symbian-qemu-0.9.1-12/python-2.6.1/Objects/complexobject.c
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Objects/complexobject.c	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1273 @@
+
+/* Complex object implementation */
+
+/* Borrows heavily from floatobject.c */
+
+/* Submitted by Jim Hugunin */
+
+#include "Python.h"
+#include "structmember.h"
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+#ifndef WITHOUT_COMPLEX
+
+/* Precisions used by repr() and str(), respectively.
+
+   The repr() precision (17 significant decimal digits) is the minimal number
+   that is guaranteed to have enough precision so that if the number is read
+   back in the exact same binary value is recreated.  This is true for IEEE
+   floating point by design, and also happens to work for all other modern
+   hardware.
+
+   The str() precision is chosen so that in most cases, the rounding noise
+   created by various operations is suppressed, while giving plenty of
+   precision for practical use.
+*/
+
+#define PREC_REPR	17
+#define PREC_STR	12
+
+/* elementary operations on complex numbers */
+
+static Py_complex c_1 = {1., 0.};
+
+Py_complex
+c_sum(Py_complex a, Py_complex b)
+{
+	Py_complex r;
+	r.real = a.real + b.real;
+	r.imag = a.imag + b.imag;
+	return r;
+}
+
+Py_complex
+c_diff(Py_complex a, Py_complex b)
+{
+	Py_complex r;
+	r.real = a.real - b.real;
+	r.imag = a.imag - b.imag;
+	return r;
+}
+
+Py_complex
+c_neg(Py_complex a)
+{
+	Py_complex r;
+	r.real = -a.real;
+	r.imag = -a.imag;
+	return r;
+}
+
+Py_complex
+c_prod(Py_complex a, Py_complex b)
+{
+	Py_complex r;
+	r.real = a.real*b.real - a.imag*b.imag;
+	r.imag = a.real*b.imag + a.imag*b.real;
+	return r;
+}
+
+Py_complex
+c_quot(Py_complex a, Py_complex b)
+{
+	/******************************************************************
+	This was the original algorithm.  It's grossly prone to spurious
+	overflow and underflow errors.  It also merrily divides by 0 despite
+	checking for that(!).  The code still serves a doc purpose here, as
+	the algorithm following is a simple by-cases transformation of this
+	one:
+
+	Py_complex r;
+	double d = b.real*b.real + b.imag*b.imag;
+	if (d == 0.)
+		errno = EDOM;
+	r.real = (a.real*b.real + a.imag*b.imag)/d;
+	r.imag = (a.imag*b.real - a.real*b.imag)/d;
+	return r;
+	******************************************************************/
+
+	/* This algorithm is better, and is pretty obvious:  first divide the
+	 * numerators and denominator by whichever of {b.real, b.imag} has
+	 * larger magnitude.  The earliest reference I found was to CACM
+	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
+	 * University).  As usual, though, we're still ignoring all IEEE
+	 * endcases.
+	 */
+	 Py_complex r;	/* the result */
+ 	 const double abs_breal = b.real < 0 ? -b.real : b.real;
+	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
+
+	 if (abs_breal >= abs_bimag) {
+ 		/* divide tops and bottom by b.real */
+	 	if (abs_breal == 0.0) {
+	 		errno = EDOM;
+	 		r.real = r.imag = 0.0;
+	 	}
+	 	else {
+	 		const double ratio = b.imag / b.real;
+	 		const double denom = b.real + b.imag * ratio;
+	 		r.real = (a.real + a.imag * ratio) / denom;
+	 		r.imag = (a.imag - a.real * ratio) / denom;
+	 	}
+	}
+	else {
+		/* divide tops and bottom by b.imag */
+		const double ratio = b.real / b.imag;
+		const double denom = b.real * ratio + b.imag;
+		assert(b.imag != 0.0);
+		r.real = (a.real * ratio + a.imag) / denom;
+		r.imag = (a.imag * ratio - a.real) / denom;
+	}
+	return r;
+}
+
+Py_complex
+c_pow(Py_complex a, Py_complex b)
+{
+	Py_complex r;
+	double vabs,len,at,phase;
+	if (b.real == 0. && b.imag == 0.) {
+		r.real = 1.;
+		r.imag = 0.;
+	}
+	else if (a.real == 0. && a.imag == 0.) {
+		if (b.imag != 0. || b.real < 0.)
