symbian-qemu-0.9.1-12/qemu-symbian-svp/exec-all.h
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/qemu-symbian-svp/exec-all.h	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,392 @@
+/*
+ * internal execution defines for qemu
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#ifndef _EXEC_ALL_H_
+#define _EXEC_ALL_H_
+/* allow to see translation results - the slowdown should be negligible, so we leave it */
+#define DEBUG_DISAS
+
+/* is_jmp field values */
+#define DISAS_NEXT    0 /* next instruction can be analyzed */
+#define DISAS_JUMP    1 /* only pc was modified dynamically */
+#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
+#define DISAS_TB_JUMP 3 /* only pc was modified statically */
+
+typedef struct TranslationBlock TranslationBlock;
+
+/* XXX: make safe guess about sizes */
+/* Most instructions only generate a few ops.  However load multiple
+   instructions (inparticular the NEON array load instructions) expand to a
+   very large number of ops.  */
+#define MAX_OP_PER_INSTR 200
+/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
+#define MAX_OPC_PARAM 10
+#define OPC_BUF_SIZE 512
+#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
+
+/* Maximum size a TCG op can expand to.  This is complicated because a
+   single op may require several host instructions and regirster reloads.
+   For now take a wild guess at 128 bytes, which should allow at least
+   a couple of fixup instructions per argument.  */
+#define TCG_MAX_OP_SIZE 128
+
+#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
+
+extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
+extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
+extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
+extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
+extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
+extern target_ulong gen_opc_jump_pc[2];
+extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
+
+typedef void (GenOpFunc)(void);
+typedef void (GenOpFunc1)(long);
+typedef void (GenOpFunc2)(long, long);
+typedef void (GenOpFunc3)(long, long, long);
+
+#include "qemu-log.h"
+
+void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
+void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
+void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
+                 unsigned long searched_pc, int pc_pos, void *puc);
+
+unsigned long code_gen_max_block_size(void);
+void cpu_gen_init(void);
+int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
+                 int *gen_code_size_ptr);
+int cpu_restore_state(struct TranslationBlock *tb,
+                      CPUState *env, unsigned long searched_pc,
+                      void *puc);
+int cpu_restore_state_copy(struct TranslationBlock *tb,
+                           CPUState *env, unsigned long searched_pc,
+                           void *puc);
+void cpu_resume_from_signal(CPUState *env1, void *puc);
+void cpu_io_recompile(CPUState *env, void *retaddr);
+TranslationBlock *tb_gen_code(CPUState *env, 
+                              target_ulong pc, target_ulong cs_base, int flags,
+                              int cflags);
+void cpu_exec_init(CPUState *env);
+void cpu_loop_exit(void);
+int page_unprotect(target_ulong address, unsigned long pc, void *puc);
+void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
+                                   int is_cpu_write_access);
+void tb_invalidate_page_range(target_ulong start, target_ulong end);
+void tlb_flush_page(CPUState *env, target_ulong addr);
+void tlb_flush(CPUState *env, int flush_global);
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+                      target_phys_addr_t paddr, int prot,
+                      int mmu_idx, int is_softmmu);
+static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
+                               target_phys_addr_t paddr, int prot,
+                               int mmu_idx, int is_softmmu)
+{
+    if (prot & PAGE_READ)
+        prot |= PAGE_EXEC;
+    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
+}
+
+#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
+
+#define CODE_GEN_PHYS_HASH_BITS     15
+#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
+
+#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
+
+/* estimated block size for TB allocation */
+/* XXX: use a per code average code fragment size and modulate it
+   according to the host CPU */
+#if defined(CONFIG_SOFTMMU)
+#define CODE_GEN_AVG_BLOCK_SIZE 128
+#else
+#define CODE_GEN_AVG_BLOCK_SIZE 64
+#endif
+
+#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
+#define USE_DIRECT_JUMP
+#endif
+#if defined(__i386__) && !defined(_WIN32)
+#define USE_DIRECT_JUMP
+#endif
+
+struct TranslationBlock {
+    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
+    target_ulong cs_base; /* CS base for this block */
+    uint64_t flags; /* flags defining in which context the code was generated */
+    uint16_t size;      /* size of target code for this block (1 <=
+                           size <= TARGET_PAGE_SIZE) */
+    uint16_t cflags;    /* compile flags */
+#define CF_COUNT_MASK  0x7fff
+#define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
+
+    uint8_t *tc_ptr;    /* pointer to the translated code */
+    /* next matching tb for physical address. */
+    struct TranslationBlock *phys_hash_next;
+    /* first and second physical page containing code. The lower bit
+       of the pointer tells the index in page_next[] */
+    struct TranslationBlock *page_next[2];
+    target_ulong page_addr[2];
+
+    /* the following data are used to directly call another TB from
+       the code of this one. */
+    uint16_t tb_next_offset[2]; /* offset of original jump target */
+#ifdef USE_DIRECT_JUMP
+    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
+#else
+    unsigned long tb_next[2]; /* address of jump generated code */
+#endif
+    /* list of TBs jumping to this one. This is a circular list using
+       the two least significant bits of the pointers to tell what is
+       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
+       jmp_first */
+    struct TranslationBlock *jmp_next[2];
+    struct TranslationBlock *jmp_first;
+    uint32_t icount;
+};
+
+static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
+{
+    target_ulong tmp;
