symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/baum.c
author johnathan.white@2718R8BGH51.accenture.com
Mon, 08 Mar 2010 18:45:03 +0000
changeset 46 b6935a90ca64
parent 1 2fb8b9db1c86
permissions -rw-r--r--
Modify framebuffer and NGA framebuffer to read screen size from board model dtb file. Optimise memory usuage of frame buffer Add example minigui application with hooks to profiler (which writes results to S:\). Modified NGA framebuffer to run its own dfc queue at high priority

/*
 * QEMU Baum Braille Device
 *
 * Copyright (c) 2008 Samuel Thibault
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "qemu-common.h"
#include "qemu-char.h"
#include "qemu-timer.h"
#include "usb.h"
#include "baum.h"
#include <assert.h>
#include <brlapi.h>
#include <brlapi_constants.h>
#include <brlapi_keycodes.h>
#ifdef CONFIG_SDL
#include <SDL/SDL_syswm.h>
#endif

#if 0
#define DPRINTF(fmt, ...) \
        printf(fmt, ## __VA_ARGS__)
#else
#define DPRINTF(fmt, ...)
#endif

#define ESC 0x1B

#define BAUM_REQ_DisplayData		0x01
#define BAUM_REQ_GetVersionNumber	0x05
#define BAUM_REQ_GetKeys		0x08
#define BAUM_REQ_SetMode		0x12
#define BAUM_REQ_SetProtocol		0x15
#define BAUM_REQ_GetDeviceIdentity	0x84
#define BAUM_REQ_GetSerialNumber	0x8A

#define BAUM_RSP_CellCount		0x01
#define BAUM_RSP_VersionNumber		0x05
#define BAUM_RSP_ModeSetting		0x11
#define BAUM_RSP_CommunicationChannel	0x16
#define BAUM_RSP_PowerdownSignal	0x17
#define BAUM_RSP_HorizontalSensors	0x20
#define BAUM_RSP_VerticalSensors	0x21
#define BAUM_RSP_RoutingKeys		0x22
#define BAUM_RSP_Switches		0x23
#define BAUM_RSP_TopKeys		0x24
#define BAUM_RSP_HorizontalSensor	0x25
#define BAUM_RSP_VerticalSensor		0x26
#define BAUM_RSP_RoutingKey		0x27
#define BAUM_RSP_FrontKeys6		0x28
#define BAUM_RSP_BackKeys6		0x29
#define BAUM_RSP_CommandKeys		0x2B
#define BAUM_RSP_FrontKeys10		0x2C
#define BAUM_RSP_BackKeys10		0x2D
#define BAUM_RSP_EntryKeys		0x33
#define BAUM_RSP_JoyStick		0x34
#define BAUM_RSP_ErrorCode		0x40
#define BAUM_RSP_InfoBlock		0x42
#define BAUM_RSP_DeviceIdentity		0x84
#define BAUM_RSP_SerialNumber		0x8A
#define BAUM_RSP_BluetoothName		0x8C

#define BAUM_TL1 0x01
#define BAUM_TL2 0x02
#define BAUM_TL3 0x04
#define BAUM_TR1 0x08
#define BAUM_TR2 0x10
#define BAUM_TR3 0x20

#define BUF_SIZE 256

typedef struct {
    CharDriverState *chr;

    brlapi_handle_t *brlapi;
    int brlapi_fd;
    int x, y;

    uint8_t in_buf[BUF_SIZE];
    uint8_t in_buf_used;
    uint8_t out_buf[BUF_SIZE];
    uint8_t out_buf_used, out_buf_ptr;

    QEMUTimer *cellCount_timer;
} BaumDriverState;

