symbian-qemu-0.9.1-12/qemu-symbian-svp/cpu-all.h
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/qemu-symbian-svp/cpu-all.h	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,1142 @@
+/*
+ * defines common to all virtual CPUs
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+#ifndef CPU_ALL_H
+#define CPU_ALL_H
+
+#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
+#define WORDS_ALIGNED
+#endif
+
+/* some important defines:
+ *
+ * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
+ * memory accesses.
+ *
+ * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
+ * otherwise little endian.
+ *
+ * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
+ *
+ * TARGET_WORDS_BIGENDIAN : same for target cpu
+ */
+
+#include "bswap.h"
+#include "softfloat.h"
+
+#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
+#define BSWAP_NEEDED
+#endif
+
+#ifdef BSWAP_NEEDED
+
+static inline uint16_t tswap16(uint16_t s)
+{
+    return bswap16(s);
+}
+
+static inline uint32_t tswap32(uint32_t s)
+{
+    return bswap32(s);
+}
+
+static inline uint64_t tswap64(uint64_t s)
+{
+    return bswap64(s);
+}
+
+static inline void tswap16s(uint16_t *s)
+{
+    *s = bswap16(*s);
+}
+
+static inline void tswap32s(uint32_t *s)
+{
+    *s = bswap32(*s);
+}
+
+static inline void tswap64s(uint64_t *s)
+{
+    *s = bswap64(*s);
+}
+
+#else
+
+static inline uint16_t tswap16(uint16_t s)
+{
+    return s;
+}
+
+static inline uint32_t tswap32(uint32_t s)
+{
+    return s;
+}
+
+static inline uint64_t tswap64(uint64_t s)
+{
+    return s;
+}
+
+static inline void tswap16s(uint16_t *s)
+{
+}
+
+static inline void tswap32s(uint32_t *s)
+{
+}
+
+static inline void tswap64s(uint64_t *s)
+{
+}
+
+#endif
+
+#if TARGET_LONG_SIZE == 4
+#define tswapl(s) tswap32(s)
+#define tswapls(s) tswap32s((uint32_t *)(s))
+#define bswaptls(s) bswap32s(s)
+#else
+#define tswapl(s) tswap64(s)
+#define tswapls(s) tswap64s((uint64_t *)(s))
+#define bswaptls(s) bswap64s(s)
+#endif
+
+typedef union {
+    float32 f;
+    uint32_t l;
+} CPU_FloatU;
+
+/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
+   endian ! */
+typedef union {
+    float64 d;
+#if defined(WORDS_BIGENDIAN) \
+    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
+    struct {
+        uint32_t upper;
+        uint32_t lower;
+    } l;
+#else
+    struct {
+        uint32_t lower;
+        uint32_t upper;
+    } l;
+#endif
+    uint64_t ll;
+} CPU_DoubleU;
+
+#ifdef TARGET_SPARC
+typedef union {
+    float128 q;
+#if defined(WORDS_BIGENDIAN) \
+    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
+    struct {
+        uint32_t upmost;
+        uint32_t upper;
+        uint32_t lower;
+        uint32_t lowest;
+    } l;
+    struct {
+        uint64_t upper;
+        uint64_t lower;
+    } ll;
+#else
+    struct {
+        uint32_t lowest;
+        uint32_t lower;
+        uint32_t upper;
+        uint32_t upmost;
+    } l;
+    struct {
+        uint64_t lower;
+        uint64_t upper;
+    } ll;
+#endif
+} CPU_QuadU;
+#endif
+
+/* CPU memory access without any memory or io remapping */
+
+/*
+ * the generic syntax for the memory accesses is:
+ *
+ * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
+ *
+ * store: st{type}{size}{endian}_{access_type}(ptr, val)
+ *
+ * type is:
+ * (empty): integer access
+ *   f    : float access
+ *
+ * sign is:
+ * (empty): for floats or 32 bit size
+ *   u    : unsigned
+ *   s    : signed
+ *
+ * size is:
+ *   b: 8 bits
+ *   w: 16 bits
+ *   l: 32 bits
+ *   q: 64 bits
+ *
+ * endian is:
+ * (empty): target cpu endianness or 8 bit access
+ *   r    : reversed target cpu endianness (not implemented yet)
+ *   be   : big endian (not implemented yet)
+ *   le   : little endian (not implemented yet)
+ *
+ * access_type is:
+ *   raw    : host memory access
+ *   user   : user mode access using soft MMU
+ *   kernel : kernel mode access using soft MMU
+ */
+static inline int ldub_p(const void *ptr)
+{
+    return *(uint8_t *)ptr;
+}
+
+static inline int ldsb_p(const void *ptr)
+{
+    return *(int8_t *)ptr;
+}
+
+static inline void stb_p(void *ptr, int v)
+{
+    *(uint8_t *)ptr = v;
+}
+
+/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
+   kernel handles unaligned load/stores may give better results, but
+   it is a system wide setting : bad */
+#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
+
+/* conservative code for little endian unaligned accesses */
+static inline int lduw_le_p(const void *ptr)
+{
+#ifdef __powerpc__
+    int val;
+    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
+    return val;
+#else
+    const uint8_t *p = ptr;
+    return p[0] | (p[1] << 8);
+#endif
+}
+
+static inline int ldsw_le_p(const void *ptr)
+{
+#ifdef __powerpc__
+    int val;
+    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
+    return (int16_t)val;
+#else
+    const uint8_t *p = ptr;
+    return (int16_t)(p[0] | (p[1] << 8));
+#endif
+}
+
+static inline int ldl_le_p(const void *ptr)
+{
+#ifdef __powerpc__
+    int val;
+    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
+    return val;
+#else
+    const uint8_t *p = ptr;
+    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
+#endif
+}
+
+static inline uint64_t ldq_le_p(const void *ptr)
+{
+    const uint8_t *p = ptr;
+    uint32_t v1, v2;
+    v1 = ldl_le_p(p);
+    v2 = ldl_le_p(p + 4);
+    return v1 | ((uint64_t)v2 << 32);
+}
+
+static inline void stw_le_p(void *ptr, int v)
+{
+#ifdef __powerpc__
+    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
+#else
+    uint8_t *p = ptr;
+    p[0] = v;
+    p[1] = v >> 8;
+#endif
+}
+
+static inline void stl_le_p(void *ptr, int v)
+{
+#ifdef __powerpc__
+    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
+#else
+    uint8_t *p = ptr;
+    p[0] = v;
+    p[1] = v >> 8;
+    p[2] = v >> 16;
+    p[3] = v >> 24;
+#endif
+}
+
+static inline void stq_le_p(void *ptr, uint64_t v)
+{
+    uint8_t *p = ptr;
+    stl_le_p(p, (uint32_t)v);
+    stl_le_p(p + 4, v >> 32);
+}
+
+/* float access */
+
+static inline float32 ldfl_le_p(const void *ptr)
+{
+    union {
+        float32 f;
+        uint32_t i;
+    } u;
+    u.i = ldl_le_p(ptr);
+    return u.f;
+}
+
+static inline void stfl_le_p(void *ptr, float32 v)
+{
+    union {
+        float32 f;
+        uint32_t i;
