLong_Check(*pw)) {
+ cval.real = PyLong_AsDouble(*pw);
+ if (cval.real == -1.0 && PyErr_Occurred())
+ return -1;
+ *pw = PyComplex_FromCComplex(cval);
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyFloat_Check(*pw)) {
+ cval.real = PyFloat_AsDouble(*pw);
+ *pw = PyComplex_FromCComplex(cval);
+ Py_INCREF(*pv);
+ return 0;
+ }
+ else if (PyComplex_Check(*pw)) {
+ Py_INCREF(*pv);
+ Py_INCREF(*pw);
+ return 0;
+ }
+ return 1; /* Can't do it */
+}
+
+static PyObject *
+complex_richcompare(PyObject *v, PyObject *w, int op)
+{
+ int c;
+ Py_complex i, j;
+ PyObject *res;
+
+ c = PyNumber_CoerceEx(&v, &w);
+ if (c < 0)
+ return NULL;
+ if (c > 0) {
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+ /* Make sure both arguments are complex. */
+ if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
+ Py_DECREF(v);
+ Py_DECREF(w);
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
+ }
+
+ i = ((PyComplexObject *)v)->cval;
+ j = ((PyComplexObject *)w)->cval;
+ Py_DECREF(v);
+ Py_DECREF(w);
+
+ if (op != Py_EQ && op != Py_NE) {
+ PyErr_SetString(PyExc_TypeError,
+ "no ordering relation is defined for complex numbers");
+ return NULL;
+ }
+
+ if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
+ res = Py_True;
+ else
+ res = Py_False;
+
+ Py_INCREF(res);
+ return res;
+}
+
+static PyObject *
+complex_int(PyObject *v)
+{
+ PyErr_SetString(PyExc_TypeError,
+ "can't convert complex to int; use int(abs(z))");
+ return NULL;
+}
+
+static PyObject *
+complex_long(PyObject *v)
+{
+ PyErr_SetString(PyExc_TypeError,
+ "can't convert complex to long; use long(abs(z))");
+ return NULL;
+}
+
+static PyObject *
+complex_float(PyObject *v)
+{
+ PyErr_SetString(PyExc_TypeError,
+ "can't convert complex to float; use abs(z)");
+ return NULL;
+}
+
+static PyObject *
+complex_conjugate(PyObject *self)
+{
+ Py_complex c;
+ c = ((PyComplexObject *)self)->cval;
+ c.imag = -c.imag;
+ return PyComplex_FromCComplex(c);
+}
+
+PyDoc_STRVAR(complex_conjugate_doc,
+"complex.conjugate() -> complex\n"
+"\n"
+"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
+
+static PyObject *
+complex_getnewargs(PyComplexObject *v)
+{
+ Py_complex c = v->cval;
+ return Py_BuildValue("(dd)", c.real, c.imag);
+}
+
+#if 0
+static PyObject *
+complex_is_finite(PyObject *self)
+{
+ Py_complex c;
+ c = ((PyComplexObject *)self)->cval;
+ return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
+ Py_IS_FINITE(c.imag)));
+}
+
+PyDoc_STRVAR(complex_is_finite_doc,
+"complex.is_finite() -> bool\n"
+"\n"
+"Returns True if the real and the imaginary part is finite.");
+#endif
+
+static PyMethodDef complex_methods[] = {
+ {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
+ complex_conjugate_doc},
+#if 0
+ {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
+ complex_is_finite_doc},
+#endif
+ {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
+ {NULL, NULL} /* sentinel */
+};
+
+static PyMemberDef complex_members[] = {
+ {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
+ "the real part of a complex number"},
+ {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
+ "the imaginary part of a complex number"},
+ {0},
+};
+
+static PyObject *
+complex_subtype_from_string(PyTypeObject *type, PyObject *v)
+{
+ const char *s, *start;
+ char *end;
+ double x=0.0, y=0.0, z;
+ int got_re=0, got_im=0, got_bracket=0, done=0;
+ int digit_or_dot;
+ int sw_error=0;
+ int sign;
+ char buffer[256]; /* For errors */
+#ifdef Py_USING_UNICODE
+ char s_buffer[256];
+#endif
+ Py_ssize_t len;
+
+ if (PyString_Check(v)) {
+ s = PyString_AS_STRING(v);
+ len = PyString_GET_SIZE(v);
+ }
+#ifdef Py_USING_UNICODE
+ else if (PyUnicode_Check(v)) {
+ if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
+ PyErr_SetString(PyExc_ValueError,
+ "complex() literal too large to convert");
+ return NULL;
+ }
+ if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
+ PyUnicode_GET_SIZE(v),
+ s_buffer,
+ NULL))
+ return NULL;
+ s = s_buffer;
+ len = strlen(s);
+ }
+#endif
+ else if (PyObject_AsCharBuffer(v, &s, &len)) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() arg is not a string");
+ return NULL;
+ }
+
+ /* position on first nonblank */
+ start = s;
+ while (*s && isspace(Py_CHARMASK(*s)))
+ s++;
+ if (s[0] == '\0') {