/* Let's assume NABCC by default */
static const uint8_t nabcc_translation[256] = {
    [0] = ' ',
#ifndef BRLAPI_DOTS
#define BRLAPI_DOTS(d1,d2,d3,d4,d5,d6,d7,d8) \
    ((d1?BRLAPI_DOT1:0)|\
     (d2?BRLAPI_DOT2:0)|\
     (d3?BRLAPI_DOT3:0)|\
     (d4?BRLAPI_DOT4:0)|\
     (d5?BRLAPI_DOT5:0)|\
     (d6?BRLAPI_DOT6:0)|\
     (d7?BRLAPI_DOT7:0)|\
     (d8?BRLAPI_DOT8:0))
#endif
    [BRLAPI_DOTS(1,0,0,0,0,0,0,0)] = 'a',
    [BRLAPI_DOTS(1,1,0,0,0,0,0,0)] = 'b',
    [BRLAPI_DOTS(1,0,0,1,0,0,0,0)] = 'c',
    [BRLAPI_DOTS(1,0,0,1,1,0,0,0)] = 'd',
    [BRLAPI_DOTS(1,0,0,0,1,0,0,0)] = 'e',
    [BRLAPI_DOTS(1,1,0,1,0,0,0,0)] = 'f',
    [BRLAPI_DOTS(1,1,0,1,1,0,0,0)] = 'g',
    [BRLAPI_DOTS(1,1,0,0,1,0,0,0)] = 'h',
    [BRLAPI_DOTS(0,1,0,1,0,0,0,0)] = 'i',
    [BRLAPI_DOTS(0,1,0,1,1,0,0,0)] = 'j',
    [BRLAPI_DOTS(1,0,1,0,0,0,0,0)] = 'k',
    [BRLAPI_DOTS(1,1,1,0,0,0,0,0)] = 'l',
    [BRLAPI_DOTS(1,0,1,1,0,0,0,0)] = 'm',
    [BRLAPI_DOTS(1,0,1,1,1,0,0,0)] = 'n',
    [BRLAPI_DOTS(1,0,1,0,1,0,0,0)] = 'o',
    [BRLAPI_DOTS(1,1,1,1,0,0,0,0)] = 'p',
    [BRLAPI_DOTS(1,1,1,1,1,0,0,0)] = 'q',
    [BRLAPI_DOTS(1,1,1,0,1,0,0,0)] = 'r',
    [BRLAPI_DOTS(0,1,1,1,0,0,0,0)] = 's',
    [BRLAPI_DOTS(0,1,1,1,1,0,0,0)] = 't',
    [BRLAPI_DOTS(1,0,1,0,0,1,0,0)] = 'u',
    [BRLAPI_DOTS(1,1,1,0,0,1,0,0)] = 'v',
    [BRLAPI_DOTS(0,1,0,1,1,1,0,0)] = 'w',
    [BRLAPI_DOTS(1,0,1,1,0,1,0,0)] = 'x',
    [BRLAPI_DOTS(1,0,1,1,1,1,0,0)] = 'y',
    [BRLAPI_DOTS(1,0,1,0,1,1,0,0)] = 'z',

    [BRLAPI_DOTS(1,0,0,0,0,0,1,0)] = 'A',
    [BRLAPI_DOTS(1,1,0,0,0,0,1,0)] = 'B',
    [BRLAPI_DOTS(1,0,0,1,0,0,1,0)] = 'C',
    [BRLAPI_DOTS(1,0,0,1,1,0,1,0)] = 'D',
    [BRLAPI_DOTS(1,0,0,0,1,0,1,0)] = 'E',
    [BRLAPI_DOTS(1,1,0,1,0,0,1,0)] = 'F',
    [BRLAPI_DOTS(1,1,0,1,1,0,1,0)] = 'G',
    [BRLAPI_DOTS(1,1,0,0,1,0,1,0)] = 'H',
    [BRLAPI_DOTS(0,1,0,1,0,0,1,0)] = 'I',
    [BRLAPI_DOTS(0,1,0,1,1,0,1,0)] = 'J',
    [BRLAPI_DOTS(1,0,1,0,0,0,1,0)] = 'K',
    [BRLAPI_DOTS(1,1,1,0,0,0,1,0)] = 'L',
    [BRLAPI_DOTS(1,0,1,1,0,0,1,0)] = 'M',
    [BRLAPI_DOTS(1,0,1,1,1,0,1,0)] = 'N',
    [BRLAPI_DOTS(1,0,1,0,1,0,1,0)] = 'O',
    [BRLAPI_DOTS(1,1,1,1,0,0,1,0)] = 'P',
    [BRLAPI_DOTS(1,1,1,1,1,0,1,0)] = 'Q',
    [BRLAPI_DOTS(1,1,1,0,1,0,1,0)] = 'R',
    [BRLAPI_DOTS(0,1,1,1,0,0,1,0)] = 'S',
    [BRLAPI_DOTS(0,1,1,1,1,0,1,0)] = 'T',
    [BRLAPI_DOTS(1,0,1,0,0,1,1,0)] = 'U',
    [BRLAPI_DOTS(1,1,1,0,0,1,1,0)] = 'V',
    [BRLAPI_DOTS(0,1,0,1,1,1,1,0)] = 'W',
    [BRLAPI_DOTS(1,0,1,1,0,1,1,0)] = 'X',
    [BRLAPI_DOTS(1,0,1,1,1,1,1,0)] = 'Y',
    [BRLAPI_DOTS(1,0,1,0,1,1,1,0)] = 'Z',