+    } u;
+    u.f = v;
+    stl_le_p(ptr, u.i);
+}
+
+static inline float64 ldfq_le_p(const void *ptr)
+{
+    CPU_DoubleU u;
+    u.l.lower = ldl_le_p(ptr);
+    u.l.upper = ldl_le_p(ptr + 4);
+    return u.d;
+}
+
+static inline void stfq_le_p(void *ptr, float64 v)
+{
+    CPU_DoubleU u;
+    u.d = v;
+    stl_le_p(ptr, u.l.lower);
+    stl_le_p(ptr + 4, u.l.upper);
+}
+
+#else
+
+static inline int lduw_le_p(const void *ptr)
+{
+    return *(uint16_t *)ptr;
+}
+
+static inline int ldsw_le_p(const void *ptr)
+{
+    return *(int16_t *)ptr;
+}
+
+static inline int ldl_le_p(const void *ptr)
+{
+    return *(uint32_t *)ptr;
+}
+
+static inline uint64_t ldq_le_p(const void *ptr)
+{
+    return *(uint64_t *)ptr;
+}
+
+static inline void stw_le_p(void *ptr, int v)
+{
+    *(uint16_t *)ptr = v;
+}
+
+static inline void stl_le_p(void *ptr, int v)
+{
+    *(uint32_t *)ptr = v;
+}
+
+static inline void stq_le_p(void *ptr, uint64_t v)
+{
+    *(uint64_t *)ptr = v;
+}
+
+/* float access */
+
+static inline float32 ldfl_le_p(const void *ptr)
+{
+    return *(float32 *)ptr;
+}
+
+static inline float64 ldfq_le_p(const void *ptr)
+{
+    return *(float64 *)ptr;
+}
+
+static inline void stfl_le_p(void *ptr, float32 v)
+{
+    *(float32 *)ptr = v;
+}
+
+static inline void stfq_le_p(void *ptr, float64 v)
+{
+    *(float64 *)ptr = v;
+}
+#endif
+
+#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
+
+static inline int lduw_be_p(const void *ptr)
+{
+#if defined(__i386__)
+    int val;
+    asm volatile ("movzwl %1, %0\n"
+                  "xchgb %b0, %h0\n"
+                  : "=q" (val)
+                  : "m" (*(uint16_t *)ptr));
+    return val;
+#else
+    const uint8_t *b = ptr;
+    return ((b[0] << 8) | b[1]);
+#endif
+}
+
+static inline int ldsw_be_p(const void *ptr)
+{
+#if defined(__i386__)
+    int val;
+    asm volatile ("movzwl %1, %0\n"
+                  "xchgb %b0, %h0\n"
+                  : "=q" (val)
+                  : "m" (*(uint16_t *)ptr));
+    return (int16_t)val;
+#else
+    const uint8_t *b = ptr;
+    return (int16_t)((b[0] << 8) | b[1]);
+#endif
+}
+
+static inline int ldl_be_p(const void *ptr)
+{
+#if defined(__i386__) || defined(__x86_64__)
+    int val;
+    asm volatile ("movl %1, %0\n"
+                  "bswap %0\n"
+                  : "=r" (val)
+                  : "m" (*(uint32_t *)ptr));
+    return val;
+#else
+    const uint8_t *b = ptr;
+    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
+#endif
+}
+
+static inline uint64_t ldq_be_p(const void *ptr)
+{
+    uint32_t a,b;
+    a = ldl_be_p(ptr);
+    b = ldl_be_p((uint8_t *)ptr + 4);
+    return (((uint64_t)a<<32)|b);
+}
+
+static inline void stw_be_p(void *ptr, int v)
+{
+#if defined(__i386__)
+    asm volatile ("xchgb %b0, %h0\n"
+                  "movw %w0, %1\n"
+                  : "=q" (v)
+                  : "m" (*(uint16_t *)ptr), "0" (v));
+#else
+    uint8_t *d = (uint8_t *) ptr;
+    d[0] = v >> 8;
+    d[1] = v;
+#endif
+}
+
+static inline void stl_be_p(void *ptr, int v)
+{
+#if defined(__i386__) || defined(__x86_64__)
+    asm volatile ("bswap %0\n"
+                  "movl %0, %1\n"
