--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Objects/frameobject.c Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,939 @@
+/* Frame object implementation */
+
+#include "Python.h"
+
+#include "code.h"
+#include "frameobject.h"
+#include "opcode.h"
+#include "structmember.h"
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+#define OFF(x) offsetof(PyFrameObject, x)
+
+static PyMemberDef frame_memberlist[] = {
+ {"f_back", T_OBJECT, OFF(f_back), RO},
+ {"f_code", T_OBJECT, OFF(f_code), RO},
+ {"f_builtins", T_OBJECT, OFF(f_builtins),RO},
+ {"f_globals", T_OBJECT, OFF(f_globals), RO},
+ {"f_lasti", T_INT, OFF(f_lasti), RO},
+ {"f_exc_type", T_OBJECT, OFF(f_exc_type)},
+ {"f_exc_value", T_OBJECT, OFF(f_exc_value)},
+ {"f_exc_traceback", T_OBJECT, OFF(f_exc_traceback)},
+ {NULL} /* Sentinel */
+};
+
+static PyObject *
+frame_getlocals(PyFrameObject *f, void *closure)
+{
+ PyFrame_FastToLocals(f);
+ Py_INCREF(f->f_locals);
+ return f->f_locals;
+}
+
+static PyObject *
+frame_getlineno(PyFrameObject *f, void *closure)
+{
+ int lineno;
+
+ if (f->f_trace)
+ lineno = f->f_lineno;
+ else
+ lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
+
+ return PyInt_FromLong(lineno);
+}
+
+/* Setter for f_lineno - you can set f_lineno from within a trace function in
+ * order to jump to a given line of code, subject to some restrictions. Most
+ * lines are OK to jump to because they don't make any assumptions about the
+ * state of the stack (obvious because you could remove the line and the code
+ * would still work without any stack errors), but there are some constructs
+ * that limit jumping:
+ *
+ * o Lines with an 'except' statement on them can't be jumped to, because
+ * they expect an exception to be on the top of the stack.
+ * o Lines that live in a 'finally' block can't be jumped from or to, since
+ * the END_FINALLY expects to clean up the stack after the 'try' block.
+ * o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
+ * needs to be set up before their code runs, and for 'for' loops the
+ * iterator needs to be on the stack.
+ */
+static int
+frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
+{
+ int new_lineno = 0; /* The new value of f_lineno */
+ int new_lasti = 0; /* The new value of f_lasti */
+ int new_iblock = 0; /* The new value of f_iblock */
+ unsigned char *code = NULL; /* The bytecode for the frame... */
+ Py_ssize_t code_len = 0; /* ...and its length */
+ char *lnotab = NULL; /* Iterating over co_lnotab */
+ Py_ssize_t lnotab_len = 0; /* (ditto) */
+ int offset = 0; /* (ditto) */
+ int line = 0; /* (ditto) */
+ int addr = 0; /* (ditto) */
+ int min_addr = 0; /* Scanning the SETUPs and POPs */
+ int max_addr = 0; /* (ditto) */
+ int delta_iblock = 0; /* (ditto) */
+ int min_delta_iblock = 0; /* (ditto) */
+ int min_iblock = 0; /* (ditto) */
+ int f_lasti_setup_addr = 0; /* Policing no-jump-into-finally */
+ int new_lasti_setup_addr = 0; /* (ditto) */
+ int blockstack[CO_MAXBLOCKS]; /* Walking the 'finally' blocks */
+ int in_finally[CO_MAXBLOCKS]; /* (ditto) */
+ int blockstack_top = 0; /* (ditto) */
+ unsigned char setup_op = 0; /* (ditto) */
+
+ /* f_lineno must be an integer. */
+ if (!PyInt_Check(p_new_lineno)) {
+ PyErr_SetString(PyExc_ValueError,
+ "lineno must be an integer");
+ return -1;
+ }
+
+ /* You can only do this from within a trace function, not via
+ * _getframe or similar hackery. */
+ if (!f->f_trace)
+ {
+ PyErr_Format(PyExc_ValueError,
+ "f_lineno can only be set by a trace function");
+ return -1;
+ }
+
+ /* Fail if the line comes before the start of the code block. */