    [BRLAPI_DOTS(0,0,1,0,1,1,0,0)] = '0',
    [BRLAPI_DOTS(0,1,0,0,0,0,0,0)] = '1',
    [BRLAPI_DOTS(0,1,1,0,0,0,0,0)] = '2',
    [BRLAPI_DOTS(0,1,0,0,1,0,0,0)] = '3',
    [BRLAPI_DOTS(0,1,0,0,1,1,0,0)] = '4',
    [BRLAPI_DOTS(0,1,0,0,0,1,0,0)] = '5',
    [BRLAPI_DOTS(0,1,1,0,1,0,0,0)] = '6',
    [BRLAPI_DOTS(0,1,1,0,1,1,0,0)] = '7',
    [BRLAPI_DOTS(0,1,1,0,0,1,0,0)] = '8',
    [BRLAPI_DOTS(0,0,1,0,1,0,0,0)] = '9',

    [BRLAPI_DOTS(0,0,0,1,0,1,0,0)] = '.',
    [BRLAPI_DOTS(0,0,1,1,0,1,0,0)] = '+',
    [BRLAPI_DOTS(0,0,1,0,0,1,0,0)] = '-',
    [BRLAPI_DOTS(1,0,0,0,0,1,0,0)] = '*',
    [BRLAPI_DOTS(0,0,1,1,0,0,0,0)] = '/',
    [BRLAPI_DOTS(1,1,1,0,1,1,0,0)] = '(',
    [BRLAPI_DOTS(0,1,1,1,1,1,0,0)] = ')',

    [BRLAPI_DOTS(1,1,1,1,0,1,0,0)] = '&',
    [BRLAPI_DOTS(0,0,1,1,1,1,0,0)] = '#',

    [BRLAPI_DOTS(0,0,0,0,0,1,0,0)] = ',',
    [BRLAPI_DOTS(0,0,0,0,1,1,0,0)] = ';',
    [BRLAPI_DOTS(1,0,0,0,1,1,0,0)] = ':',
    [BRLAPI_DOTS(0,1,1,1,0,1,0,0)] = '!',
    [BRLAPI_DOTS(1,0,0,1,1,1,0,0)] = '?',
    [BRLAPI_DOTS(0,0,0,0,1,0,0,0)] = '"',
    [BRLAPI_DOTS(0,0,1,0,0,0,0,0)] ='\'',
    [BRLAPI_DOTS(0,0,0,1,0,0,0,0)] = '`',
    [BRLAPI_DOTS(0,0,0,1,1,0,1,0)] = '^',
    [BRLAPI_DOTS(0,0,0,1,1,0,0,0)] = '~',
    [BRLAPI_DOTS(0,1,0,1,0,1,1,0)] = '[',
    [BRLAPI_DOTS(1,1,0,1,1,1,1,0)] = ']',
    [BRLAPI_DOTS(0,1,0,1,0,1,0,0)] = '{',
    [BRLAPI_DOTS(1,1,0,1,1,1,0,0)] = '}',
    [BRLAPI_DOTS(1,1,1,1,1,1,0,0)] = '=',
    [BRLAPI_DOTS(1,1,0,0,0,1,0,0)] = '<',
    [BRLAPI_DOTS(0,0,1,1,1,0,0,0)] = '>',
    [BRLAPI_DOTS(1,1,0,1,0,1,0,0)] = '$',
    [BRLAPI_DOTS(1,0,0,1,0,1,0,0)] = '%',
    [BRLAPI_DOTS(0,0,0,1,0,0,1,0)] = '@',
    [BRLAPI_DOTS(1,1,0,0,1,1,0,0)] = '|',
    [BRLAPI_DOTS(1,1,0,0,1,1,1,0)] ='\\',
    [BRLAPI_DOTS(0,0,0,1,1,1,0,0)] = '_',
};