+ PyErr_SetString(PyExc_ValueError,
+ "complex() arg is an empty string");
+ return NULL;
+ }
+ if (s[0] == '(') {
+ /* Skip over possible bracket from repr(). */
+ got_bracket = 1;
+ s++;
+ while (*s && isspace(Py_CHARMASK(*s)))
+ s++;
+ }
+
+ z = -1.0;
+ sign = 1;
+ do {
+
+ switch (*s) {
+
+ case '\0':
+ if (s-start != len) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "complex() arg contains a null byte");
+ return NULL;
+ }
+ if(!done) sw_error=1;
+ break;
+
+ case ')':
+ if (!got_bracket || !(got_re || got_im)) {
+ sw_error=1;
+ break;
+ }
+ got_bracket=0;
+ done=1;
+ s++;
+ while (*s && isspace(Py_CHARMASK(*s)))
+ s++;
+ if (*s) sw_error=1;
+ break;
+
+ case '-':
+ sign = -1;
+ /* Fallthrough */
+ case '+':
+ if (done) sw_error=1;
+ s++;
+ if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'||
+ isspace(Py_CHARMASK(*s)) ) sw_error=1;
+ break;
+
+ case 'J':
+ case 'j':
+ if (got_im || done) {
+ sw_error = 1;
+ break;
+ }
+ if (z<0.0) {
+ y=sign;
+ }
+ else{
+ y=sign*z;
+ }
+ got_im=1;
+ s++;
+ if (*s!='+' && *s!='-' )
+ done=1;
+ break;
+
+ default:
+ if (isspace(Py_CHARMASK(*s))) {
+ while (*s && isspace(Py_CHARMASK(*s)))
+ s++;
+ if (*s && *s != ')')
+ sw_error=1;
+ else
+ done = 1;
+ break;
+ }
+ digit_or_dot =
+ (*s=='.' || isdigit(Py_CHARMASK(*s)));
+ if (done||!digit_or_dot) {
+ sw_error=1;
+ break;
+ }
+ errno = 0;
+ PyFPE_START_PROTECT("strtod", return 0)
+ z = PyOS_ascii_strtod(s, &end) ;
+ PyFPE_END_PROTECT(z)
+ if (errno != 0) {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "float() out of range: %.150s", s);
+ PyErr_SetString(
+ PyExc_ValueError,
+ buffer);
+ return NULL;
+ }
+ s=end;
+ if (*s=='J' || *s=='j') {
+
+ break;
+ }
+ if (got_re) {
+ sw_error=1;
+ break;
+ }
+
+ /* accept a real part */
+ x=sign*z;
+ got_re=1;
+ if (got_im) done=1;
+ z = -1.0;
+ sign = 1;
+ break;
+
+ } /* end of switch */
+
+ } while (s - start < len && !sw_error);
+
+ if (sw_error || got_bracket) {
+ PyErr_SetString(PyExc_ValueError,
+ "complex() arg is a malformed string");
+ return NULL;
+ }
+
+ return complex_subtype_from_doubles(type, x, y);
+}
+
+static PyObject *
+complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *r, *i, *tmp, *f;
+ PyNumberMethods *nbr, *nbi = NULL;
+ Py_complex cr, ci;
+ int own_r = 0;
+ int cr_is_complex = 0;
+ int ci_is_complex = 0;
+ static PyObject *complexstr;
+ static char *kwlist[] = {"real", "imag", 0};
+
+ r = Py_False;
+ i = NULL;
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
+ &r, &i))
+ return NULL;
+
+ /* Special-case for a single argument when type(arg) is complex. */
+ if (PyComplex_CheckExact(r) && i == NULL &&
+ type == &PyComplex_Type) {
+ /* Note that we can't know whether it's safe to return
+ a complex *subclass* instance as-is, hence the restriction
+ to exact complexes here. If either the input or the
+ output is a complex subclass, it will be handled below
+ as a non-orthogonal vector. */
+ Py_INCREF(r);
+ return r;
+ }
+ if (PyString_Check(r) || PyUnicode_Check(r)) {
+ if (i != NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() can't take second arg"
+ " if first is a string");
+ return NULL;
+ }
+ return complex_subtype_from_string(type, r);
+ }
+ if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() second arg can't be a string");
+ return NULL;
+ }
+
+ /* XXX Hack to support classes with __complex__ method */
+ if (complexstr == NULL) {
+ complexstr = PyString_InternFromString("__complex__");
+ if (complexstr == NULL)
+ return NULL;
+ }
+ f = PyObject_GetAttr(r, complexstr);
+ if (f == NULL)
+ PyErr_Clear();
+ else {
+ PyObject *args = PyTuple_New(0);
+ if (args == NULL)
+ return NULL;
+ r = PyEval_CallObject(f, args);
+ Py_DECREF(args);
+ Py_DECREF(f);
+ if (r == NULL)
+ return NULL;
+ own_r = 1;
+ }
+ nbr = r->ob_type->tp_as_number;
+ if (i != NULL)
+ nbi = i->ob_type->tp_as_number;
+ if (nbr == NULL || nbr->nb_float == NULL ||
+ ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() argument must be a string or a number");
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ return NULL;
+ }
+
+ /* If we get this far, then the "real" and "imag" parts should
+ both be treated as numbers, and the constructor should return a
+ complex number equal to (real + imag*1j).