+                  : "=r" (v)
+                  : "m" (*(uint32_t *)ptr), "0" (v));
+#else
+    uint8_t *d = (uint8_t *) ptr;
+    d[0] = v >> 24;
+    d[1] = v >> 16;
+    d[2] = v >> 8;
+    d[3] = v;
+#endif
+}
+
+static inline void stq_be_p(void *ptr, uint64_t v)
+{
+    stl_be_p(ptr, v >> 32);
+    stl_be_p((uint8_t *)ptr + 4, v);
+}
+
+/* float access */
+
+static inline float32 ldfl_be_p(const void *ptr)
+{
+    union {
+        float32 f;
+        uint32_t i;
+    } u;
+    u.i = ldl_be_p(ptr);
+    return u.f;
+}
+
+static inline void stfl_be_p(void *ptr, float32 v)
+{
+    union {
+        float32 f;
+        uint32_t i;
+    } u;
+    u.f = v;
+    stl_be_p(ptr, u.i);
+}
+
+static inline float64 ldfq_be_p(const void *ptr)
+{
+    CPU_DoubleU u;
+    u.l.upper = ldl_be_p(ptr);
+    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
+    return u.d;
+}
+
+static inline void stfq_be_p(void *ptr, float64 v)
+{
+    CPU_DoubleU u;
+    u.d = v;
+    stl_be_p(ptr, u.l.upper);
+    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
+}
+
+#else
+
+static inline int lduw_be_p(const void *ptr)
+{
+    return *(uint16_t *)ptr;
+}
+
+static inline int ldsw_be_p(const void *ptr)
+{
+    return *(int16_t *)ptr;
+}
+
+static inline int ldl_be_p(const void *ptr)
+{
+    return *(uint32_t *)ptr;
+}
+
+static inline uint64_t ldq_be_p(const void *ptr)
+{
+    return *(uint64_t *)ptr;
+}
+
+static inline void stw_be_p(void *ptr, int v)
+{
+    *(uint16_t *)ptr = v;
+}
+
+static inline void stl_be_p(void *ptr, int v)
+{
+    *(uint32_t *)ptr = v;
+}
+
+static inline void stq_be_p(void *ptr, uint64_t v)
+{
+    *(uint64_t *)ptr = v;
+}
+
+/* float access */
+
+static inline float32 ldfl_be_p(const void *ptr)
+{
+    return *(float32 *)ptr;
+}
+
+static inline float64 ldfq_be_p(const void *ptr)
+{
+    return *(float64 *)ptr;
+}
+
+static inline void stfl_be_p(void *ptr, float32 v)
+{
+    *(float32 *)ptr = v;
+}
+
+static inline void stfq_be_p(void *ptr, float64 v)
+{
+    *(float64 *)ptr = v;
+}
+
+#endif
+
+/* target CPU memory access functions */
+#if defined(TARGET_WORDS_BIGENDIAN)
+#define lduw_p(p) lduw_be_p(p)
+#define ldsw_p(p) ldsw_be_p(p)
+#define ldl_p(p) ldl_be_p(p)
+#define ldq_p(p) ldq_be_p(p)
+#define ldfl_p(p) ldfl_be_p(p)
+#define ldfq_p(p) ldfq_be_p(p)
+#define stw_p(p, v) stw_be_p(p, v)
+#define stl_p(p, v) stl_be_p(p, v)
+#define stq_p(p, v) stq_be_p(p, v)
+#define stfl_p(p, v) stfl_be_p(p, v)
+#define stfq_p(p, v) stfq_be_p(p, v)
+#else
+#define lduw_p(p) lduw_le_p(p)
+#define ldsw_p(p) ldsw_le_p(p)
+#define ldl_p(p) ldl_le_p(p)
+#define ldq_p(p) ldq_le_p(p)
+#define ldfl_p(p) ldfl_le_p(p)
+#define ldfq_p(p) ldfq_le_p(p)
+#define stw_p(p, v) stw_le_p(p, v)
+#define stl_p(p, v) stl_le_p(p, v)
+#define stq_p(p, v) stq_le_p(p, v)
+#define stfl_p(p, v) stfl_le_p(p, v)
+#define stfq_p(p, v) stfq_le_p(p, v)
+#endif
+
+/* MMU memory access macros */
+
+#if defined(CONFIG_USER_ONLY)
+#include <assert.h>
+#include "qemu-types.h"
+
+/* On some host systems the guest address space is reserved on the host.
+ * This allows the guest address space to be offset to a convenient location.