+			errno = EDOM;
+		r.real = 0.;
+		r.imag = 0.;
+	}
+	else {
+		vabs = hypot(a.real,a.imag);
+		len = pow(vabs,b.real);
+		at = atan2(a.imag, a.real);
+		phase = at*b.real;
+		if (b.imag != 0.0) {
+			len /= exp(at*b.imag);
+			phase += b.imag*log(vabs);
+		}
+		r.real = len*cos(phase);
+		r.imag = len*sin(phase);
+	}
+	return r;
+}
+
+static Py_complex
+c_powu(Py_complex x, long n)
+{
+	Py_complex r, p;
+	long mask = 1;
+	r = c_1;
+	p = x;
+	while (mask > 0 && n >= mask) {
+		if (n & mask)
+			r = c_prod(r,p);
+		mask <<= 1;
+		p = c_prod(p,p);
+	}
+	return r;
+}
+
+static Py_complex
+c_powi(Py_complex x, long n)
+{
+	Py_complex cn;
+
+	if (n > 100 || n < -100) {
+		cn.real = (double) n;
+		cn.imag = 0.;
+		return c_pow(x,cn);
+	}
+	else if (n > 0)
+		return c_powu(x,n);
+	else
+		return c_quot(c_1,c_powu(x,-n));
+
+}
+
+double
+c_abs(Py_complex z)
+{
+	/* sets errno = ERANGE on overflow;  otherwise errno = 0 */
+	double result;
+
+	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+		/* C99 rules: if either the real or the imaginary part is an
+		   infinity, return infinity, even if the other part is a
+		   NaN. */
+		if (Py_IS_INFINITY(z.real)) {
+			result = fabs(z.real);
+			errno = 0;
+			return result;
+		}
+		if (Py_IS_INFINITY(z.imag)) {
+			result = fabs(z.imag);
+			errno = 0;
+			return result;
+		}
+		/* either the real or imaginary part is a NaN,
+		   and neither is infinite. Result should be NaN. */
+		return Py_NAN;
+	}
+	result = hypot(z.real, z.imag);
+	if (!Py_IS_FINITE(result))
+		errno = ERANGE;
+	else
+		errno = 0;
+	return result;
+}
+
+static PyObject *
+complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
+{
+	PyObject *op;
+
+	op = type->tp_alloc(type, 0);
+	if (op != NULL)
+		((PyComplexObject *)op)->cval = cval;
+	return op;
+}
+
+PyObject *
+PyComplex_FromCComplex(Py_complex cval)
+{
+	register PyComplexObject *op;
+
+	/* Inline PyObject_New */
+	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
+	if (op == NULL)
+		return PyErr_NoMemory();
+	PyObject_INIT(op, &PyComplex_Type);
+	op->cval = cval;
+	return (PyObject *) op;
+}
+
+static PyObject *
+complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
+{
+	Py_complex c;
+	c.real = real;
+	c.imag = imag;
+	return complex_subtype_from_c_complex(type, c);
+}
+
+PyObject *
+PyComplex_FromDoubles(double real, double imag)
+{
+	Py_complex c;
+	c.real = real;
+	c.imag = imag;
+	return PyComplex_FromCComplex(c);
+}
+
+double
+PyComplex_RealAsDouble(PyObject *op)
+{
+	if (PyComplex_Check(op)) {
+		return ((PyComplexObject *)op)->cval.real;
+	}
+	else {
+		return PyFloat_AsDouble(op);
+	}
+}
+
+double
+PyComplex_ImagAsDouble(PyObject *op)
+{
+	if (PyComplex_Check(op)) {
+		return ((PyComplexObject *)op)->cval.imag;
+	}
+	else {
+		return 0.0;
+	}
+}
+
+Py_complex
+PyComplex_AsCComplex(PyObject *op)
+{
+	Py_complex cv;
+	PyObject *newop = NULL;
+	static PyObject *complex_str = NULL;
+
+	assert(op);
+	/* If op is already of type PyComplex_Type, return its value */
+	if (PyComplex_Check(op)) {
+		return ((PyComplexObject *)op)->cval;
+	}
+	/* If not, use op's __complex__  method, if it exists */
+
+	/* return -1 on failure */
+	cv.real = -1.;
+	cv.imag = 0.;
+
+	if (complex_str == NULL) {
+		if (!(complex_str = PyString_InternFromString("__complex__")))
+			return cv;
+	}
+	
+	if (PyInstance_Check(op)) {
+		/* this can go away in python 3000 */
+		if (PyObject_HasAttr(op, complex_str)) {
+			newop = PyObject_CallMethod(op, "__complex__", NULL);
