symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/fractions.py
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-win32-2.6.1/lib/fractions.py	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,539 @@
+# Originally contributed by Sjoerd Mullender.
+# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
+
+"""Rational, infinite-precision, real numbers."""
+
+from __future__ import division
+import math
+import numbers
+import operator
+import re
+
+__all__ = ['Fraction', 'gcd']
+
+Rational = numbers.Rational
+
+
+def gcd(a, b):
+    """Calculate the Greatest Common Divisor of a and b.
+
+    Unless b==0, the result will have the same sign as b (so that when
+    b is divided by it, the result comes out positive).
+    """
+    while b:
+        a, b = b, a%b
+    return a
+
+
+_RATIONAL_FORMAT = re.compile(r"""
+    \A\s*                      # optional whitespace at the start, then
+    (?P<sign>[-+]?)            # an optional sign, then
+    (?=\d|\.\d)                # lookahead for digit or .digit
+    (?P<num>\d*)               # numerator (possibly empty)
+    (?:                        # followed by an optional
+       /(?P<denom>\d+)         # / and denominator
+    |                          # or
+       \.(?P<decimal>\d*)      # decimal point and fractional part
+    )?
+    \s*\Z                      # and optional whitespace to finish
+""", re.VERBOSE)
+
+
+class Fraction(Rational):
+    """This class implements rational numbers.
+
+    Fraction(8, 6) will produce a rational number equivalent to
+    4/3. Both arguments must be Integral. The numerator defaults to 0
+    and the denominator defaults to 1 so that Fraction(3) == 3 and
+    Fraction() == 0.
+
+    Fractions can also be constructed from strings of the form
+    '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
+
+    """
+
+    __slots__ = ('_numerator', '_denominator')
+
+    # We're immutable, so use __new__ not __init__
+    def __new__(cls, numerator=0, denominator=1):
+        """Constructs a Fraction.
+
+        Takes a string like '3/2' or '1.5', another Fraction, or a
+        numerator/denominator pair.
+
+        """
+        self = super(Fraction, cls).__new__(cls)
+
+        if type(numerator) not in (int, long) and denominator == 1:
+            if isinstance(numerator, basestring):
+                # Handle construction from strings.
+                input = numerator
+                m = _RATIONAL_FORMAT.match(input)
+                if m is None:
+                    raise ValueError('Invalid literal for Fraction: %r' % input)
+                numerator = m.group('num')
+                decimal = m.group('decimal')
+                if decimal:
+                    # The literal is a decimal number.
+                    numerator = int(numerator + decimal)
+                    denominator = 10**len(decimal)
+                else:
+                    # The literal is an integer or fraction.
+                    numerator = int(numerator)
+                    # Default denominator to 1.
+                    denominator = int(m.group('denom') or 1)
+
+                if m.group('sign') == '-':
+                    numerator = -numerator
+
+            elif isinstance(numerator, Rational):
+                # Handle copies from other rationals. Integrals get
+                # caught here too, but it doesn't matter because
+                # denominator is already 1.
+                other_rational = numerator
+                numerator = other_rational.numerator
+                denominator = other_rational.denominator
+
+        if denominator == 0:
+            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
+        numerator = operator.index(numerator)
+        denominator = operator.index(denominator)
+        g = gcd(numerator, denominator)
+        self._numerator = numerator // g
+        self._denominator = denominator // g
+        return self
+
+    @classmethod
+    def from_float(cls, f):
+        """Converts a finite float to a rational number, exactly.
+
+        Beware that Fraction.from_float(0.3) != Fraction(3, 10).
+
+        """
+        if isinstance(f, numbers.Integral):
+            f = float(f)
+        elif not isinstance(f, float):
+            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
+                            (cls.__name__, f, type(f).__name__))
+        if math.isnan(f) or math.isinf(f):
+            raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
+        return cls(*f.as_integer_ratio())
+
+    @classmethod
+    def from_decimal(cls, dec):
+        """Converts a finite Decimal instance to a rational number, exactly."""
+        from decimal import Decimal
+        if isinstance(dec, numbers.Integral):
+            dec = Decimal(int(dec))
+        elif not isinstance(dec, Decimal):
+            raise TypeError(
+                "%s.from_decimal() only takes Decimals, not %r (%s)" %
+                (cls.__name__, dec, type(dec).__name__))
+        if not dec.is_finite():
+            # Catches infinities and nans.
