symbian-qemu-0.9.1-12/qemu-symbian-svp/target-i386/kvm.c
author martin.trojer@nokia.com
Fri, 31 Jul 2009 15:01:17 +0100
changeset 1 2fb8b9db1c86
permissions -rw-r--r--
Initial QEMU (symbian-qemu-0.9.1-12) import

/*
 * QEMU KVM support
 *
 * Copyright (C) 2006-2008 Qumranet Technologies
 * Copyright IBM, Corp. 2008
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
#include "kvm.h"
#include "cpu.h"

//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
    do { } while (0)
#endif

int kvm_arch_init_vcpu(CPUState *env)
{
    struct {
        struct kvm_cpuid cpuid;
        struct kvm_cpuid_entry entries[100];
    } __attribute__((packed)) cpuid_data;
    uint32_t limit, i, cpuid_i;
    uint32_t eax, ebx, ecx, edx;

    cpuid_i = 0;

    cpu_x86_cpuid(env, 0, &eax, &ebx, &ecx, &edx);
    limit = eax;

    for (i = 0; i <= limit; i++) {
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];

        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
        c->function = i;
        c->eax = eax;
        c->ebx = ebx;
        c->ecx = ecx;
        c->edx = edx;
    }

    cpu_x86_cpuid(env, 0x80000000, &eax, &ebx, &ecx, &edx);
    limit = eax;

    for (i = 0x80000000; i <= limit; i++) {
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];

        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
        c->function = i;
        c->eax = eax;
        c->ebx = ebx;
        c->ecx = ecx;
        c->edx = edx;
    }

    cpuid_data.cpuid.nent = cpuid_i;

    return kvm_vcpu_ioctl(env, KVM_SET_CPUID, &cpuid_data);
}

static int kvm_has_msr_star(CPUState *env)
{
    static int has_msr_star;
    int ret;

    /* first time */
    if (has_msr_star == 0) {        
        struct kvm_msr_list msr_list, *kvm_msr_list;

        has_msr_star = -1;

        /* Obtain MSR list from KVM.  These are the MSRs that we must
         * save/restore */
        msr_list.nmsrs = 0;
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
        if (ret < 0)
            return 0;

        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
        if (kvm_msr_list == NULL)
            return 0;

        kvm_msr_list->nmsrs = msr_list.nmsrs;
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
        if (ret >= 0) {
            int i;

            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
                if (kvm_msr_list->indices[i] == MSR_STAR) {
                    has_msr_star = 1;
                    break;
                }
            }
        }

        free(kvm_msr_list);
    }

    if (has_msr_star == 1)
        return 1;
    return 0;
}

int kvm_arch_init(KVMState *s, int smp_cpus)
{
    int ret;

    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
     * must be part of guest physical memory, we need to allocate it.  Older
     * versions of KVM just assumed that it would be at the end of physical
     * memory but that doesn't work with more than 4GB of memory.  We simply
     * refuse to work with those older versions of KVM. */
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
    if (ret <= 0) {
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
        return ret;
    }

    /* this address is 3 pages before the bios, and the bios should present
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
     * this?
     */
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
}
                    
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = 3;
    lhs->present = 1;
    lhs->dpl = 3;
    lhs->db = 0;
    lhs->s = 1;
    lhs->l = 0;
    lhs->g = 0;
    lhs->avl = 0;
    lhs->unusable = 0;
}

static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
{
    unsigned flags = rhs->flags;
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
    lhs->present = (flags & DESC_P_MASK) != 0;
    lhs->dpl = rhs->selector & 3;
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
    lhs->s = (flags & DESC_S_MASK) != 0;
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
    lhs->g = (flags & DESC_G_MASK) != 0;
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
    lhs->unusable = 0;
}

static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
{
    lhs->selector = rhs->selector;
    lhs->base = rhs->base;
    lhs->limit = rhs->limit;
    lhs->flags =
	(rhs->type << DESC_TYPE_SHIFT)
	| (rhs->present * DESC_P_MASK)
	| (rhs->dpl << DESC_DPL_SHIFT)
	| (rhs->db << DESC_B_SHIFT)
	| (rhs->s * DESC_S_MASK)
	| (rhs->l << DESC_L_SHIFT)
	| (rhs->g * DESC_G_MASK)
	| (rhs->avl * DESC_AVL_MASK);
}

static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
{
    if (set)
        *kvm_reg = *qemu_reg;
    else
        *qemu_reg = *kvm_reg;
}

static int kvm_getput_regs(CPUState *env, int set)
{
    struct kvm_regs regs;
    int ret = 0;

    if (!set) {
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
        if (ret < 0)
            return ret;
    }