+			if (!newop)
+				return cv;
+		}
+		/* else try __float__ */
+	} else {
+		PyObject *complexfunc;
+		complexfunc = _PyType_Lookup(op->ob_type, complex_str);
+		/* complexfunc is a borrowed reference */
+		if (complexfunc) {
+			newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
+			if (!newop)
+				return cv;
+		}
+	}
+
+	if (newop) {
+		if (!PyComplex_Check(newop)) {
+			PyErr_SetString(PyExc_TypeError,
+				"__complex__ should return a complex object");
+			Py_DECREF(newop);
+			return cv;
+		}
+		cv = ((PyComplexObject *)newop)->cval;
+		Py_DECREF(newop);
+		return cv;
+	}
+	/* If neither of the above works, interpret op as a float giving the
+	   real part of the result, and fill in the imaginary part as 0. */
+	else {
+		/* PyFloat_AsDouble will return -1 on failure */
+		cv.real = PyFloat_AsDouble(op);
+		return cv;
+	}
+}
+
+static void
+complex_dealloc(PyObject *op)
+{
+	op->ob_type->tp_free(op);
+}
+
+
+static void
+complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
+{
+	char format[32];
+	if (v->cval.real == 0.) {
+		if (!Py_IS_FINITE(v->cval.imag)) {
+			if (Py_IS_NAN(v->cval.imag))
+				strncpy(buf, "nan*j", 6);
+			else if (copysign(1, v->cval.imag) == 1)
+				strncpy(buf, "inf*j", 6);
+			else
+				strncpy(buf, "-inf*j", 7);
+		}
+		else {
+			PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
+			PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
+			strncat(buf, "j", 1);
+		}
+	} else {
+		char re[64], im[64];
+		/* Format imaginary part with sign, real part without */
+		if (!Py_IS_FINITE(v->cval.real)) {
+			if (Py_IS_NAN(v->cval.real))
+				strncpy(re, "nan", 4);
+			/* else if (copysign(1, v->cval.real) == 1) */
+			else if (v->cval.real > 0)
+				strncpy(re, "inf", 4);
+			else
+				strncpy(re, "-inf", 5);
+		}
+		else {
+			PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
+			PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
+		}
+		if (!Py_IS_FINITE(v->cval.imag)) {
+			if (Py_IS_NAN(v->cval.imag))
+				strncpy(im, "+nan*", 6);
+			/* else if (copysign(1, v->cval.imag) == 1) */
+			else if (v->cval.imag > 0)
+				strncpy(im, "+inf*", 6);
+			else
+				strncpy(im, "-inf*", 6);
+		}
+		else {
+			PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
+			PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
+		}
+		PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
+	}
+}
+
+static int
+complex_print(PyComplexObject *v, FILE *fp, int flags)
+{
+	char buf[100];
+	complex_to_buf(buf, sizeof(buf), v,
+		       (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
+	Py_BEGIN_ALLOW_THREADS
+	fputs(buf, fp);
+	Py_END_ALLOW_THREADS
+	return 0;
+}
+
+static PyObject *
+complex_repr(PyComplexObject *v)
+{
+	char buf[100];
+	complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
+	return PyString_FromString(buf);
+}
+
+static PyObject *
+complex_str(PyComplexObject *v)
+{
+	char buf[100];
+	complex_to_buf(buf, sizeof(buf), v, PREC_STR);
+	return PyString_FromString(buf);
+}
+
+static long
+complex_hash(PyComplexObject *v)
+{
+	long hashreal, hashimag, combined;
+	hashreal = _Py_HashDouble(v->cval.real);
+	if (hashreal == -1)
+		return -1;
+	hashimag = _Py_HashDouble(v->cval.imag);
+	if (hashimag == -1)
+		return -1;
+	/* Note:  if the imaginary part is 0, hashimag is 0 now,
+	 * so the following returns hashreal unchanged.  This is
+	 * important because numbers of different types that
+	 * compare equal must have the same hash value, so that
+	 * hash(x + 0*j) must equal hash(x).