+ new_lineno = (int) PyInt_AsLong(p_new_lineno);
+ if (new_lineno < f->f_code->co_firstlineno) {
+ PyErr_Format(PyExc_ValueError,
+ "line %d comes before the current code block",
+ new_lineno);
+ return -1;
+ }
+
+ /* Find the bytecode offset for the start of the given line, or the
+ * first code-owning line after it. */
+ PyString_AsStringAndSize(f->f_code->co_lnotab, &lnotab, &lnotab_len);
+ addr = 0;
+ line = f->f_code->co_firstlineno;
+ new_lasti = -1;
+ for (offset = 0; offset < lnotab_len; offset += 2) {
+ addr += lnotab[offset];
+ line += lnotab[offset+1];
+ if (line >= new_lineno) {
+ new_lasti = addr;
+ new_lineno = line;
+ break;
+ }
+ }
+
+ /* If we didn't reach the requested line, return an error. */
+ if (new_lasti == -1) {
+ PyErr_Format(PyExc_ValueError,
+ "line %d comes after the current code block",
+ new_lineno);
+ return -1;
+ }
+
+ /* We're now ready to look at the bytecode. */
+ PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
+ min_addr = MIN(new_lasti, f->f_lasti);
+ max_addr = MAX(new_lasti, f->f_lasti);
+
+ /* You can't jump onto a line with an 'except' statement on it -
+ * they expect to have an exception on the top of the stack, which
+ * won't be true if you jump to them. They always start with code
+ * that either pops the exception using POP_TOP (plain 'except:'
+ * lines do this) or duplicates the exception on the stack using
+ * DUP_TOP (if there's an exception type specified). See compile.c,
+ * 'com_try_except' for the full details. There aren't any other
+ * cases (AFAIK) where a line's code can start with DUP_TOP or
+ * POP_TOP, but if any ever appear, they'll be subject to the same
+ * restriction (but with a different error message). */
+ if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
+ PyErr_SetString(PyExc_ValueError,
+ "can't jump to 'except' line as there's no exception");
+ return -1;
+ }
+
+ /* You can't jump into or out of a 'finally' block because the 'try'
+ * block leaves something on the stack for the END_FINALLY to clean
+ * up. So we walk the bytecode, maintaining a simulated blockstack.
+ * When we reach the old or new address and it's in a 'finally' block
+ * we note the address of the corresponding SETUP_FINALLY. The jump
+ * is only legal if neither address is in a 'finally' block or
+ * they're both in the same one. 'blockstack' is a stack of the
+ * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
+ * whether we're in a 'finally' block at each blockstack level. */
+ f_lasti_setup_addr = -1;
+ new_lasti_setup_addr = -1;
+ memset(blockstack, '\0', sizeof(blockstack));
+ memset(in_finally, '\0', sizeof(in_finally));
+ blockstack_top = 0;
+ for (addr = 0; addr < code_len; addr++) {
+ unsigned char op = code[addr];
+ switch (op) {
+ case SETUP_LOOP:
+ case SETUP_EXCEPT:
+ case SETUP_FINALLY:
+ blockstack[blockstack_top++] = addr;
+ in_finally[blockstack_top-1] = 0;
+ break;
+
+ case POP_BLOCK:
+ assert(blockstack_top > 0);
+ setup_op = code[blockstack[blockstack_top-1]];
+ if (setup_op == SETUP_FINALLY) {
+ in_finally[blockstack_top-1] = 1;
+ }
+ else {
+ blockstack_top--;
+ }
+ break;
+
+ case END_FINALLY:
+ /* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
+ * in the bytecode but don't correspond to an actual
+ * 'finally' block. (If blockstack_top is 0, we must
+ * be seeing such an END_FINALLY.) */
+ if (blockstack_top > 0) {
+ setup_op = code[blockstack[blockstack_top-1]];
+ if (setup_op == SETUP_FINALLY) {
+ blockstack_top--;
+ }
+ }
+ break;
+ }
+
+ /* For the addresses we're interested in, see whether they're
+ * within a 'finally' block and if so, remember the address