+            raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
+        sign, digits, exp = dec.as_tuple()
+        digits = int(''.join(map(str, digits)))
+        if sign:
+            digits = -digits
+        if exp >= 0:
+            return cls(digits * 10 ** exp)
+        else:
+            return cls(digits, 10 ** -exp)
+
+    def limit_denominator(self, max_denominator=1000000):
+        """Closest Fraction to self with denominator at most max_denominator.
+
+        >>> Fraction('3.141592653589793').limit_denominator(10)
+        Fraction(22, 7)
+        >>> Fraction('3.141592653589793').limit_denominator(100)
+        Fraction(311, 99)
+        >>> Fraction(1234, 5678).limit_denominator(10000)
+        Fraction(1234, 5678)
+
+        """
+        # Algorithm notes: For any real number x, define a *best upper
+        # approximation* to x to be a rational number p/q such that:
+        #
+        #   (1) p/q >= x, and
+        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
+        #
+        # Define *best lower approximation* similarly.  Then it can be
+        # proved that a rational number is a best upper or lower
+        # approximation to x if, and only if, it is a convergent or
+        # semiconvergent of the (unique shortest) continued fraction
+        # associated to x.
+        #
+        # To find a best rational approximation with denominator <= M,
+        # we find the best upper and lower approximations with
+        # denominator <= M and take whichever of these is closer to x.
+        # In the event of a tie, the bound with smaller denominator is
+        # chosen.  If both denominators are equal (which can happen
+        # only when max_denominator == 1 and self is midway between
+        # two integers) the lower bound---i.e., the floor of self, is
+        # taken.
+
+        if max_denominator < 1:
+            raise ValueError("max_denominator should be at least 1")
+        if self._denominator <= max_denominator:
+            return Fraction(self)
+
+        p0, q0, p1, q1 = 0, 1, 1, 0
+        n, d = self._numerator, self._denominator
+        while True:
+            a = n//d
+            q2 = q0+a*q1
+            if q2 > max_denominator:
+                break
+            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+            n, d = d, n-a*d
+
+        k = (max_denominator-q0)//q1
+        bound1 = Fraction(p0+k*p1, q0+k*q1)
+        bound2 = Fraction(p1, q1)
+        if abs(bound2 - self) <= abs(bound1-self):
+            return bound2
+        else:
+            return bound1
+
+    @property
+    def numerator(a):
+        return a._numerator
+
+    @property
+    def denominator(a):
+        return a._denominator
+
+    def __repr__(self):
+        """repr(self)"""
+        return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
+
+    def __str__(self):
+        """str(self)"""
+        if self._denominator == 1:
+            return str(self._numerator)
+        else:
+            return '%s/%s' % (self._numerator, self._denominator)
+
+    def _operator_fallbacks(monomorphic_operator, fallback_operator):
+        """Generates forward and reverse operators given a purely-rational
+        operator and a function from the operator module.
+
+        Use this like:
+        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
+
+        In general, we want to implement the arithmetic operations so
+        that mixed-mode operations either call an implementation whose
+        author knew about the types of both arguments, or convert both
+        to the nearest built in type and do the operation there. In
+        Fraction, that means that we define __add__ and __radd__ as:
+
+            def __add__(self, other):
+                # Both types have numerators/denominator attributes,
+                # so do the operation directly
+                if isinstance(other, (int, long, Fraction)):
+                    return Fraction(self.numerator * other.denominator +
+                                    other.numerator * self.denominator,
+                                    self.denominator * other.denominator)
+                # float and complex don't have those operations, but we
+                # know about those types, so special case them.
+                elif isinstance(other, float):
+                    return float(self) + other
+                elif isinstance(other, complex):
+                    return complex(self) + other
+                # Let the other type take over.
+                return NotImplemented
+
+            def __radd__(self, other):
+                # radd handles more types than add because there's
+                # nothing left to fall back to.
+                if isinstance(other, Rational):
+                    return Fraction(self.numerator * other.denominator +
+                                    other.numerator * self.denominator,
+                                    self.denominator * other.denominator)
+                elif isinstance(other, Real):
+                    return float(other) + float(self)
+                elif isinstance(other, Complex):
+                    return complex(other) + complex(self)
+                return NotImplemented
+
+
+        There are 5 different cases for a mixed-type addition on
+        Fraction. I'll refer to all of the above code that doesn't
+        refer to Fraction, float, or complex as "boilerplate". 'r'
+        will be an instance of Fraction, which is a subtype of
+        Rational (r : Fraction <: Rational), and b : B <:
+        Complex. The first three involve 'r + b':
+
+            1. If B <: Fraction, int, float, or complex, we handle
+               that specially, and all is well.