+	 */
+	combined = hashreal + 1000003 * hashimag;
+	if (combined == -1)
+		combined = -2;
+	return combined;
+}
+
+/* This macro may return! */
+#define TO_COMPLEX(obj, c) \
+	if (PyComplex_Check(obj)) \
+		c = ((PyComplexObject *)(obj))->cval; \
+	else if (to_complex(&(obj), &(c)) < 0) \
+		return (obj)
+
+static int
+to_complex(PyObject **pobj, Py_complex *pc)
+{
+    PyObject *obj = *pobj;
+
+    pc->real = pc->imag = 0.0;
+    if (PyInt_Check(obj)) {
+        pc->real = PyInt_AS_LONG(obj);
+        return 0;
+    }
+    if (PyLong_Check(obj)) {
+        pc->real = PyLong_AsDouble(obj);
+        if (pc->real == -1.0 && PyErr_Occurred()) {
+            *pobj = NULL;
+            return -1;
+        }
+        return 0;
+    }
+    if (PyFloat_Check(obj)) {
+        pc->real = PyFloat_AsDouble(obj);
+        return 0;
+    }
+    Py_INCREF(Py_NotImplemented);
+    *pobj = Py_NotImplemented;
+    return -1;
+}
+		
+
+static PyObject *
+complex_add(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex result;
+	PyFPE_START_PROTECT("complex_add", return 0)
+	result = c_sum(v->cval,w->cval);
+	PyFPE_END_PROTECT(result)
+	return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_sub(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex result;
+	PyFPE_START_PROTECT("complex_sub", return 0)
+	result = c_diff(v->cval,w->cval);
+	PyFPE_END_PROTECT(result)
+	return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_mul(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex result;
+	PyFPE_START_PROTECT("complex_mul", return 0)
+	result = c_prod(v->cval,w->cval);
+	PyFPE_END_PROTECT(result)
+	return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_div(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex quot;
+
+	PyFPE_START_PROTECT("complex_div", return 0)
+	errno = 0;
+	quot = c_quot(v->cval,w->cval);
+	PyFPE_END_PROTECT(quot)
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
+		return NULL;
+	}
+	return PyComplex_FromCComplex(quot);
+}
+
+static PyObject *
+complex_classic_div(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex quot;
+
+	if (Py_DivisionWarningFlag >= 2 &&
+	    PyErr_Warn(PyExc_DeprecationWarning,
+		       "classic complex division") < 0)
+		return NULL;
+
+	PyFPE_START_PROTECT("complex_classic_div", return 0)
+	errno = 0;
+	quot = c_quot(v->cval,w->cval);
+	PyFPE_END_PROTECT(quot)
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
+		return NULL;
+	}
+	return PyComplex_FromCComplex(quot);
+}
+
+static PyObject *
+complex_remainder(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex div, mod;
+
+	if (PyErr_Warn(PyExc_DeprecationWarning,
+		       "complex divmod(), // and % are deprecated") < 0)
+		return NULL;
+
+	errno = 0;
+	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
+		return NULL;
+	}
+	div.real = floor(div.real); /* Use the floor of the real part. */
+	div.imag = 0.0;
+	mod = c_diff(v->cval, c_prod(w->cval, div));
+
+	return PyComplex_FromCComplex(mod);
+}
+
+
+static PyObject *
+complex_divmod(PyComplexObject *v, PyComplexObject *w)
+{
+	Py_complex div, mod;
+	PyObject *d, *m, *z;
+
+	if (PyErr_Warn(PyExc_DeprecationWarning,
+		       "complex divmod(), // and % are deprecated") < 0)
+		return NULL;
+
+	errno = 0;
+	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
+		return NULL;
+	}
+	div.real = floor(div.real); /* Use the floor of the real part. */
+	div.imag = 0.0;
+	mod = c_diff(v->cval, c_prod(w->cval, div));
+	d = PyComplex_FromCComplex(div);
+	m = PyComplex_FromCComplex(mod);
+	z = PyTuple_Pack(2, d, m);
+	Py_XDECREF(d);
+	Py_XDECREF(m);
+	return z;
+}
+
+static PyObject *
+complex_pow(PyObject *v, PyObject *w, PyObject *z)
+{
+	Py_complex p;
+	Py_complex exponent;
+	long int_exponent;
+	Py_complex a, b;
+	TO_COMPLEX(v, a);
+	TO_COMPLEX(w, b);
+
+ 	if (z!=Py_None) {
+		PyErr_SetString(PyExc_ValueError, "complex modulo");
+		return NULL;
+	}
+	PyFPE_START_PROTECT("complex_pow", return 0)
+	errno = 0;
+	exponent = b;
+	int_exponent = (long)exponent.real;
+	if (exponent.imag == 0. && exponent.real == int_exponent)