    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
#ifdef TARGET_X86_64
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
#endif

    kvm_getput_reg(&regs.rflags, &env->eflags, set);
    kvm_getput_reg(&regs.rip, &env->eip, set);

    if (set)
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);

    return ret;
}

static int kvm_put_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i;

    memset(&fpu, 0, sizeof fpu);
    fpu.fsw = env->fpus & ~(7 << 11);
    fpu.fsw |= (env->fpstt & 7) << 11;
    fpu.fcw = env->fpuc;
    for (i = 0; i < 8; ++i)
	fpu.ftwx |= (!env->fptags[i]) << i;
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
    fpu.mxcsr = env->mxcsr;

    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
}

static int kvm_put_sregs(CPUState *env)
{
    struct kvm_sregs sregs;

    memcpy(sregs.interrupt_bitmap,
           env->interrupt_bitmap,
           sizeof(sregs.interrupt_bitmap));

    if ((env->eflags & VM_MASK)) {
	    set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
	    set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
	    set_v8086_seg(&sregs.es, &env->segs[R_ES]);
	    set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
	    set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
	    set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
    } else {
	    set_seg(&sregs.cs, &env->segs[R_CS]);
	    set_seg(&sregs.ds, &env->segs[R_DS]);
	    set_seg(&sregs.es, &env->segs[R_ES]);
	    set_seg(&sregs.fs, &env->segs[R_FS]);
	    set_seg(&sregs.gs, &env->segs[R_GS]);
	    set_seg(&sregs.ss, &env->segs[R_SS]);

	    if (env->cr[0] & CR0_PE_MASK) {
		/* force ss cpl to cs cpl */
		sregs.ss.selector = (sregs.ss.selector & ~3) |
			(sregs.cs.selector & 3);
		sregs.ss.dpl = sregs.ss.selector & 3;
	    }
    }

    set_seg(&sregs.tr, &env->tr);
    set_seg(&sregs.ldt, &env->ldt);

    sregs.idt.limit = env->idt.limit;
    sregs.idt.base = env->idt.base;
    sregs.gdt.limit = env->gdt.limit;
    sregs.gdt.base = env->gdt.base;

    sregs.cr0 = env->cr[0];
    sregs.cr2 = env->cr[2];
    sregs.cr3 = env->cr[3];
    sregs.cr4 = env->cr[4];

    sregs.cr8 = cpu_get_apic_tpr(env);
    sregs.apic_base = cpu_get_apic_base(env);

    sregs.efer = env->efer;

    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
}

static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
                              uint32_t index, uint64_t value)
{
    entry->index = index;
    entry->data = value;
}

static int kvm_put_msrs(CPUState *env)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int n = 0;

    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
    if (kvm_has_msr_star(env))
	kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
#ifdef TARGET_X86_64
    /* FIXME if lm capable */
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
#endif
    msr_data.info.nmsrs = n;

    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);

}


static int kvm_get_fpu(CPUState *env)
{
    struct kvm_fpu fpu;
    int i, ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
    if (ret < 0)
        return ret;

    env->fpstt = (fpu.fsw >> 11) & 7;
    env->fpus = fpu.fsw;
    env->fpuc = fpu.fcw;
    for (i = 0; i < 8; ++i)
	env->fptags[i] = !((fpu.ftwx >> i) & 1);
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
    env->mxcsr = fpu.mxcsr;

    return 0;
}

static int kvm_get_sregs(CPUState *env)
{
    struct kvm_sregs sregs;
    uint32_t hflags;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
    if (ret < 0)
        return ret;

    memcpy(env->interrupt_bitmap, 
           sregs.interrupt_bitmap,
           sizeof(sregs.interrupt_bitmap));

    get_seg(&env->segs[R_CS], &sregs.cs);
    get_seg(&env->segs[R_DS], &sregs.ds);
    get_seg(&env->segs[R_ES], &sregs.es);
    get_seg(&env->segs[R_FS], &sregs.fs);
    get_seg(&env->segs[R_GS], &sregs.gs);
    get_seg(&env->segs[R_SS], &sregs.ss);

    get_seg(&env->tr, &sregs.tr);
    get_seg(&env->ldt, &sregs.ldt);

    env->idt.limit = sregs.idt.limit;
    env->idt.base = sregs.idt.base;
    env->gdt.limit = sregs.gdt.limit;
    env->gdt.base = sregs.gdt.base;

    env->cr[0] = sregs.cr0;
    env->cr[2] = sregs.cr2;
    env->cr[3] = sregs.cr3;
    env->cr[4] = sregs.cr4;

    cpu_set_apic_base(env, sregs.apic_base);

    env->efer = sregs.efer;
    //cpu_set_apic_tpr(env, sregs.cr8);

#define HFLAG_COPY_MASK ~( \
			HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
			HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
			HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
			HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)