+            2. If Fraction falls back to the boilerplate code, and it
+               were to return a value from __add__, we'd miss the
+               possibility that B defines a more intelligent __radd__,
+               so the boilerplate should return NotImplemented from
+               __add__. In particular, we don't handle Rational
+               here, even though we could get an exact answer, in case
+               the other type wants to do something special.
+            3. If B <: Fraction, Python tries B.__radd__ before
+               Fraction.__add__. This is ok, because it was
+               implemented with knowledge of Fraction, so it can
+               handle those instances before delegating to Real or
+               Complex.
+
+        The next two situations describe 'b + r'. We assume that b
+        didn't know about Fraction in its implementation, and that it
+        uses similar boilerplate code:
+
+            4. If B <: Rational, then __radd_ converts both to the
+               builtin rational type (hey look, that's us) and
+               proceeds.
+            5. Otherwise, __radd__ tries to find the nearest common
+               base ABC, and fall back to its builtin type. Since this
+               class doesn't subclass a concrete type, there's no
+               implementation to fall back to, so we need to try as
+               hard as possible to return an actual value, or the user
+               will get a TypeError.
+
+        """
+        def forward(a, b):
+            if isinstance(b, (int, long, Fraction)):
+                return monomorphic_operator(a, b)
+            elif isinstance(b, float):
+                return fallback_operator(float(a), b)
+            elif isinstance(b, complex):
+                return fallback_operator(complex(a), b)
+            else:
+                return NotImplemented
+        forward.__name__ = '__' + fallback_operator.__name__ + '__'
+        forward.__doc__ = monomorphic_operator.__doc__
+
+        def reverse(b, a):
+            if isinstance(a, Rational):
+                # Includes ints.
+                return monomorphic_operator(a, b)
+            elif isinstance(a, numbers.Real):
+                return fallback_operator(float(a), float(b))
+            elif isinstance(a, numbers.Complex):
+                return fallback_operator(complex(a), complex(b))
+            else:
+                return NotImplemented
+        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
+        reverse.__doc__ = monomorphic_operator.__doc__
+
+        return forward, reverse
+
+    def _add(a, b):
+        """a + b"""
+        return Fraction(a.numerator * b.denominator +
+                        b.numerator * a.denominator,
+                        a.denominator * b.denominator)
+
+    __add__, __radd__ = _operator_fallbacks(_add, operator.add)
+
+    def _sub(a, b):
+        """a - b"""
+        return Fraction(a.numerator * b.denominator -
+                        b.numerator * a.denominator,
+                        a.denominator * b.denominator)
+
+    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
+
+    def _mul(a, b):
+        """a * b"""
+        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
+
+    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
+
+    def _div(a, b):
+        """a / b"""
+        return Fraction(a.numerator * b.denominator,
+                        a.denominator * b.numerator)
+
+    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
+    __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
+
+    def __floordiv__(a, b):
+        """a // b"""
+        # Will be math.floor(a / b) in 3.0.
+        div = a / b
+        if isinstance(div, Rational):
+            # trunc(math.floor(div)) doesn't work if the rational is
+            # more precise than a float because the intermediate
+            # rounding may cross an integer boundary.
+            return div.numerator // div.denominator
+        else:
+            return math.floor(div)
+
+    def __rfloordiv__(b, a):
+        """a // b"""
+        # Will be math.floor(a / b) in 3.0.
+        div = a / b
+        if isinstance(div, Rational):
+            # trunc(math.floor(div)) doesn't work if the rational is
+            # more precise than a float because the intermediate
+            # rounding may cross an integer boundary.
+            return div.numerator // div.denominator
+        else:
+            return math.floor(div)
+
+    def __mod__(a, b):
+        """a % b"""
+        div = a // b
+        return a - b * div
+
+    def __rmod__(b, a):
+        """a % b"""
+        div = a // b
+        return a - b * div
+
+    def __pow__(a, b):
+        """a ** b
+
+        If b is not an integer, the result will be a float or complex
+        since roots are generally irrational. If b is an integer, the
+        result will be rational.