+ */
+//#define GUEST_BASE 0x20000000
+#define GUEST_BASE 0
+
+/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
+#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
+#define h2g(x) ({ \
+    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
+    /* Check if given address fits target address space */ \
+    assert(__ret == (abi_ulong)__ret); \
+    (abi_ulong)__ret; \
+})
+#define h2g_valid(x) ({ \
+    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
+    (__guest == (abi_ulong)__guest); \
+})
+
+#define saddr(x) g2h(x)
+#define laddr(x) g2h(x)
+
+#else /* !CONFIG_USER_ONLY */
+/* NOTE: we use double casts if pointers and target_ulong have
+   different sizes */
+#define saddr(x) (uint8_t *)(long)(x)
+#define laddr(x) (uint8_t *)(long)(x)
+#endif
+
+#define ldub_raw(p) ldub_p(laddr((p)))
+#define ldsb_raw(p) ldsb_p(laddr((p)))
+#define lduw_raw(p) lduw_p(laddr((p)))
+#define ldsw_raw(p) ldsw_p(laddr((p)))
+#define ldl_raw(p) ldl_p(laddr((p)))
+#define ldq_raw(p) ldq_p(laddr((p)))
+#define ldfl_raw(p) ldfl_p(laddr((p)))
+#define ldfq_raw(p) ldfq_p(laddr((p)))
+#define stb_raw(p, v) stb_p(saddr((p)), v)
+#define stw_raw(p, v) stw_p(saddr((p)), v)
+#define stl_raw(p, v) stl_p(saddr((p)), v)
+#define stq_raw(p, v) stq_p(saddr((p)), v)
+#define stfl_raw(p, v) stfl_p(saddr((p)), v)
+#define stfq_raw(p, v) stfq_p(saddr((p)), v)
+
+
+#if defined(CONFIG_USER_ONLY)
+
+/* if user mode, no other memory access functions */
+#define ldub(p) ldub_raw(p)
+#define ldsb(p) ldsb_raw(p)
+#define lduw(p) lduw_raw(p)
+#define ldsw(p) ldsw_raw(p)
+#define ldl(p) ldl_raw(p)
+#define ldq(p) ldq_raw(p)
+#define ldfl(p) ldfl_raw(p)
+#define ldfq(p) ldfq_raw(p)
+#define stb(p, v) stb_raw(p, v)
+#define stw(p, v) stw_raw(p, v)
+#define stl(p, v) stl_raw(p, v)
+#define stq(p, v) stq_raw(p, v)
+#define stfl(p, v) stfl_raw(p, v)
+#define stfq(p, v) stfq_raw(p, v)
+
+#define ldub_code(p) ldub_raw(p)
+#define ldsb_code(p) ldsb_raw(p)
+#define lduw_code(p) lduw_raw(p)
+#define ldsw_code(p) ldsw_raw(p)
+#define ldl_code(p) ldl_raw(p)
+#define ldq_code(p) ldq_raw(p)
+
+#define ldub_kernel(p) ldub_raw(p)
+#define ldsb_kernel(p) ldsb_raw(p)
+#define lduw_kernel(p) lduw_raw(p)
+#define ldsw_kernel(p) ldsw_raw(p)
+#define ldl_kernel(p) ldl_raw(p)
+#define ldq_kernel(p) ldq_raw(p)
+#define ldfl_kernel(p) ldfl_raw(p)
+#define ldfq_kernel(p) ldfq_raw(p)
+#define stb_kernel(p, v) stb_raw(p, v)
+#define stw_kernel(p, v) stw_raw(p, v)
+#define stl_kernel(p, v) stl_raw(p, v)
+#define stq_kernel(p, v) stq_raw(p, v)
+#define stfl_kernel(p, v) stfl_raw(p, v)
+#define stfq_kernel(p, vt) stfq_raw(p, v)
+
+#endif /* defined(CONFIG_USER_ONLY) */
+
+/* page related stuff */
+
+#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
+#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
+#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
+
+/* ??? These should be the larger of unsigned long and target_ulong.  */
+extern unsigned long qemu_real_host_page_size;
+extern unsigned long qemu_host_page_bits;
+extern unsigned long qemu_host_page_size;
+extern unsigned long qemu_host_page_mask;
+
+#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
+
+/* same as PROT_xxx */
+#define PAGE_READ      0x0001
+#define PAGE_WRITE     0x0002
+#define PAGE_EXEC      0x0004
+#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
+#define PAGE_VALID     0x0008
+/* original state of the write flag (used when tracking self-modifying
+   code */
+#define PAGE_WRITE_ORG 0x0010
+#define PAGE_RESERVED  0x0020
+
+void page_dump(FILE *f);
+int page_get_flags(target_ulong address);
+void page_set_flags(target_ulong start, target_ulong end, int flags);
+int page_check_range(target_ulong start, target_ulong len, int flags);
+
+void cpu_exec_init_all(unsigned long tb_size);
+CPUState *cpu_copy(CPUState *env);
+
+void cpu_dump_state(CPUState *env, FILE *f,
+                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+                    int flags);
+void cpu_dump_statistics (CPUState *env, FILE *f,
+                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+                          int flags);
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+    __attribute__ ((__format__ (__printf__, 2, 3)))