    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
	    (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
	    (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);

    if (env->efer & MSR_EFER_LMA) {
        hflags |= HF_LMA_MASK;
    }

    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
    } else {
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_CS32_SHIFT);
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
		(DESC_B_SHIFT - HF_SS32_SHIFT);
        if (!(env->cr[0] & CR0_PE_MASK) ||
                   (env->eflags & VM_MASK) ||
                   !(hflags & HF_CS32_MASK)) {
                hflags |= HF_ADDSEG_MASK;
            } else {
                hflags |= ((env->segs[R_DS].base |
                                env->segs[R_ES].base |
                                env->segs[R_SS].base) != 0) <<
                    HF_ADDSEG_SHIFT;
            }
    }
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
    env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
    env->df = 1 - (2 * ((env->eflags >> 10) & 1));
    env->cc_op = CC_OP_EFLAGS;
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);

    return 0;
}

static int kvm_get_msrs(CPUState *env)
{
    struct {
        struct kvm_msrs info;
        struct kvm_msr_entry entries[100];
    } msr_data;
    struct kvm_msr_entry *msrs = msr_data.entries;
    int ret, i, n;

    n = 0;
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
    if (kvm_has_msr_star(env))
	msrs[n++].index = MSR_STAR;
    msrs[n++].index = MSR_IA32_TSC;
#ifdef TARGET_X86_64
    /* FIXME lm_capable_kernel */
    msrs[n++].index = MSR_CSTAR;
    msrs[n++].index = MSR_KERNELGSBASE;
    msrs[n++].index = MSR_FMASK;
    msrs[n++].index = MSR_LSTAR;
#endif
    msr_data.info.nmsrs = n;
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
    if (ret < 0)
        return ret;

    for (i = 0; i < ret; i++) {
        switch (msrs[i].index) {
        case MSR_IA32_SYSENTER_CS:
            env->sysenter_cs = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_ESP:
            env->sysenter_esp = msrs[i].data;
            break;
        case MSR_IA32_SYSENTER_EIP:
            env->sysenter_eip = msrs[i].data;
            break;
        case MSR_STAR:
            env->star = msrs[i].data;
            break;
#ifdef TARGET_X86_64
        case MSR_CSTAR:
            env->cstar = msrs[i].data;
            break;
        case MSR_KERNELGSBASE:
            env->kernelgsbase = msrs[i].data;
            break;
        case MSR_FMASK:
            env->fmask = msrs[i].data;
            break;
        case MSR_LSTAR:
            env->lstar = msrs[i].data;
            break;
#endif
        case MSR_IA32_TSC:
            env->tsc = msrs[i].data;
            break;
        }
    }

    return 0;
}

int kvm_arch_put_registers(CPUState *env)
{
    int ret;

    ret = kvm_getput_regs(env, 1);
    if (ret < 0)
        return ret;

    ret = kvm_put_fpu(env);
    if (ret < 0)
        return ret;

    ret = kvm_put_sregs(env);
    if (ret < 0)
        return ret;

    ret = kvm_put_msrs(env);
    if (ret < 0)
        return ret;

    return 0;
}

int kvm_arch_get_registers(CPUState *env)
{
    int ret;

    ret = kvm_getput_regs(env, 0);
    if (ret < 0)
        return ret;

    ret = kvm_get_fpu(env);
    if (ret < 0)
        return ret;

    ret = kvm_get_sregs(env);
    if (ret < 0)
        return ret;

    ret = kvm_get_msrs(env);
    if (ret < 0)
        return ret;

    return 0;
}

int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
{
    /* Try to inject an interrupt if the guest can accept it */
    if (run->ready_for_interrupt_injection &&
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
        (env->eflags & IF_MASK)) {
        int irq;

        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
        irq = cpu_get_pic_interrupt(env);
        if (irq >= 0) {
            struct kvm_interrupt intr;
            intr.irq = irq;
            /* FIXME: errors */
            dprintf("injected interrupt %d\n", irq);
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
        }
    }

    /* If we have an interrupt but the guest is not ready to receive an
     * interrupt, request an interrupt window exit.  This will
     * cause a return to userspace as soon as the guest is ready to
     * receive interrupts. */
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
        run->request_interrupt_window = 1;
    else
        run->request_interrupt_window = 0;

    dprintf("setting tpr\n");
    run->cr8 = cpu_get_apic_tpr(env);

    return 0;
}

int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
{
    if (run->if_flag)
        env->eflags |= IF_MASK;
    else
        env->eflags &= ~IF_MASK;
    
    cpu_set_apic_tpr(env, run->cr8);
    cpu_set_apic_base(env, run->apic_base);

    return 0;
}

static int kvm_handle_halt(CPUState *env)
{
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
          (env->eflags & IF_MASK)) &&
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
        env->halted = 1;
        env->exception_index = EXCP_HLT;
        return 0;
    }

    return 1;
}

int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
{
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_HLT:
        dprintf("handle_hlt\n");
        ret = kvm_handle_halt(env);
        break;
    }

    return ret;
}