+ * of the SETUP_FINALLY. */
+ if (addr == new_lasti || addr == f->f_lasti) {
+ int i = 0;
+ int setup_addr = -1;
+ for (i = blockstack_top-1; i >= 0; i--) {
+ if (in_finally[i]) {
+ setup_addr = blockstack[i];
+ break;
+ }
+ }
+
+ if (setup_addr != -1) {
+ if (addr == new_lasti) {
+ new_lasti_setup_addr = setup_addr;
+ }
+
+ if (addr == f->f_lasti) {
+ f_lasti_setup_addr = setup_addr;
+ }
+ }
+ }
+
+ if (op >= HAVE_ARGUMENT) {
+ addr += 2;
+ }
+ }
+
+ /* Verify that the blockstack tracking code didn't get lost. */
+ assert(blockstack_top == 0);
+
+ /* After all that, are we jumping into / out of a 'finally' block? */
+ if (new_lasti_setup_addr != f_lasti_setup_addr) {
+ PyErr_SetString(PyExc_ValueError,
+ "can't jump into or out of a 'finally' block");
+ return -1;
+ }
+
+
+ /* Police block-jumping (you can't jump into the middle of a block)
+ * and ensure that the blockstack finishes up in a sensible state (by
+ * popping any blocks we're jumping out of). We look at all the
+ * blockstack operations between the current position and the new
+ * one, and keep track of how many blocks we drop out of on the way.
+ * By also keeping track of the lowest blockstack position we see, we
+ * can tell whether the jump goes into any blocks without coming out
+ * again - in that case we raise an exception below. */
+ delta_iblock = 0;
+ for (addr = min_addr; addr < max_addr; addr++) {
+ unsigned char op = code[addr];
+ switch (op) {
+ case SETUP_LOOP:
+ case SETUP_EXCEPT:
+ case SETUP_FINALLY:
+ delta_iblock++;
+ break;
+
+ case POP_BLOCK:
+ delta_iblock--;
+ break;
+ }
+
+ min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
+
+ if (op >= HAVE_ARGUMENT) {
+ addr += 2;
+ }
+ }
+
+ /* Derive the absolute iblock values from the deltas. */
+ min_iblock = f->f_iblock + min_delta_iblock;
+ if (new_lasti > f->f_lasti) {
+ /* Forwards jump. */
+ new_iblock = f->f_iblock + delta_iblock;
+ }
+ else {
+ /* Backwards jump. */
+ new_iblock = f->f_iblock - delta_iblock;
+ }
+
+ /* Are we jumping into a block? */
+ if (new_iblock > min_iblock) {
+ PyErr_SetString(PyExc_ValueError,
+ "can't jump into the middle of a block");
+ return -1;
+ }
+
+ /* Pop any blocks that we're jumping out of. */
+ while (f->f_iblock > new_iblock) {
+ PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
+ while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
+ PyObject *v = (*--f->f_stacktop);
+ Py_DECREF(v);
+ }
+ }
+
+ /* Finally set the new f_lineno and f_lasti and return OK. */
+ f->f_lineno = new_lineno;
+ f->f_lasti = new_lasti;
+ return 0;
+}
+
+static PyObject *
+frame_gettrace(PyFrameObject *f, void *closure)
+{
+ PyObject* trace = f->f_trace;
+
+ if (trace == NULL)
+ trace = Py_None;
+
+ Py_INCREF(trace);
+
+ return trace;
+}
+
+static int
+frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
+{
+ /* We rely on f_lineno being accurate when f_trace is set. */
+
+ PyObject* old_value = f->f_trace;
+
+ Py_XINCREF(v);
+ f->f_trace = v;
+
+ if (v != NULL)
+ f->f_lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
+
+ Py_XDECREF(old_value);
+
+ return 0;
+}
+
+static PyObject *
+frame_getrestricted(PyFrameObject *f, void *closure)
+{
+ return PyBool_FromLong(PyFrame_IsRestricted(f));
+}
+
+static PyGetSetDef frame_getsetlist[] = {
+ {"f_locals", (getter)frame_getlocals, NULL, NULL},
+ {"f_lineno", (getter)frame_getlineno,
+ (setter)frame_setlineno, NULL},
+ {"f_trace", (getter)frame_gettrace, (setter)frame_settrace, NULL},
+ {"f_restricted",(getter)frame_getrestricted,NULL, NULL},
+ {0}
+};
+
+/* Stack frames are allocated and deallocated at a considerable rate.
