symbian-qemu-0.9.1-12/qemu-symbian-svp/tests/sha1.c
author martin.trojer@nokia.com
Fri, 31 Jul 2009 15:01:17 +0100
changeset 1 2fb8b9db1c86
permissions -rw-r--r--
Initial QEMU (symbian-qemu-0.9.1-12) import


/* from valgrind tests */

/* ================ sha1.c ================ */
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain

Test Vectors (from FIPS PUB 180-1)
"abc"
  A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
  84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
A million repetitions of "a"
  34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/

/* #define LITTLE_ENDIAN * This should be #define'd already, if true. */
/* #define SHA1HANDSOFF * Copies data before messing with it. */

#define SHA1HANDSOFF

#include <stdio.h>
#include <string.h>
#include <sys/types.h>	/* for u_int*_t */

/* ================ sha1.h ================ */
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
*/

typedef struct {
    u_int32_t state[5];
    u_int32_t count[2];
    unsigned char buffer[64];
} SHA1_CTX;

void SHA1Transform(u_int32_t state[5], const unsigned char buffer[64]);
void SHA1Init(SHA1_CTX* context);
void SHA1Update(SHA1_CTX* context, const unsigned char* data, u_int32_t len);
void SHA1Final(unsigned char digest[20], SHA1_CTX* context);
/* ================ end of sha1.h ================ */
#include <endian.h>

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#if BYTE_ORDER == LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
    |(rol(block->l[i],8)&0x00FF00FF))
#elif BYTE_ORDER == BIG_ENDIAN
#define blk0(i) block->l[i]
#else
#error "Endianness not defined!"
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
    ^block->l[(i+2)&15]^block->l[i&15],1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);


/* Hash a single 512-bit block. This is the core of the algorithm. */

void SHA1Transform(u_int32_t state[5], const unsigned char buffer[64])
{
u_int32_t a, b, c, d, e;
typedef union {
    unsigned char c[64];
    u_int32_t l[16];
} CHAR64LONG16;
#ifdef SHA1HANDSOFF
CHAR64LONG16 block[1];  /* use array to appear as a pointer */
    memcpy(block, buffer, 64);
#else
    /* The following had better never be used because it causes the
     * pointer-to-const buffer to be cast into a pointer to non-const.
     * And the result is written through.  I threw a "const" in, hoping
     * this will cause a diagnostic.
     */
CHAR64LONG16* block = (const CHAR64LONG16*)buffer;
#endif
    /* Copy context->state[] to working vars */
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];
    /* 4 rounds of 20 operations each. Loop unrolled. */
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
    /* Add the working vars back into context.state[] */
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
    /* Wipe variables */
    a = b = c = d = e = 0;
#ifdef SHA1HANDSOFF
    memset(block, '\0', sizeof(block));
#endif
}


/* SHA1Init - Initialize new context */

void SHA1Init(SHA1_CTX* context)
{
    /* SHA1 initialization constants */
    context->state[0] = 0x67452301;
    context->state[1] = 0xEFCDAB89;
    context->state[2] = 0x98BADCFE;
    context->state[3] = 0x10325476;
    context->state[4] = 0xC3D2E1F0;
    context->count[0] = context->count[1] = 0;
}


/* Run your data through this. */

void SHA1Update(SHA1_CTX* context, const unsigned char* data, u_int32_t len)
{
u_int32_t i;
u_int32_t j;

    j = context->count[0];
    if ((context->count[0] += len << 3) < j)
	context->count[1]++;
    context->count[1] += (len>>29);
    j = (j >> 3) & 63;
    if ((j + len) > 63) {
        memcpy(&context->buffer[j], data, (i = 64-j));
        SHA1Transform(context->state, context->buffer);
        for ( ; i + 63 < len; i += 64) {
            SHA1Transform(context->state, &data[i]);
        }
        j = 0;
    }
    else i = 0;
    memcpy(&context->buffer[j], &data[i], len - i);
}


/* Add padding and return the message digest. */

void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
{
unsigned i;
unsigned char finalcount[8];
unsigned char c;

#if 0	/* untested "improvement" by DHR */
    /* Convert context->count to a sequence of bytes
     * in finalcount.  Second element first, but
     * big-endian order within element.
     * But we do it all backwards.
     */
    unsigned char *fcp = &finalcount[8];

    for (i = 0; i < 2; i++)
    {
	u_int32_t t = context->count[i];
	int j;

	for (j = 0; j < 4; t >>= 8, j++)
	    *--fcp = (unsigned char) t
    }
#else
    for (i = 0; i < 8; i++) {
        finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
         >> ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
    }
#endif
    c = 0200;
    SHA1Update(context, &c, 1);
    while ((context->count[0] & 504) != 448) {
	c = 0000;
        SHA1Update(context, &c, 1);
    }
    SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform() */
    for (i = 0; i < 20; i++) {
        digest[i] = (unsigned char)
         ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
    }
    /* Wipe variables */
    memset(context, '\0', sizeof(*context));
    memset(&finalcount, '\0', sizeof(finalcount));
}
/* ================ end of sha1.c ================ */

#define BUFSIZE 4096

int
main(int argc, char **argv)
{
    SHA1_CTX ctx;
    unsigned char hash[20], buf[BUFSIZE];
    int i;

    for(i=0;i<BUFSIZE;i++)
        buf[i] = i;

    SHA1Init(&ctx);
    for(i=0;i<1000;i++)
        SHA1Update(&ctx, buf, BUFSIZE);
    SHA1Final(hash, &ctx);

    printf("SHA1=");
    for(i=0;i<20;i++)
        printf("%02x", hash[i]);
    printf("\n");
    return 0;
}