+    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
+}
+
+static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
+{
+    target_ulong tmp;
+    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
+	    | (tmp & TB_JMP_ADDR_MASK));
+}
+
+static inline unsigned int tb_phys_hash_func(unsigned long pc)
+{
+    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
+}
+
+TranslationBlock *tb_alloc(target_ulong pc);
+void tb_free(TranslationBlock *tb);
+void tb_flush(CPUState *env);
+void tb_link_phys(TranslationBlock *tb,
+                  target_ulong phys_pc, target_ulong phys_page2);
+void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
+
+extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
+extern uint8_t *code_gen_ptr;
+extern int code_gen_max_blocks;
+
+#if defined(USE_DIRECT_JUMP)
+
+#if defined(__powerpc__)
+extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
+#define tb_set_jmp_target1 ppc_tb_set_jmp_target
+#elif defined(__i386__) || defined(__x86_64__)
+static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
+{
+    /* patch the branch destination */
+    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
+    /* no need to flush icache explicitly */
+}
+#elif defined(__arm__)
+static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
+{
+#if QEMU_GNUC_PREREQ(4, 1)
+    void __clear_cache(char *beg, char *end);
+#else
+    register unsigned long _beg __asm ("a1");
+    register unsigned long _end __asm ("a2");
+    register unsigned long _flg __asm ("a3");
+#endif
+
+    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
+    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
+
+#if QEMU_GNUC_PREREQ(4, 1)
+    __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
+#else
+    /* flush icache */
+    _beg = jmp_addr;
+    _end = jmp_addr + 4;
+    _flg = 0;
+    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
+#endif
+}
+#endif
+
+static inline void tb_set_jmp_target(TranslationBlock *tb,
+                                     int n, unsigned long addr)
+{
+    unsigned long offset;
+
+    offset = tb->tb_jmp_offset[n];
+    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
+    offset = tb->tb_jmp_offset[n + 2];
+    if (offset != 0xffff)
+        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
+}
+
+#else
+
+/* set the jump target */
+static inline void tb_set_jmp_target(TranslationBlock *tb,
+                                     int n, unsigned long addr)
+{
+    tb->tb_next[n] = addr;
+}
+
+#endif
+
+static inline void tb_add_jump(TranslationBlock *tb, int n,
+                               TranslationBlock *tb_next)
+{
+    /* NOTE: this test is only needed for thread safety */
+    if (!tb->jmp_next[n]) {
+        /* patch the native jump address */
+        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
+
+        /* add in TB jmp circular list */
+        tb->jmp_next[n] = tb_next->jmp_first;
+        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
+    }
+}
+
+TranslationBlock *tb_find_pc(unsigned long pc_ptr);
+
+extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
+extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
+
+#include "qemu-lock.h"
+
+extern spinlock_t tb_lock;
+
+extern int tb_invalidated_flag;
+
+#if !defined(CONFIG_USER_ONLY)
+
+void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
+              void *retaddr);
+
+#include "softmmu_defs.h"
+
+#define ACCESS_TYPE (NB_MMU_MODES + 1)
+#define MEMSUFFIX _code
+#define env cpu_single_env
+
+#define DATA_SIZE 1
+#include "softmmu_header.h"
+
+#define DATA_SIZE 2
+#include "softmmu_header.h"
+
+#define DATA_SIZE 4
+#include "softmmu_header.h"
+
+#define DATA_SIZE 8
+#include "softmmu_header.h"
+
+#undef ACCESS_TYPE
+#undef MEMSUFFIX
+#undef env
+
+#endif
+
+#if defined(CONFIG_USER_ONLY)
+static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
+{
+    return addr;
+}
+#else
+/* NOTE: this function can trigger an exception */
+/* NOTE2: the returned address is not exactly the physical address: it
+   is the offset relative to phys_ram_base */
+static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
+{
+    int mmu_idx, page_index, pd;
+
+    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+    mmu_idx = cpu_mmu_index(env1);
+    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
+                 (addr & TARGET_PAGE_MASK))) {
+        ldub_code(addr);
+    }
+    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
+    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
+        do_unassigned_access(addr, 0, 1, 0, 4);
+#else
+        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
+#endif
+    }
+    return ram_offset_from_host((uint8_t *)(addr + env1->tlb_table[mmu_idx][page_index].addend));
+}
+
+/* Deterministic execution requires that IO only be performed on the last
+   instruction of a TB so that interrupts take effect immediately.  */
+static inline int can_do_io(CPUState *env)
+{
+    if (!use_icount)
+        return 1;
+
+    /* If not executing code then assume we are ok.  */
+    if (!env->current_tb)
+        return 1;
+
+    return env->can_do_io != 0;
+}
+#endif
+
+#ifdef USE_KQEMU
+#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
+
+#define MSR_QPI_COMMBASE 0xfabe0010
+
+int kqemu_init(CPUState *env);
+int kqemu_cpu_exec(CPUState *env);
+void kqemu_flush_page(CPUState *env, target_ulong addr);
+void kqemu_flush(CPUState *env, int global);
+void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
+void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
+void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
+                        ram_addr_t phys_offset);
+void kqemu_cpu_interrupt(CPUState *env);
+void kqemu_record_dump(void);
+
+extern uint32_t kqemu_comm_base;
+
+static inline int kqemu_is_ok(CPUState *env)
+{
+    return(env->kqemu_enabled &&
+           (env->cr[0] & CR0_PE_MASK) &&
+           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
+           (env->eflags & IF_MASK) &&
+           !(env->eflags & VM_MASK) &&
+           (env->kqemu_enabled == 2 ||
+            ((env->hflags & HF_CPL_MASK) == 3 &&
+             (env->eflags & IOPL_MASK) != IOPL_MASK)));
+}
+
+#endif
+
+typedef void (CPUDebugExcpHandler)(CPUState *env);
+
+CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
+#endif