+ In an attempt to improve the speed of function calls, we:
+
+ 1. Hold a single "zombie" frame on each code object. This retains
+ the allocated and initialised frame object from an invocation of
+ the code object. The zombie is reanimated the next time we need a
+ frame object for that code object. Doing this saves the malloc/
+ realloc required when using a free_list frame that isn't the
+ correct size. It also saves some field initialisation.
+
+ In zombie mode, no field of PyFrameObject holds a reference, but
+ the following fields are still valid:
+
+ * ob_type, ob_size, f_code, f_valuestack;
+
+ * f_locals, f_trace,
+ f_exc_type, f_exc_value, f_exc_traceback are NULL;
+
+ * f_localsplus does not require re-allocation and
+ the local variables in f_localsplus are NULL.
+
+ 2. We also maintain a separate free list of stack frames (just like
+ integers are allocated in a special way -- see intobject.c). When
+ a stack frame is on the free list, only the following members have
+ a meaning:
+ ob_type == &Frametype
+ f_back next item on free list, or NULL
+ f_stacksize size of value stack
+ ob_size size of localsplus
+ Note that the value and block stacks are preserved -- this can save
+ another malloc() call or two (and two free() calls as well!).
+ Also note that, unlike for integers, each frame object is a
+ malloc'ed object in its own right -- it is only the actual calls to
+ malloc() that we are trying to save here, not the administration.
+ After all, while a typical program may make millions of calls, a
+ call depth of more than 20 or 30 is probably already exceptional
+ unless the program contains run-away recursion. I hope.
+
+ Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
+ free_list. Else programs creating lots of cyclic trash involving
+ frames could provoke free_list into growing without bound.
+*/
+
+static PyFrameObject *free_list = NULL;
+static int numfree = 0; /* number of frames currently in free_list */
+/* max value for numfree */
+#define PyFrame_MAXFREELIST 200
+
+static void
+frame_dealloc(PyFrameObject *f)
+{
+ PyObject **p, **valuestack;
+ PyCodeObject *co;
+
+ PyObject_GC_UnTrack(f);
+ Py_TRASHCAN_SAFE_BEGIN(f)
+ /* Kill all local variables */
+ valuestack = f->f_valuestack;
+ for (p = f->f_localsplus; p < valuestack; p++)
+ Py_CLEAR(*p);
+
+ /* Free stack */
+ if (f->f_stacktop != NULL) {
+ for (p = valuestack; p < f->f_stacktop; p++)
+ Py_XDECREF(*p);
+ }
+
+ Py_XDECREF(f->f_back);
+ Py_DECREF(f->f_builtins);
+ Py_DECREF(f->f_globals);
+ Py_CLEAR(f->f_locals);
+ Py_CLEAR(f->f_trace);
+ Py_CLEAR(f->f_exc_type);
+ Py_CLEAR(f->f_exc_value);
+ Py_CLEAR(f->f_exc_traceback);
+
+ co = f->f_code;
+ if (co->co_zombieframe == NULL)
+ co->co_zombieframe = f;
+ else if (numfree < PyFrame_MAXFREELIST) {
+ ++numfree;
+ f->f_back = free_list;
+ free_list = f;
+ }
+ else
+ PyObject_GC_Del(f);
+
+ Py_DECREF(co);
+ Py_TRASHCAN_SAFE_END(f)
+}
+
+static int
+frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
+{
+ PyObject **fastlocals, **p;
+ int i, slots;
+
+ Py_VISIT(f->f_back);
+ Py_VISIT(f->f_code);
+ Py_VISIT(f->f_builtins);
+ Py_VISIT(f->f_globals);
+ Py_VISIT(f->f_locals);
+ Py_VISIT(f->f_trace);
+ Py_VISIT(f->f_exc_type);
+ Py_VISIT(f->f_exc_value);
+ Py_VISIT(f->f_exc_traceback);
+
+ /* locals */
+ slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
+ fastlocals = f->f_localsplus;
+ for (i = slots; --i >= 0; ++fastlocals)
+ Py_VISIT(*fastlocals);
+
+ /* stack */
+ if (f->f_stacktop != NULL) {