+    __attribute__ ((__noreturn__));
+extern CPUState *first_cpu;
+extern CPUState *cpu_single_env;
+extern int64_t qemu_icount;
+extern int use_icount;
+
+#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
+#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
+#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
+#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
+#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
+#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
+#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
+#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
+#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
+#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
+
+void cpu_interrupt(CPUState *s, int mask);
+void cpu_reset_interrupt(CPUState *env, int mask);
+
+/* Breakpoint/watchpoint flags */
+#define BP_MEM_READ           0x01
+#define BP_MEM_WRITE          0x02
+#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
+#define BP_STOP_BEFORE_ACCESS 0x04
+#define BP_WATCHPOINT_HIT     0x08
+#define BP_GDB                0x10
+#define BP_CPU                0x20
+
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+                          CPUBreakpoint **breakpoint);
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
+void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
+void cpu_breakpoint_remove_all(CPUState *env, int mask);
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+                          int flags, CPUWatchpoint **watchpoint);
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
+                          target_ulong len, int flags);
+void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
+void cpu_watchpoint_remove_all(CPUState *env, int mask);
+
+#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
+#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
+#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
+
+void cpu_single_step(CPUState *env, int enabled);
+void cpu_reset(CPUState *s);
+
+/* Return the physical page corresponding to a virtual one. Use it
+   only for debugging because no protection checks are done. Return -1
+   if no page found. */
+target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
+
+#define CPU_LOG_TB_OUT_ASM (1 << 0)
+#define CPU_LOG_TB_IN_ASM  (1 << 1)
+#define CPU_LOG_TB_OP      (1 << 2)
+#define CPU_LOG_TB_OP_OPT  (1 << 3)
+#define CPU_LOG_INT        (1 << 4)
+#define CPU_LOG_EXEC       (1 << 5)
+#define CPU_LOG_PCALL      (1 << 6)
+#define CPU_LOG_IOPORT     (1 << 7)
+#define CPU_LOG_TB_CPU     (1 << 8)
+
+/* define log items */
+typedef struct CPULogItem {
+    int mask;
+    const char *name;
+    const char *help;
+} CPULogItem;
+
+extern const CPULogItem cpu_log_items[];
+
+void cpu_set_log(int log_flags);
+void cpu_set_log_filename(const char *filename);
+int cpu_str_to_log_mask(const char *str);
+
+/* IO ports API */
+
+/* NOTE: as these functions may be even used when there is an isa
+   brige on non x86 targets, we always defined them */
+#ifndef NO_CPU_IO_DEFS
+void cpu_outb(CPUState *env, int addr, int val);
+void cpu_outw(CPUState *env, int addr, int val);
+void cpu_outl(CPUState *env, int addr, int val);
+int cpu_inb(CPUState *env, int addr);
+int cpu_inw(CPUState *env, int addr);
+int cpu_inl(CPUState *env, int addr);
+#endif
+
+/* address in the RAM (different from a physical address) */
+#ifdef USE_KQEMU
+typedef uint32_t ram_addr_t;
+#else
+typedef unsigned long ram_addr_t;
+#endif
+
+/* memory API */
+
+extern ram_addr_t phys_ram_size;
+extern int phys_ram_fd;
+#ifdef USE_KQEMU
+extern uint8_t *kqemu_phys_ram_base;
+#endif
+extern uint8_t *phys_ram_dirty;
+extern ram_addr_t ram_size;
+
+/* physical memory access */
+
+/* MMIO pages are identified by a combination of an IO device index and
+   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
+   so only a limited number of ids are avaiable.  */
+
+#define IO_MEM_SHIFT       3
+#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
+
+#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
+#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
+#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
+#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
+
+/* Acts like a ROM when read and like a device when written.  */