/* The serial port can receive more of our data */
static void baum_accept_input(struct CharDriverState *chr)
{
    BaumDriverState *baum = chr->opaque;
    int room, first;

    if (!baum->out_buf_used)
        return;
    room = qemu_chr_can_read(chr);
    if (!room)
        return;
    if (room > baum->out_buf_used)
        room = baum->out_buf_used;

    first = BUF_SIZE - baum->out_buf_ptr;
    if (room > first) {
        qemu_chr_read(chr, baum->out_buf + baum->out_buf_ptr, first);
        baum->out_buf_ptr = 0;
        baum->out_buf_used -= first;
        room -= first;
    }
    qemu_chr_read(chr, baum->out_buf + baum->out_buf_ptr, room);
    baum->out_buf_ptr += room;
    baum->out_buf_used -= room;
}

/* We want to send a packet */
static void baum_write_packet(BaumDriverState *baum, const uint8_t *buf, int len)
{
    uint8_t io_buf[1 + 2 * len], *cur = io_buf;
    int room;
    *cur++ = ESC;
    while (len--)
        if ((*cur++ = *buf++) == ESC)
            *cur++ = ESC;
    room = qemu_chr_can_read(baum->chr);
    len = cur - io_buf;
    if (len <= room) {
        /* Fits */
        qemu_chr_read(baum->chr, io_buf, len);
    } else {
        int first;
        uint8_t out;
        /* Can't fit all, send what can be, and store the rest. */
        qemu_chr_read(baum->chr, io_buf, room);
        len -= room;
        cur = io_buf + room;
        if (len > BUF_SIZE - baum->out_buf_used) {
            /* Can't even store it, drop the previous data... */
            assert(len <= BUF_SIZE);
            baum->out_buf_used = 0;
            baum->out_buf_ptr = 0;
        }
        out = baum->out_buf_ptr;
        baum->out_buf_used += len;
        first = BUF_SIZE - baum->out_buf_ptr;
        if (len > first) {
            memcpy(baum->out_buf + out, cur, first);
            out = 0;
            len -= first;
            cur += first;
        }
        memcpy(baum->out_buf + out, cur, len);
    }
}

/* Called when the other end seems to have a wrong idea of our display size */
static void baum_cellCount_timer_cb(void *opaque)
{
    BaumDriverState *baum = opaque;
    uint8_t cell_count[] = { BAUM_RSP_CellCount, baum->x * baum->y };
    DPRINTF("Timeout waiting for DisplayData, sending cell count\n");
    baum_write_packet(baum, cell_count, sizeof(cell_count));
}

/* Try to interpret a whole incoming packet */
static int baum_eat_packet(BaumDriverState *baum, const uint8_t *buf, int len)
{
    const uint8_t *cur = buf;
    uint8_t req = 0;

    if (!len--)
        return 0;
    if (*cur++ != ESC) {
        while (*cur != ESC) {
            if (!len--)
                return 0;
            cur++;
        }
        DPRINTF("Dropped %d bytes!\n", cur - buf);
    }

#define EAT(c) do {\
    if (!len--) \
        return 0; \
    if ((c = *cur++) == ESC) { \
        if (!len--) \
            return 0; \
        if (*cur++ != ESC) { \
            DPRINTF("Broken packet %#2x, tossing\n", req); \
		if (qemu_timer_pending(baum->cellCount_timer)) { \
                qemu_del_timer(baum->cellCount_timer); \
                baum_cellCount_timer_cb(baum); \
            } \
            return (cur - 2 - buf); \
        } \
    } \
} while (0)

    EAT(req);
    switch (req) {
    case BAUM_REQ_DisplayData:
    {
        uint8_t cells[baum->x * baum->y], c;
        uint8_t text[baum->x * baum->y];
        uint8_t zero[baum->x * baum->y];
        int cursor = BRLAPI_CURSOR_OFF;
        int i;