+ for (p = f->f_valuestack; p < f->f_stacktop; p++)
+ Py_VISIT(*p);
+ }
+ return 0;
+}
+
+static void
+frame_clear(PyFrameObject *f)
+{
+ PyObject **fastlocals, **p, **oldtop;
+ int i, slots;
+
+ /* Before anything else, make sure that this frame is clearly marked
+ * as being defunct! Else, e.g., a generator reachable from this
+ * frame may also point to this frame, believe itself to still be
+ * active, and try cleaning up this frame again.
+ */
+ oldtop = f->f_stacktop;
+ f->f_stacktop = NULL;
+
+ Py_CLEAR(f->f_exc_type);
+ Py_CLEAR(f->f_exc_value);
+ Py_CLEAR(f->f_exc_traceback);
+ Py_CLEAR(f->f_trace);
+
+ /* locals */
+ slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
+ fastlocals = f->f_localsplus;
+ for (i = slots; --i >= 0; ++fastlocals)
+ Py_CLEAR(*fastlocals);
+
+ /* stack */
+ if (oldtop != NULL) {
+ for (p = f->f_valuestack; p < oldtop; p++)
+ Py_CLEAR(*p);
+ }
+}
+
+static PyObject *
+frame_sizeof(PyFrameObject *f)
+{
+ Py_ssize_t res, extras, ncells, nfrees;
+
+ ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars);
+ nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars);
+ extras = f->f_code->co_stacksize + f->f_code->co_nlocals +
+ ncells + nfrees;
+ /* subtract one as it is already included in PyFrameObject */
+ res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *);
+
+ return PyInt_FromSsize_t(res);
+}
+
+PyDoc_STRVAR(sizeof__doc__,
+"F.__sizeof__() -> size of F in memory, in bytes");
+
+static PyMethodDef frame_methods[] = {
+ {"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS,
+ sizeof__doc__},
+ {NULL, NULL} /* sentinel */
+};
+
+PyTypeObject PyFrame_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "frame",
+ sizeof(PyFrameObject),
+ sizeof(PyObject *),
+ (destructor)frame_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_compare */
+ 0, /* tp_repr */
+ 0, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ 0, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ PyObject_GenericSetAttr, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
+ 0, /* tp_doc */
+ (traverseproc)frame_traverse, /* tp_traverse */
+ (inquiry)frame_clear, /* tp_clear */
+ 0, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ frame_methods, /* tp_methods */
+ frame_memberlist, /* tp_members */
+ frame_getsetlist, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+};
+
+static PyObject *builtin_object;
+
+int _PyFrame_Init()
+{
+ builtin_object = PyString_InternFromString("__builtins__");
+ return (builtin_object != NULL);
+}
+
+PyFrameObject *
+PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals,
+ PyObject *locals)
+{
+ PyFrameObject *back = tstate->frame;
+ PyFrameObject *f;
+ PyObject *builtins;
+ Py_ssize_t i;
+
+#ifdef Py_DEBUG
+ if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
+ (locals != NULL && !PyMapping_Check(locals))) {
+ PyErr_BadInternalCall();
+ return NULL;
+ }
+#endif
+ if (back == NULL || back->f_globals != globals) {
+ builtins = PyDict_GetItem(globals, builtin_object);
+ if (builtins) {
+ if (PyModule_Check(builtins)) {
+ builtins = PyModule_GetDict(builtins);
+ assert(!builtins || PyDict_Check(builtins));
+ }
+ else if (!PyDict_Check(builtins))
+ builtins = NULL;
+ }
+ if (builtins == NULL) {
+ /* No builtins! Make up a minimal one
+ Give them 'None', at least. */
+ builtins = PyDict_New();
+ if (builtins == NULL ||
+ PyDict_SetItemString(
+ builtins, "None", Py_None) < 0)
+ return NULL;
+ }
+ else
+ Py_INCREF(builtins);
+
+ }
+ else {
+ /* If we share the globals, we share the builtins.