+#define IO_MEM_ROMD        (1)
+#define IO_MEM_SUBPAGE     (2)
+#define IO_MEM_SUBWIDTH    (4)
+
+/* Flags stored in the low bits of the TLB virtual address.  These are
+   defined so that fast path ram access is all zeros.  */
+/* Zero if TLB entry is valid.  */
+#define TLB_INVALID_MASK   (1 << 3)
+/* Set if TLB entry references a clean RAM page.  The iotlb entry will
+   contain the page physical address.  */
+#define TLB_NOTDIRTY    (1 << 4)
+/* Set if TLB entry is an IO callback.  */
+#define TLB_MMIO        (1 << 5)
+
+typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
+typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
+
+void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
+                                         ram_addr_t size,
+                                         ram_addr_t phys_offset,
+                                         ram_addr_t region_offset);
+static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
+                                                ram_addr_t size,
+                                                ram_addr_t phys_offset)
+{
+    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
+}
+
+/* FIXME: These should not exist.  cpu_physical_memory_rw or a DMA API
+   should be used instead.  */ 
+uint8_t *host_ram_addr(ram_addr_t offset);
+ram_addr_t ram_offset_from_host(uint8_t *addr);
+ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
+ram_addr_t get_ram_offset_phys(target_phys_addr_t addr);
+ram_addr_t qemu_ram_alloc(ram_addr_t);
+void qemu_ram_free(ram_addr_t addr);
+int cpu_register_io_memory(int io_index,
+                           CPUReadMemoryFunc **mem_read,
+                           CPUWriteMemoryFunc **mem_write,
+                           void *opaque);
+CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
+CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
+
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+                            int len, int is_write);
+static inline void cpu_physical_memory_read(target_phys_addr_t addr,
+                                            uint8_t *buf, int len)
+{
+    cpu_physical_memory_rw(addr, buf, len, 0);
+}
+static inline void cpu_physical_memory_write(target_phys_addr_t addr,
+                                             const uint8_t *buf, int len)
+{
+    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
+}
+uint32_t ldub_phys(target_phys_addr_t addr);
+uint32_t lduw_phys(target_phys_addr_t addr);
+uint32_t ldl_phys(target_phys_addr_t addr);
+uint64_t ldq_phys(target_phys_addr_t addr);
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
+void stb_phys(target_phys_addr_t addr, uint32_t val);
+void stw_phys(target_phys_addr_t addr, uint32_t val);
+void stl_phys(target_phys_addr_t addr, uint32_t val);
+void stq_phys(target_phys_addr_t addr, uint64_t val);
+
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+                                   const uint8_t *buf, int len);
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+                        uint8_t *buf, int len, int is_write);
+
+#define VGA_DIRTY_FLAG       0x01
+#define CODE_DIRTY_FLAG      0x02
+#define KQEMU_DIRTY_FLAG     0x04
+#define MIGRATION_DIRTY_FLAG 0x08
+
+/* read dirty bit (return 0 or 1) */
+static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
+{
+    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
+}
+
+static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
+                                                int dirty_flags)
+{
+    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
+}
+
+static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
+{
+    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
+}
+
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+                                     int dirty_flags);
+void cpu_tlb_update_dirty(CPUState *env);
+
+int cpu_physical_memory_set_dirty_tracking(int enable);
+
+int cpu_physical_memory_get_dirty_tracking(void);
+
+void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
+
+void dump_exec_info(FILE *f,
+                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
+
+/* Coalesced MMIO regions are areas where write operations can be reordered.