        /* Allow 100ms to complete the DisplayData packet */
        qemu_mod_timer(baum->cellCount_timer, qemu_get_clock(vm_clock) + ticks_per_sec / 10);
        for (i = 0; i < baum->x * baum->y ; i++) {
            EAT(c);
            cells[i] = c;
            if ((c & (BRLAPI_DOT7|BRLAPI_DOT8))
                    == (BRLAPI_DOT7|BRLAPI_DOT8)) {
                cursor = i + 1;
                c &= ~(BRLAPI_DOT7|BRLAPI_DOT8);
            }
            if (!(c = nabcc_translation[c]))
                c = '?';
            text[i] = c;
        }
        qemu_del_timer(baum->cellCount_timer);

        memset(zero, 0, sizeof(zero));

        brlapi_writeArguments_t wa = {
            .displayNumber = BRLAPI_DISPLAY_DEFAULT,
            .regionBegin = 1,
            .regionSize = baum->x * baum->y,
            .text = text,
            .textSize = baum->x * baum->y,
            .andMask = zero,
            .orMask = cells,
            .cursor = cursor,
            .charset = "ISO-8859-1",
        };

        if (brlapi__write(baum->brlapi, &wa) == -1)
            brlapi_perror("baum brlapi_write");
        break;
    }
    case BAUM_REQ_SetMode:
    {
        uint8_t mode, setting;
        DPRINTF("SetMode\n");
        EAT(mode);
        EAT(setting);
        /* ignore */
        break;
    }
    case BAUM_REQ_SetProtocol:
    {
        uint8_t protocol;
        DPRINTF("SetProtocol\n");
        EAT(protocol);
        /* ignore */
        break;
    }
    case BAUM_REQ_GetDeviceIdentity:
    {
        uint8_t identity[17] = { BAUM_RSP_DeviceIdentity,
            'B','a','u','m',' ','V','a','r','i','o' };
        DPRINTF("GetDeviceIdentity\n");
        identity[11] = '0' + baum->x / 10;
        identity[12] = '0' + baum->x % 10;
        baum_write_packet(baum, identity, sizeof(identity));
        break;
    }
    case BAUM_REQ_GetVersionNumber:
    {
        uint8_t version[] = { BAUM_RSP_VersionNumber, 1 }; /* ? */
        DPRINTF("GetVersionNumber\n");
        baum_write_packet(baum, version, sizeof(version));
        break;
    }
    case BAUM_REQ_GetSerialNumber:
    {
        uint8_t serial[] = { BAUM_RSP_SerialNumber,
            '0','0','0','0','0','0','0','0' };
        DPRINTF("GetSerialNumber\n");
        baum_write_packet(baum, serial, sizeof(serial));
        break;
    }
    case BAUM_REQ_GetKeys:
    {
        DPRINTF("Get%0#2x\n", req);
        /* ignore */
        break;
    }
    default:
        DPRINTF("unrecognized request %0#2x\n", req);
        do
            if (!len--)
                return 0;
        while (*cur++ != ESC);
        cur--;
        break;
    }
    return cur - buf;
}

/* The other end is writing some data.  Store it and try to interpret */
static int baum_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    BaumDriverState *baum = chr->opaque;
    int tocopy, cur, eaten, orig_len = len;

    if (!len)
        return 0;
    if (!baum->brlapi)
        return len;

    while (len) {
        /* Complete our buffer as much as possible */
        tocopy = len;
        if (tocopy > BUF_SIZE - baum->in_buf_used)
            tocopy = BUF_SIZE - baum->in_buf_used;

        memcpy(baum->in_buf + baum->in_buf_used, buf, tocopy);
        baum->in_buf_used += tocopy;
        buf += tocopy;
        len -= tocopy;

        /* Interpret it as much as possible */
        cur = 0;
        while (cur < baum->in_buf_used &&
                (eaten = baum_eat_packet(baum, baum->in_buf + cur, baum->in_buf_used - cur)))
            cur += eaten;

        /* Shift the remainder */
        if (cur) {
            memmove(baum->in_buf, baum->in_buf + cur, baum->in_buf_used - cur);
            baum->in_buf_used -= cur;
        }

        /* And continue if any data left */
    }
    return orig_len;
}

/* The other end sent us some event */
static void baum_send_event(CharDriverState *chr, int event)
{
    BaumDriverState *baum = chr->opaque;
    switch (event) {
    case CHR_EVENT_BREAK:
        break;
    case CHR_EVENT_RESET:
        /* Reset state */
        baum->in_buf_used = 0;
        break;
    }
}

/* Send the key code to the other end */
static void baum_send_key(BaumDriverState *baum, uint8_t type, uint8_t value) {
    uint8_t packet[] = { type, value };
    DPRINTF("writing key %x %x\n", type, value);
    baum_write_packet(baum, packet, sizeof(packet));
}