+ Save a lookup and a call. */
+ builtins = back->f_builtins;
+ assert(builtins != NULL && PyDict_Check(builtins));
+ Py_INCREF(builtins);
+ }
+ if (code->co_zombieframe != NULL) {
+ f = code->co_zombieframe;
+ code->co_zombieframe = NULL;
+ _Py_NewReference((PyObject *)f);
+ assert(f->f_code == code);
+ }
+ else {
+ Py_ssize_t extras, ncells, nfrees;
+ ncells = PyTuple_GET_SIZE(code->co_cellvars);
+ nfrees = PyTuple_GET_SIZE(code->co_freevars);
+ extras = code->co_stacksize + code->co_nlocals + ncells +
+ nfrees;
+ if (free_list == NULL) {
+ f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
+ extras);
+ if (f == NULL) {
+ Py_DECREF(builtins);
+ return NULL;
+ }
+ }
+ else {
+ assert(numfree > 0);
+ --numfree;
+ f = free_list;
+ free_list = free_list->f_back;
+ if (Py_SIZE(f) < extras) {
+ f = PyObject_GC_Resize(PyFrameObject, f, extras);
+ if (f == NULL) {
+ Py_DECREF(builtins);
+ return NULL;
+ }
+ }
+ _Py_NewReference((PyObject *)f);
+ }
+
+ f->f_code = code;
+ extras = code->co_nlocals + ncells + nfrees;
+ f->f_valuestack = f->f_localsplus + extras;
+ for (i=0; i<extras; i++)
+ f->f_localsplus[i] = NULL;
+ f->f_locals = NULL;
+ f->f_trace = NULL;
+ f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
+ }
+ f->f_stacktop = f->f_valuestack;
+ f->f_builtins = builtins;
+ Py_XINCREF(back);
+ f->f_back = back;
+ Py_INCREF(code);
+ Py_INCREF(globals);
+ f->f_globals = globals;
+ /* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
+ if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
+ (CO_NEWLOCALS | CO_OPTIMIZED))
+ ; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
+ else if (code->co_flags & CO_NEWLOCALS) {
+ locals = PyDict_New();
+ if (locals == NULL) {
+ Py_DECREF(f);
+ return NULL;
+ }
+ f->f_locals = locals;
+ }
+ else {
+ if (locals == NULL)
+ locals = globals;
+ Py_INCREF(locals);
+ f->f_locals = locals;
+ }
+ f->f_tstate = tstate;
+
+ f->f_lasti = -1;
+ f->f_lineno = code->co_firstlineno;
+ f->f_iblock = 0;
+
+ _PyObject_GC_TRACK(f);
+ return f;
+}
+
+/* Block management */
+
+void
+PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
+{
+ PyTryBlock *b;
+ if (f->f_iblock >= CO_MAXBLOCKS)
+ Py_FatalError("XXX block stack overflow");
+ b = &f->f_blockstack[f->f_iblock++];
+ b->b_type = type;
+ b->b_level = level;
+ b->b_handler = handler;
+}
+
+PyTryBlock *
+PyFrame_BlockPop(PyFrameObject *f)
+{
+ PyTryBlock *b;
+ if (f->f_iblock <= 0)
+ Py_FatalError("XXX block stack underflow");
+ b = &f->f_blockstack[--f->f_iblock];
+ return b;
+}
+
+/* Convert between "fast" version of locals and dictionary version.