+		p = c_powi(a,int_exponent);
+	else
+		p = c_pow(a,exponent);
+
+	PyFPE_END_PROTECT(p)
+	Py_ADJUST_ERANGE2(p.real, p.imag);
+	if (errno == EDOM) {
+		PyErr_SetString(PyExc_ZeroDivisionError,
+				"0.0 to a negative or complex power");
+		return NULL;
+	}
+	else if (errno == ERANGE) {
+		PyErr_SetString(PyExc_OverflowError,
+				"complex exponentiation");
+		return NULL;
+	}
+	return PyComplex_FromCComplex(p);
+}
+
+static PyObject *
+complex_int_div(PyComplexObject *v, PyComplexObject *w)
+{
+	PyObject *t, *r;
+	
+	if (PyErr_Warn(PyExc_DeprecationWarning,
+		       "complex divmod(), // and % are deprecated") < 0)
+		return NULL;
+
+	t = complex_divmod(v, w);
+	if (t != NULL) {
+		r = PyTuple_GET_ITEM(t, 0);
+		Py_INCREF(r);
+		Py_DECREF(t);
+		return r;
+	}
+	return NULL;
+}
+
+static PyObject *
+complex_neg(PyComplexObject *v)
+{
+	Py_complex neg;
+	neg.real = -v->cval.real;
+	neg.imag = -v->cval.imag;
+	return PyComplex_FromCComplex(neg);
+}
+
+static PyObject *
+complex_pos(PyComplexObject *v)
+{
+	if (PyComplex_CheckExact(v)) {
+		Py_INCREF(v);
+		return (PyObject *)v;
+	}
+	else
+		return PyComplex_FromCComplex(v->cval);
+}
+
+static PyObject *
+complex_abs(PyComplexObject *v)
+{
+	double result;
+
+	PyFPE_START_PROTECT("complex_abs", return 0)
+	result = c_abs(v->cval);
+	PyFPE_END_PROTECT(result)
+
+	if (errno == ERANGE) {
+		PyErr_SetString(PyExc_OverflowError,
+				"absolute value too large");
+		return NULL;
+	}
+	return PyFloat_FromDouble(result);
+}
+
+static int
+complex_nonzero(PyComplexObject *v)
+{
+	return v->cval.real != 0.0 || v->cval.imag != 0.0;
+}
+
+static int
+complex_coerce(PyObject **pv, PyObject **pw)
+{
+	Py_complex cval;
+	cval.imag = 0.;
+	if (PyInt_Check(*pw)) {
+		cval.real = (double)PyInt_AsLong(*pw);
+		*pw = PyComplex_FromCComplex(cval);
+		Py_INCREF(*pv);
+		return 0;
+	}
+	else if (PyLong_Check(*pw)) {
+		cval.real = PyLong_AsDouble(*pw);
+		if (cval.real == -1.0 && PyErr_Occurred())
+			return -1;
+		*pw = PyComplex_FromCComplex(cval);
+		Py_INCREF(*pv);
+		return 0;
+	}
+	else if (PyFloat_Check(*pw)) {
+		cval.real = PyFloat_AsDouble(*pw);
+		*pw = PyComplex_FromCComplex(cval);
+		Py_INCREF(*pv);
+		return 0;
+	}
+	else if (PyComplex_Check(*pw)) {
+		Py_INCREF(*pv);
+		Py_INCREF(*pw);
+		return 0;
+	}
+	return 1; /* Can't do it */
+}
+
+static PyObject *
+complex_richcompare(PyObject *v, PyObject *w, int op)
+{
+	int c;
+	Py_complex i, j;
+	PyObject *res;
+
+	c = PyNumber_CoerceEx(&v, &w);
+	if (c < 0)
+		return NULL;
+	if (c > 0) {
+		Py_INCREF(Py_NotImplemented);
+		return Py_NotImplemented;
+	}
+	/* Make sure both arguments are complex. */
+	if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
+		Py_DECREF(v);
+		Py_DECREF(w);
+		Py_INCREF(Py_NotImplemented);
+		return Py_NotImplemented;
+	}
+
+	i = ((PyComplexObject *)v)->cval;
+	j = ((PyComplexObject *)w)->cval;
+	Py_DECREF(v);
+	Py_DECREF(w);
+
+	if (op != Py_EQ && op != Py_NE) {
+		PyErr_SetString(PyExc_TypeError,
+			"no ordering relation is defined for complex numbers");
+		return NULL;
+	}
+
+	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
+		res = Py_True;
+	else
+		res = Py_False;
+
+	Py_INCREF(res);
+	return res;
+}
+
+static PyObject *
+complex_int(PyObject *v)
+{
+	PyErr_SetString(PyExc_TypeError,
+		   "can't convert complex to int; use int(abs(z))");
+	return NULL;
+}
+
+static PyObject *
+complex_long(PyObject *v)
+{
+	PyErr_SetString(PyExc_TypeError,
+		   "can't convert complex to long; use long(abs(z))");
+	return NULL;
+}
+
+static PyObject *
+complex_float(PyObject *v)
+{
+	PyErr_SetString(PyExc_TypeError,
+		   "can't convert complex to float; use abs(z)");
+	return NULL;
+}
+
+static PyObject *
+complex_conjugate(PyObject *self)
+{
+	Py_complex c;
+	c = ((PyComplexObject *)self)->cval;
+	c.imag = -c.imag;
+	return PyComplex_FromCComplex(c);
+}
+
+PyDoc_STRVAR(complex_conjugate_doc,
+"complex.conjugate() -> complex\n"
+"\n"
+"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
+
+static PyObject *
+complex_getnewargs(PyComplexObject *v)
+{
+	Py_complex c = v->cval;