/* We got some data on the BrlAPI socket */
static void baum_chr_read(void *opaque)
{
    BaumDriverState *baum = opaque;
    brlapi_keyCode_t code;
    int ret;
    if (!baum->brlapi)
        return;
    while ((ret = brlapi__readKey(baum->brlapi, 0, &code)) == 1) {
        DPRINTF("got key %"BRLAPI_PRIxKEYCODE"\n", code);
        /* Emulate */
        switch (code & BRLAPI_KEY_TYPE_MASK) {
        case BRLAPI_KEY_TYPE_CMD:
            switch (code & BRLAPI_KEY_CMD_BLK_MASK) {
            case BRLAPI_KEY_CMD_ROUTE:
                baum_send_key(baum, BAUM_RSP_RoutingKey, (code & BRLAPI_KEY_CMD_ARG_MASK)+1);
                baum_send_key(baum, BAUM_RSP_RoutingKey, 0);
                break;
            case 0:
                switch (code & BRLAPI_KEY_CMD_ARG_MASK) {
                case BRLAPI_KEY_CMD_FWINLT:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL2);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_FWINRT:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TR2);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_LNUP:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TR1);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_LNDN:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TR3);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_TOP:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL1|BAUM_TR1);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_BOT:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL3|BAUM_TR3);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_TOP_LEFT:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL2|BAUM_TR1);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_BOT_LEFT:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL2|BAUM_TR3);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_HOME:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL2|BAUM_TR1|BAUM_TR3);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                case BRLAPI_KEY_CMD_PREFMENU:
                    baum_send_key(baum, BAUM_RSP_TopKeys, BAUM_TL1|BAUM_TL3|BAUM_TR1);
                    baum_send_key(baum, BAUM_RSP_TopKeys, 0);
                    break;
                }
            }
            break;
        case BRLAPI_KEY_TYPE_SYM:
            break;
        }
    }
    if (ret == -1 && (brlapi_errno != BRLAPI_ERROR_LIBCERR || errno != EINTR)) {
        brlapi_perror("baum: brlapi_readKey");
        brlapi__closeConnection(baum->brlapi);
        free(baum->brlapi);
        baum->brlapi = NULL;
    }
}

CharDriverState *chr_baum_init(void)
{
    BaumDriverState *baum;
    CharDriverState *chr;
    brlapi_handle_t *handle;
#ifdef CONFIG_SDL
    SDL_SysWMinfo info;
#endif
    int tty;

    baum = qemu_mallocz(sizeof(BaumDriverState));
    if (!baum)
        return NULL;

    baum->chr = chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        goto fail_baum;

    chr->opaque = baum;
    chr->chr_write = baum_write;
    chr->chr_send_event = baum_send_event;
    chr->chr_accept_input = baum_accept_input;

    handle = qemu_mallocz(brlapi_getHandleSize());
    if (!handle)
        goto fail_chr;
    baum->brlapi = handle;

    baum->brlapi_fd = brlapi__openConnection(handle, NULL, NULL);
    if (baum->brlapi_fd == -1) {
        brlapi_perror("baum_init: brlapi_openConnection");
        goto fail_handle;
    }

    baum->cellCount_timer = qemu_new_timer(vm_clock, baum_cellCount_timer_cb, baum);

    if (brlapi__getDisplaySize(handle, &baum->x, &baum->y) == -1) {
        brlapi_perror("baum_init: brlapi_getDisplaySize");
        goto fail;
    }

#ifdef CONFIG_SDL
    memset(&info, 0, sizeof(info));
    SDL_VERSION(&info.version);
    if (SDL_GetWMInfo(&info))
        tty = info.info.x11.wmwindow;
    else
#endif
        tty = BRLAPI_TTY_DEFAULT;

    if (brlapi__enterTtyMode(handle, tty, NULL) == -1) {
        brlapi_perror("baum_init: brlapi_enterTtyMode");
        goto fail;
    }

    qemu_set_fd_handler(baum->brlapi_fd, baum_chr_read, NULL, baum);

    qemu_chr_reset(chr);

    return chr;

fail:
    qemu_free_timer(baum->cellCount_timer);
    brlapi__closeConnection(handle);
fail_handle:
    free(handle);
fail_chr:
    free(chr);
fail_baum:
    free(baum);
    return NULL;
}

USBDevice *usb_baum_init(void)
{
    /* USB Product ID of Super Vario 40 */
    return usb_serial_init("productid=FE72:braille");
}