+
+ Note that we do NOT assume the input to already be in canonical
+ form; the "real" and "imag" parts might themselves be complex
+ numbers, which slightly complicates the code below. */
+ if (PyComplex_Check(r)) {
+ /* Note that if r is of a complex subtype, we're only
+ retaining its real & imag parts here, and the return
+ value is (properly) of the builtin complex type. */
+ cr = ((PyComplexObject*)r)->cval;
+ cr_is_complex = 1;
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ }
+ else {
+ /* The "real" part really is entirely real, and contributes
+ nothing in the imaginary direction.
+ Just treat it as a double. */
+ tmp = PyNumber_Float(r);
+ if (own_r) {
+ /* r was a newly created complex number, rather
+ than the original "real" argument. */
+ Py_DECREF(r);
+ }
+ if (tmp == NULL)
+ return NULL;
+ if (!PyFloat_Check(tmp)) {
+ PyErr_SetString(PyExc_TypeError,
+ "float(r) didn't return a float");
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ cr.real = PyFloat_AsDouble(tmp);
+ cr.imag = 0.0; /* Shut up compiler warning */
+ Py_DECREF(tmp);
+ }
+ if (i == NULL) {
+ ci.real = 0.0;
+ }
+ else if (PyComplex_Check(i)) {
+ ci = ((PyComplexObject*)i)->cval;
+ ci_is_complex = 1;
+ } else {
+ /* The "imag" part really is entirely imaginary, and
+ contributes nothing in the real direction.
+ Just treat it as a double. */
+ tmp = (*nbi->nb_float)(i);
+ if (tmp == NULL)
+ return NULL;
+ ci.real = PyFloat_AsDouble(tmp);
+ Py_DECREF(tmp);
+ }
+ /* If the input was in canonical form, then the "real" and "imag"
+ parts are real numbers, so that ci.imag and cr.imag are zero.
+ We need this correction in case they were not real numbers. */
+
+ if (ci_is_complex) {
+ cr.real -= ci.imag;
+ }
+ if (cr_is_complex) {
+ ci.real += cr.imag;
+ }
+ return complex_subtype_from_doubles(type, cr.real, ci.real);
+}
+
+PyDoc_STRVAR(complex_doc,
+"complex(real[, imag]) -> complex number\n"
+"\n"
+"Create a complex number from a real part and an optional imaginary part.\n"
+"This is equivalent to (real + imag*1j) where imag defaults to 0.");
+
+static PyNumberMethods complex_as_number = {
+ (binaryfunc)complex_add, /* nb_add */
+ (binaryfunc)complex_sub, /* nb_subtract */
+ (binaryfunc)complex_mul, /* nb_multiply */
+ (binaryfunc)complex_classic_div, /* nb_divide */
+ (binaryfunc)complex_remainder, /* nb_remainder */
+ (binaryfunc)complex_divmod, /* nb_divmod */
+ (ternaryfunc)complex_pow, /* nb_power */
+ (unaryfunc)complex_neg, /* nb_negative */
+ (unaryfunc)complex_pos, /* nb_positive */
+ (unaryfunc)complex_abs, /* nb_absolute */
+ (inquiry)complex_nonzero, /* nb_nonzero */
+ 0, /* nb_invert */
+ 0, /* nb_lshift */
+ 0, /* nb_rshift */
+ 0, /* nb_and */
+ 0, /* nb_xor */
+ 0, /* nb_or */
+ complex_coerce, /* nb_coerce */
+ complex_int, /* nb_int */
+ complex_long, /* nb_long */
+ complex_float, /* nb_float */
+ 0, /* nb_oct */
+ 0, /* nb_hex */
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply*/
+ 0, /* nb_inplace_divide */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ (binaryfunc)complex_int_div, /* nb_floor_divide */
+ (binaryfunc)complex_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+};
+
+PyTypeObject PyComplex_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "complex",
+ sizeof(PyComplexObject),
+ 0,
+ complex_dealloc, /* tp_dealloc */
+ (printfunc)complex_print, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ (reprfunc)complex_repr, /* tp_repr */
+ &complex_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)complex_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)complex_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ complex_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ complex_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ complex_methods, /* tp_methods */
+ complex_members, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ PyType_GenericAlloc, /* tp_alloc */
+ complex_new, /* tp_new */
+ PyObject_Del, /* tp_free */
+};
+
+#endif