+
+        """
+        if isinstance(b, Rational):
+            if b.denominator == 1:
+                power = b.numerator
+                if power >= 0:
+                    return Fraction(a._numerator ** power,
+                                    a._denominator ** power)
+                else:
+                    return Fraction(a._denominator ** -power,
+                                    a._numerator ** -power)
+            else:
+                # A fractional power will generally produce an
+                # irrational number.
+                return float(a) ** float(b)
+        else:
+            return float(a) ** b
+
+    def __rpow__(b, a):
+        """a ** b"""
+        if b._denominator == 1 and b._numerator >= 0:
+            # If a is an int, keep it that way if possible.
+            return a ** b._numerator
+
+        if isinstance(a, Rational):
+            return Fraction(a.numerator, a.denominator) ** b
+
+        if b._denominator == 1:
+            return a ** b._numerator
+
+        return a ** float(b)
+
+    def __pos__(a):
+        """+a: Coerces a subclass instance to Fraction"""
+        return Fraction(a._numerator, a._denominator)
+
+    def __neg__(a):
+        """-a"""
+        return Fraction(-a._numerator, a._denominator)
+
+    def __abs__(a):
+        """abs(a)"""
+        return Fraction(abs(a._numerator), a._denominator)
+
+    def __trunc__(a):
+        """trunc(a)"""
+        if a._numerator < 0:
+            return -(-a._numerator // a._denominator)
+        else:
+            return a._numerator // a._denominator
+
+    def __hash__(self):
+        """hash(self)
+
+        Tricky because values that are exactly representable as a
+        float must have the same hash as that float.
+
+        """
+        # XXX since this method is expensive, consider caching the result
+        if self._denominator == 1:
+            # Get integers right.
+            return hash(self._numerator)
+        # Expensive check, but definitely correct.
+        if self == float(self):
+            return hash(float(self))
+        else:
+            # Use tuple's hash to avoid a high collision rate on
+            # simple fractions.
+            return hash((self._numerator, self._denominator))
+
+    def __eq__(a, b):
+        """a == b"""
+        if isinstance(b, Rational):
+            return (a._numerator == b.numerator and
+                    a._denominator == b.denominator)
+        if isinstance(b, numbers.Complex) and b.imag == 0:
+            b = b.real
+        if isinstance(b, float):
+            return a == a.from_float(b)
+        else:
+            # XXX: If b.__eq__ is implemented like this method, it may
+            # give the wrong answer after float(a) changes a's
+            # value. Better ways of doing this are welcome.
+            return float(a) == b
+
+    def _subtractAndCompareToZero(a, b, op):
+        """Helper function for comparison operators.
+
+        Subtracts b from a, exactly if possible, and compares the
+        result with 0 using op, in such a way that the comparison
+        won't recurse. If the difference raises a TypeError, returns
+        NotImplemented instead.
+
+        """
+        if isinstance(b, numbers.Complex) and b.imag == 0:
+            b = b.real
+        if isinstance(b, float):
+            b = a.from_float(b)
+        try:
+            # XXX: If b <: Real but not <: Rational, this is likely
+            # to fall back to a float. If the actual values differ by
+            # less than MIN_FLOAT, this could falsely call them equal,
+            # which would make <= inconsistent with ==. Better ways of
+            # doing this are welcome.
+            diff = a - b
+        except TypeError:
+            return NotImplemented
+        if isinstance(diff, Rational):
+            return op(diff.numerator, 0)
+        return op(diff, 0)
+
+    def __lt__(a, b):
+        """a < b"""
+        return a._subtractAndCompareToZero(b, operator.lt)
+
+    def __gt__(a, b):
+        """a > b"""
+        return a._subtractAndCompareToZero(b, operator.gt)
+
+    def __le__(a, b):
+        """a <= b"""
+        return a._subtractAndCompareToZero(b, operator.le)
+
+    def __ge__(a, b):
+        """a >= b"""
+        return a._subtractAndCompareToZero(b, operator.ge)
+
+    def __nonzero__(a):
+        """a != 0"""
+        return a._numerator != 0
+
+    # support for pickling, copy, and deepcopy
+
+    def __reduce__(self):
+        return (self.__class__, (str(self),))
+
+    def __copy__(self):
+        if type(self) == Fraction:
+            return self     # I'm immutable; therefore I am my own clone
+        return self.__class__(self._numerator, self._denominator)
+
+    def __deepcopy__(self, memo):
+        if type(self) == Fraction:
+            return self     # My components are also immutable
+        return self.__class__(self._numerator, self._denominator)