+	return Py_BuildValue("(dd)", c.real, c.imag);
+}
+
+#if 0
+static PyObject *
+complex_is_finite(PyObject *self)
+{
+	Py_complex c;
+	c = ((PyComplexObject *)self)->cval;
+	return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
+				      Py_IS_FINITE(c.imag)));
+}
+
+PyDoc_STRVAR(complex_is_finite_doc,
+"complex.is_finite() -> bool\n"
+"\n"
+"Returns True if the real and the imaginary part is finite.");
+#endif
+
+static PyMethodDef complex_methods[] = {
+	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS,
+	 complex_conjugate_doc},
+#if 0
+	{"is_finite",	(PyCFunction)complex_is_finite,	METH_NOARGS,
+	 complex_is_finite_doc},
+#endif
+	{"__getnewargs__",	(PyCFunction)complex_getnewargs,	METH_NOARGS},
+	{NULL,		NULL}		/* sentinel */
+};
+
+static PyMemberDef complex_members[] = {
+	{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
+	 "the real part of a complex number"},
+	{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
+	 "the imaginary part of a complex number"},
+	{0},
+};
+
+static PyObject *
+complex_subtype_from_string(PyTypeObject *type, PyObject *v)
+{
+	const char *s, *start;
+	char *end;
+	double x=0.0, y=0.0, z;
+	int got_re=0, got_im=0, got_bracket=0, done=0;
+	int digit_or_dot;
+	int sw_error=0;
+	int sign;
+	char buffer[256]; /* For errors */
+#ifdef Py_USING_UNICODE
+	char s_buffer[256];
+#endif
+	Py_ssize_t len;
+
+	if (PyString_Check(v)) {
+		s = PyString_AS_STRING(v);
+		len = PyString_GET_SIZE(v);
+	}
+#ifdef Py_USING_UNICODE
+	else if (PyUnicode_Check(v)) {
+		if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
+			PyErr_SetString(PyExc_ValueError,
+				 "complex() literal too large to convert");
+			return NULL;
+		}
+		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
+					    PyUnicode_GET_SIZE(v),
+					    s_buffer,
+					    NULL))
+			return NULL;
+		s = s_buffer;
+		len = strlen(s);
+	}
+#endif
+	else if (PyObject_AsCharBuffer(v, &s, &len)) {
+		PyErr_SetString(PyExc_TypeError,
+				"complex() arg is not a string");
+		return NULL;
+	}
+
+	/* position on first nonblank */
+	start = s;
+	while (*s && isspace(Py_CHARMASK(*s)))
+		s++;
+	if (s[0] == '\0') {
+		PyErr_SetString(PyExc_ValueError,
+				"complex() arg is an empty string");
+		return NULL;
+	}
+	if (s[0] == '(') {
+		/* Skip over possible bracket from repr(). */
+		got_bracket = 1;
+		s++;
+		while (*s && isspace(Py_CHARMASK(*s)))
+			s++;
+	}
+
+	z = -1.0;
+	sign = 1;
+	do {
+
+		switch (*s) {
+
+		case '\0':
+			if (s-start != len) {
+				PyErr_SetString(
+					PyExc_ValueError,
+					"complex() arg contains a null byte");
+				return NULL;
+			}
+			if(!done) sw_error=1;
+			break;
+
+		case ')':
+			if (!got_bracket || !(got_re || got_im)) {
+				sw_error=1;
+				break;
+			}
+			got_bracket=0;
+			done=1;
+			s++;
+			while (*s && isspace(Py_CHARMASK(*s)))
+				s++;
+			if (*s) sw_error=1;
+			break;
+
+		case '-':
+			sign = -1;
+				/* Fallthrough */
+		case '+':
+			if (done)  sw_error=1;
+			s++;
+			if  (  *s=='\0'||*s=='+'||*s=='-'||*s==')'||
+			       isspace(Py_CHARMASK(*s))  )  sw_error=1;
+			break;
+
+		case 'J':
+		case 'j':
+			if (got_im || done) {
+				sw_error = 1;
+				break;
+			}
+			if  (z<0.0) {
+				y=sign;
+			}
+			else{
+				y=sign*z;
+			}
+			got_im=1;
+			s++;
+			if  (*s!='+' && *s!='-' )
+				done=1;
+			break;
+
+		default:
+			if (isspace(Py_CHARMASK(*s))) {
+				while (*s && isspace(Py_CHARMASK(*s)))
+					s++;
+				if (*s && *s != ')')
+					sw_error=1;
+				else
+					done = 1;
+				break;
+			}
+			digit_or_dot =
+				(*s=='.' || isdigit(Py_CHARMASK(*s)));
+			if  (done||!digit_or_dot) {
+				sw_error=1;
+				break;
+			}
+			errno = 0;
+			PyFPE_START_PROTECT("strtod", return 0)
+				z = PyOS_ascii_strtod(s, &end) ;
+			PyFPE_END_PROTECT(z)
+				if (errno != 0) {
+					PyOS_snprintf(buffer, sizeof(buffer),
+					  "float() out of range: %.150s", s);
+					PyErr_SetString(
+						PyExc_ValueError,
+						buffer);
+					return NULL;
+				}
+			s=end;
+			if  (*s=='J' || *s=='j') {
+
+				break;
+			}
+			if  (got_re) {
+				sw_error=1;
+				break;
+			}
+