+
+ map and values are input arguments. map is a tuple of strings.
+ values is an array of PyObject*. At index i, map[i] is the name of
+ the variable with value values[i]. The function copies the first
+ nmap variable from map/values into dict. If values[i] is NULL,
+ the variable is deleted from dict.
+
+ If deref is true, then the values being copied are cell variables
+ and the value is extracted from the cell variable before being put
+ in dict.
+
+ Exceptions raised while modifying the dict are silently ignored,
+ because there is no good way to report them.
+ */
+
+static void
+map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
+ int deref)
+{
+ Py_ssize_t j;
+ assert(PyTuple_Check(map));
+ assert(PyDict_Check(dict));
+ assert(PyTuple_Size(map) >= nmap);
+ for (j = nmap; --j >= 0; ) {
+ PyObject *key = PyTuple_GET_ITEM(map, j);
+ PyObject *value = values[j];
+ assert(PyString_Check(key));
+ if (deref) {
+ assert(PyCell_Check(value));
+ value = PyCell_GET(value);
+ }
+ if (value == NULL) {
+ if (PyObject_DelItem(dict, key) != 0)
+ PyErr_Clear();
+ }
+ else {
+ if (PyObject_SetItem(dict, key, value) != 0)
+ PyErr_Clear();
+ }
+ }
+}
+
+/* Copy values from the "locals" dict into the fast locals.
+
+ dict is an input argument containing string keys representing
+ variables names and arbitrary PyObject* as values.
+
+ map and values are input arguments. map is a tuple of strings.
+ values is an array of PyObject*. At index i, map[i] is the name of
+ the variable with value values[i]. The function copies the first
+ nmap variable from map/values into dict. If values[i] is NULL,
+ the variable is deleted from dict.
+
+ If deref is true, then the values being copied are cell variables
+ and the value is extracted from the cell variable before being put
+ in dict. If clear is true, then variables in map but not in dict
+ are set to NULL in map; if clear is false, variables missing in
+ dict are ignored.
+
+ Exceptions raised while modifying the dict are silently ignored,
+ because there is no good way to report them.
+*/
+
+static void
+dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
+ int deref, int clear)
+{
+ Py_ssize_t j;
+ assert(PyTuple_Check(map));
+ assert(PyDict_Check(dict));
+ assert(PyTuple_Size(map) >= nmap);
+ for (j = nmap; --j >= 0; ) {
+ PyObject *key = PyTuple_GET_ITEM(map, j);
+ PyObject *value = PyObject_GetItem(dict, key);
+ assert(PyString_Check(key));
+ /* We only care about NULLs if clear is true. */
+ if (value == NULL) {
+ PyErr_Clear();
+ if (!clear)
+ continue;
+ }
+ if (deref) {
+ assert(PyCell_Check(values[j]));
+ if (PyCell_GET(values[j]) != value) {
+ if (PyCell_Set(values[j], value) < 0)
+ PyErr_Clear();
+ }
+ } else if (values[j] != value) {
+ Py_XINCREF(value);
+ Py_XDECREF(values[j]);
+ values[j] = value;
+ }
+ Py_XDECREF(value);
+ }
+}
+
+void
+PyFrame_FastToLocals(PyFrameObject *f)
+{
+ /* Merge fast locals into f->f_locals */