+ * This usually implies that write operations are side-effect free.  This allows
+ * batching which can make a major impact on performance when using
+ * virtualization.
+ */
+void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
+
+void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
+
+/*******************************************/
+/* host CPU ticks (if available) */
+
+#if defined(__powerpc__)
+
+static inline uint32_t get_tbl(void)
+{
+    uint32_t tbl;
+    asm volatile("mftb %0" : "=r" (tbl));
+    return tbl;
+}
+
+static inline uint32_t get_tbu(void)
+{
+	uint32_t tbl;
+	asm volatile("mftbu %0" : "=r" (tbl));
+	return tbl;
+}
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+    uint32_t l, h, h1;
+    /* NOTE: we test if wrapping has occurred */
+    do {
+        h = get_tbu();
+        l = get_tbl();
+        h1 = get_tbu();
+    } while (h != h1);
+    return ((int64_t)h << 32) | l;
+}
+
+#elif defined(__i386__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+    int64_t val;
+    asm volatile ("rdtsc" : "=A" (val));
+    return val;
+}
+
+#elif defined(__x86_64__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+    uint32_t low,high;
+    int64_t val;
+    asm volatile("rdtsc" : "=a" (low), "=d" (high));
+    val = high;
+    val <<= 32;
+    val |= low;
+    return val;
+}
+
+#elif defined(__hppa__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+    int val;
+    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
+    return val;
+}
+
+#elif defined(__ia64)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+	int64_t val;
+	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
+	return val;
+}
+
+#elif defined(__s390__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+    int64_t val;
+    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
+    return val;
+}
+
+#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
+
+static inline int64_t cpu_get_real_ticks (void)
+{
+#if     defined(_LP64)
+        uint64_t        rval;
+        asm volatile("rd %%tick,%0" : "=r"(rval));
+        return rval;
+#else
+        union {
+                uint64_t i64;
+                struct {
+                        uint32_t high;
+                        uint32_t low;
+                }       i32;
+        } rval;
+        asm volatile("rd %%tick,%1; srlx %1,32,%0"
+                : "=r"(rval.i32.high), "=r"(rval.i32.low));
+        return rval.i64;
+#endif
+}
+
+#elif defined(__mips__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+#if __mips_isa_rev >= 2
+    uint32_t count;
+    static uint32_t cyc_per_count = 0;
+
+    if (!cyc_per_count)
+        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
+
+    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
+    return (int64_t)(count * cyc_per_count);
+#else
+    /* FIXME */
+    static int64_t ticks = 0;
+    return ticks++;
+#endif
+}
+
+#else
+/* The host CPU doesn't have an easily accessible cycle counter.
+   Just return a monotonically increasing value.  This will be
+   totally wrong, but hopefully better than nothing.  */
+static inline int64_t cpu_get_real_ticks (void)
+{
+    static int64_t ticks = 0;
+    return ticks++;
+}
+#endif
+
+/* profiling */
+#ifdef CONFIG_PROFILER
+static inline int64_t profile_getclock(void)
+{
+    return cpu_get_real_ticks();
+}
+
+extern int64_t kqemu_time, kqemu_time_start;
+extern int64_t qemu_time, qemu_time_start;
+extern int64_t tlb_flush_time;
+extern int64_t kqemu_exec_count;
+extern int64_t dev_time;
+extern int64_t kqemu_ret_int_count;
+extern int64_t kqemu_ret_excp_count;
+extern int64_t kqemu_ret_intr_count;
+#endif
+
+#endif /* CPU_ALL_H */