+				/* accept a real part */
+			x=sign*z;
+			got_re=1;
+			if  (got_im)  done=1;
+			z = -1.0;
+			sign = 1;
+			break;
+
+		}  /* end of switch  */
+
+	} while (s - start < len && !sw_error);
+
+	if (sw_error || got_bracket) {
+		PyErr_SetString(PyExc_ValueError,
+				"complex() arg is a malformed string");
+		return NULL;
+	}
+
+	return complex_subtype_from_doubles(type, x, y);
+}
+
+static PyObject *
+complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+	PyObject *r, *i, *tmp, *f;
+	PyNumberMethods *nbr, *nbi = NULL;
+	Py_complex cr, ci;
+	int own_r = 0;
+	int cr_is_complex = 0;
+	int ci_is_complex = 0;
+	static PyObject *complexstr;
+	static char *kwlist[] = {"real", "imag", 0};
+
+	r = Py_False;
+	i = NULL;
+	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
+					 &r, &i))
+		return NULL;
+
+	/* Special-case for a single argument when type(arg) is complex. */
+	if (PyComplex_CheckExact(r) && i == NULL &&
+	    type == &PyComplex_Type) {
+		/* Note that we can't know whether it's safe to return
+		   a complex *subclass* instance as-is, hence the restriction
+		   to exact complexes here.  If either the input or the
+		   output is a complex subclass, it will be handled below 
+		   as a non-orthogonal vector.  */
+		Py_INCREF(r);
+		return r;
+	}
+	if (PyString_Check(r) || PyUnicode_Check(r)) {
+		if (i != NULL) {
+			PyErr_SetString(PyExc_TypeError,
+					"complex() can't take second arg"
+					" if first is a string");
+			return NULL;
+		}
+		return complex_subtype_from_string(type, r);
+	}
+	if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
+		PyErr_SetString(PyExc_TypeError,
+				"complex() second arg can't be a string");
+		return NULL;
+	}
+
+	/* XXX Hack to support classes with __complex__ method */
+	if (complexstr == NULL) {
+		complexstr = PyString_InternFromString("__complex__");
+		if (complexstr == NULL)
+			return NULL;
+	}
+	f = PyObject_GetAttr(r, complexstr);
+	if (f == NULL)
+		PyErr_Clear();
+	else {
+		PyObject *args = PyTuple_New(0);
+		if (args == NULL)
+			return NULL;
+		r = PyEval_CallObject(f, args);
+		Py_DECREF(args);
+		Py_DECREF(f);
+		if (r == NULL)
+			return NULL;
+		own_r = 1;
+	}
+	nbr = r->ob_type->tp_as_number;
+	if (i != NULL)
+		nbi = i->ob_type->tp_as_number;
+	if (nbr == NULL || nbr->nb_float == NULL ||
+	    ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
+		PyErr_SetString(PyExc_TypeError,
+			   "complex() argument must be a string or a number");
+		if (own_r) {
+			Py_DECREF(r);
+		}
+		return NULL;
+	}
+
+	/* If we get this far, then the "real" and "imag" parts should
+	   both be treated as numbers, and the constructor should return a
+	   complex number equal to (real + imag*1j).
+
+ 	   Note that we do NOT assume the input to already be in canonical
+	   form; the "real" and "imag" parts might themselves be complex
+	   numbers, which slightly complicates the code below. */
+	if (PyComplex_Check(r)) {
+		/* Note that if r is of a complex subtype, we're only
+		   retaining its real & imag parts here, and the return
+		   value is (properly) of the builtin complex type. */
+		cr = ((PyComplexObject*)r)->cval;
+		cr_is_complex = 1;
+		if (own_r) {
+			Py_DECREF(r);
+		}
+	}
+	else {
+		/* The "real" part really is entirely real, and contributes
+		   nothing in the imaginary direction.  
+		   Just treat it as a double. */
+		tmp = PyNumber_Float(r);
+		if (own_r) {
+			/* r was a newly created complex number, rather
+			   than the original "real" argument. */
+			Py_DECREF(r);
+		}
+		if (tmp == NULL)
+			return NULL;
+		if (!PyFloat_Check(tmp)) {
+			PyErr_SetString(PyExc_TypeError,
+					"float(r) didn't return a float");
+			Py_DECREF(tmp);
+			return NULL;
+		}
+		cr.real = PyFloat_AsDouble(tmp);
+		cr.imag = 0.0; /* Shut up compiler warning */
+		Py_DECREF(tmp);
+	}
+	if (i == NULL) {
+		ci.real = 0.0;
+	}
+	else if (PyComplex_Check(i)) {
+		ci = ((PyComplexObject*)i)->cval;
+		ci_is_complex = 1;
+	} else {
+		/* The "imag" part really is entirely imaginary, and
+		   contributes nothing in the real direction.