+ PyObject *locals, *map;
+ PyObject **fast;
+ PyObject *error_type, *error_value, *error_traceback;
+ PyCodeObject *co;
+ Py_ssize_t j;
+ int ncells, nfreevars;
+ if (f == NULL)
+ return;
+ locals = f->f_locals;
+ if (locals == NULL) {
+ locals = f->f_locals = PyDict_New();
+ if (locals == NULL) {
+ PyErr_Clear(); /* Can't report it :-( */
+ return;
+ }
+ }
+ co = f->f_code;
+ map = co->co_varnames;
+ if (!PyTuple_Check(map))
+ return;
+ PyErr_Fetch(&error_type, &error_value, &error_traceback);
+ fast = f->f_localsplus;
+ j = PyTuple_GET_SIZE(map);
+ if (j > co->co_nlocals)
+ j = co->co_nlocals;
+ if (co->co_nlocals)
+ map_to_dict(map, j, locals, fast, 0);
+ ncells = PyTuple_GET_SIZE(co->co_cellvars);
+ nfreevars = PyTuple_GET_SIZE(co->co_freevars);
+ if (ncells || nfreevars) {
+ map_to_dict(co->co_cellvars, ncells,
+ locals, fast + co->co_nlocals, 1);
+ /* If the namespace is unoptimized, then one of the
+ following cases applies:
+ 1. It does not contain free variables, because it
+ uses import * or is a top-level namespace.
+ 2. It is a class namespace.
+ We don't want to accidentally copy free variables
+ into the locals dict used by the class.
+ */
+ if (co->co_flags & CO_OPTIMIZED) {
+ map_to_dict(co->co_freevars, nfreevars,
+ locals, fast + co->co_nlocals + ncells, 1);
+ }
+ }
+ PyErr_Restore(error_type, error_value, error_traceback);
+}
+
+void
+PyFrame_LocalsToFast(PyFrameObject *f, int clear)
+{
+ /* Merge f->f_locals into fast locals */
+ PyObject *locals, *map;
+ PyObject **fast;
+ PyObject *error_type, *error_value, *error_traceback;
+ PyCodeObject *co;
+ Py_ssize_t j;
+ int ncells, nfreevars;
+ if (f == NULL)
+ return;
+ locals = f->f_locals;
+ co = f->f_code;
+ map = co->co_varnames;
+ if (locals == NULL)
+ return;
+ if (!PyTuple_Check(map))
+ return;
+ PyErr_Fetch(&error_type, &error_value, &error_traceback);
+ fast = f->f_localsplus;
+ j = PyTuple_GET_SIZE(map);
+ if (j > co->co_nlocals)
+ j = co->co_nlocals;
+ if (co->co_nlocals)
+ dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
+ ncells = PyTuple_GET_SIZE(co->co_cellvars);
+ nfreevars = PyTuple_GET_SIZE(co->co_freevars);
+ if (ncells || nfreevars) {
+ dict_to_map(co->co_cellvars, ncells,
+ locals, fast + co->co_nlocals, 1, clear);
+ /* Same test as in PyFrame_FastToLocals() above. */
+ if (co->co_flags & CO_OPTIMIZED) {
+ dict_to_map(co->co_freevars, nfreevars,
+ locals, fast + co->co_nlocals + ncells, 1,
+ clear);
+ }
+ }
+ PyErr_Restore(error_type, error_value, error_traceback);
+}
+
+/* Clear out the free list */
+int
+PyFrame_ClearFreeList(void)
+{
+ int freelist_size = numfree;
+
+ while (free_list != NULL) {
+ PyFrameObject *f = free_list;
+ free_list = free_list->f_back;
+ PyObject_GC_Del(f);
+ --numfree;
+ }
+ assert(numfree == 0);
+ return freelist_size;
+}
+
+void
+PyFrame_Fini(void)
+{
+ (void)PyFrame_ClearFreeList();
+ Py_XDECREF(builtin_object);
+ builtin_object = NULL;
+}