+		   Just treat it as a double. */
+		tmp = (*nbi->nb_float)(i);
+		if (tmp == NULL)
+			return NULL;
+		ci.real = PyFloat_AsDouble(tmp);
+		Py_DECREF(tmp);
+	}
+	/*  If the input was in canonical form, then the "real" and "imag"
+	    parts are real numbers, so that ci.imag and cr.imag are zero.
+	    We need this correction in case they were not real numbers. */
+
+	if (ci_is_complex) {
+		cr.real -= ci.imag;
+	}
+	if (cr_is_complex) {
+		ci.real += cr.imag;
+	}
+	return complex_subtype_from_doubles(type, cr.real, ci.real);
+}
+
+PyDoc_STRVAR(complex_doc,
+"complex(real[, imag]) -> complex number\n"
+"\n"
+"Create a complex number from a real part and an optional imaginary part.\n"
+"This is equivalent to (real + imag*1j) where imag defaults to 0.");
+
+static PyNumberMethods complex_as_number = {
+	(binaryfunc)complex_add, 		/* nb_add */
+	(binaryfunc)complex_sub, 		/* nb_subtract */
+	(binaryfunc)complex_mul, 		/* nb_multiply */
+	(binaryfunc)complex_classic_div,	/* nb_divide */
+	(binaryfunc)complex_remainder,		/* nb_remainder */
+	(binaryfunc)complex_divmod,		/* nb_divmod */
+	(ternaryfunc)complex_pow,		/* nb_power */
+	(unaryfunc)complex_neg,			/* nb_negative */
+	(unaryfunc)complex_pos,			/* nb_positive */
+	(unaryfunc)complex_abs,			/* nb_absolute */
+	(inquiry)complex_nonzero,		/* nb_nonzero */
+	0,					/* nb_invert */
+	0,					/* nb_lshift */
+	0,					/* nb_rshift */
+	0,					/* nb_and */
+	0,					/* nb_xor */
+	0,					/* nb_or */
+	complex_coerce,				/* nb_coerce */
+	complex_int,				/* nb_int */
+	complex_long,				/* nb_long */
+	complex_float,				/* nb_float */
+	0,					/* nb_oct */
+	0,					/* nb_hex */
+	0,					/* nb_inplace_add */
+	0,					/* nb_inplace_subtract */
+	0,					/* nb_inplace_multiply*/
+	0,					/* nb_inplace_divide */
+	0,					/* nb_inplace_remainder */
+	0, 					/* nb_inplace_power */
+	0,					/* nb_inplace_lshift */
+	0,					/* nb_inplace_rshift */
+	0,					/* nb_inplace_and */
+	0,					/* nb_inplace_xor */
+	0,					/* nb_inplace_or */
+	(binaryfunc)complex_int_div,		/* nb_floor_divide */
+	(binaryfunc)complex_div,		/* nb_true_divide */
+	0,					/* nb_inplace_floor_divide */
+	0,					/* nb_inplace_true_divide */
+};
+
+PyTypeObject PyComplex_Type = {
+	PyVarObject_HEAD_INIT(&PyType_Type, 0)
+	"complex",
+	sizeof(PyComplexObject),
+	0,
+	complex_dealloc,			/* tp_dealloc */
+	(printfunc)complex_print,		/* tp_print */
+	0,					/* tp_getattr */
+	0,					/* tp_setattr */
+	0,					/* tp_compare */
+	(reprfunc)complex_repr,			/* tp_repr */
+	&complex_as_number,    			/* tp_as_number */
+	0,					/* tp_as_sequence */
+	0,					/* tp_as_mapping */
+	(hashfunc)complex_hash, 		/* tp_hash */
+	0,					/* tp_call */
+	(reprfunc)complex_str,			/* tp_str */
+	PyObject_GenericGetAttr,		/* tp_getattro */
+	0,					/* tp_setattro */
+	0,					/* tp_as_buffer */
+	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+	complex_doc,				/* tp_doc */
+	0,					/* tp_traverse */
+	0,					/* tp_clear */
+	complex_richcompare,			/* tp_richcompare */
+	0,					/* tp_weaklistoffset */
+	0,					/* tp_iter */
+	0,					/* tp_iternext */
+	complex_methods,			/* tp_methods */
+	complex_members,			/* tp_members */
+	0,					/* tp_getset */
+	0,					/* tp_base */
+	0,					/* tp_dict */
+	0,					/* tp_descr_get */
+	0,					/* tp_descr_set */
+	0,					/* tp_dictoffset */
+	0,					/* tp_init */
+	PyType_GenericAlloc,			/* tp_alloc */
+	complex_new,				/* tp_new */
+	PyObject_Del,           		/* tp_free */
+};
+
+#endif