symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/pxa2xx_lcd.c
author johnathan.white@2718R8BGH51.accenture.com
Mon, 08 Mar 2010 18:45:03 +0000
changeset 46 b6935a90ca64
parent 1 2fb8b9db1c86
permissions -rw-r--r--
Modify framebuffer and NGA framebuffer to read screen size from board model dtb file. Optimise memory usuage of frame buffer Add example minigui application with hooks to profiler (which writes results to S:\). Modified NGA framebuffer to run its own dfc queue at high priority

/*
 * Intel XScale PXA255/270 LCDC emulation.
 *
 * Copyright (c) 2006 Openedhand Ltd.
 * Written by Andrzej Zaborowski <balrog@zabor.org>
 *
 * This code is licensed under the GPLv2.
 */

#include "hw.h"
#include "gui.h"
#include "pxa.h"
#include "pixel_ops.h"
/* FIXME: For graphic_rotate. Should probably be done in common code.  */
#include "sysemu.h"

typedef void (*drawfn)(uint32_t *, uint8_t *, const uint8_t *, int, int);

struct pxa2xx_lcdc_s {
    qemu_irq irq;
    int irqlevel;

    int invalidated;
    DisplayState *ds;
    drawfn *line_fn[2];
    int dest_width;
    int xres, yres;
    int pal_for;
    int transp;
    enum {
        pxa_lcdc_2bpp = 1,
        pxa_lcdc_4bpp = 2,
        pxa_lcdc_8bpp = 3,
        pxa_lcdc_16bpp = 4,
        pxa_lcdc_18bpp = 5,
        pxa_lcdc_18pbpp = 6,
        pxa_lcdc_19bpp = 7,
        pxa_lcdc_19pbpp = 8,
        pxa_lcdc_24bpp = 9,
        pxa_lcdc_25bpp = 10,
    } bpp;

    uint32_t control[6];
    uint32_t status[2];
    uint32_t ovl1c[2];
    uint32_t ovl2c[2];
    uint32_t ccr;
    uint32_t cmdcr;
    uint32_t trgbr;
    uint32_t tcr;
    uint32_t liidr;
    uint8_t bscntr;

    struct {
        target_phys_addr_t branch;
        int up;
        uint8_t palette[1024];
        uint8_t pbuffer[1024];
        void (*redraw)(struct pxa2xx_lcdc_s *s, uint8_t *fb,
                        int *miny, int *maxy);

        target_phys_addr_t descriptor;
        target_phys_addr_t source;
        uint32_t id;
        uint32_t command;
    } dma_ch[7];

    qemu_irq vsync_cb;
    int orientation;
};

struct __attribute__ ((__packed__)) pxa_frame_descriptor_s {
    uint32_t fdaddr;
    uint32_t fsaddr;
    uint32_t fidr;
    uint32_t ldcmd;
};

#define LCCR0	0x000	/* LCD Controller Control register 0 */
#define LCCR1	0x004	/* LCD Controller Control register 1 */
#define LCCR2	0x008	/* LCD Controller Control register 2 */
#define LCCR3	0x00c	/* LCD Controller Control register 3 */
#define LCCR4	0x010	/* LCD Controller Control register 4 */
#define LCCR5	0x014	/* LCD Controller Control register 5 */

#define FBR0	0x020	/* DMA Channel 0 Frame Branch register */
#define FBR1	0x024	/* DMA Channel 1 Frame Branch register */
#define FBR2	0x028	/* DMA Channel 2 Frame Branch register */
#define FBR3	0x02c	/* DMA Channel 3 Frame Branch register */
#define FBR4	0x030	/* DMA Channel 4 Frame Branch register */
#define FBR5	0x110	/* DMA Channel 5 Frame Branch register */
#define FBR6	0x114	/* DMA Channel 6 Frame Branch register */

#define LCSR1	0x034	/* LCD Controller Status register 1 */
#define LCSR0	0x038	/* LCD Controller Status register 0 */
#define LIIDR	0x03c	/* LCD Controller Interrupt ID register */

#define TRGBR	0x040	/* TMED RGB Seed register */
#define TCR	0x044	/* TMED Control register */

#define OVL1C1	0x050	/* Overlay 1 Control register 1 */
#define OVL1C2	0x060	/* Overlay 1 Control register 2 */
#define OVL2C1	0x070	/* Overlay 2 Control register 1 */
#define OVL2C2	0x080	/* Overlay 2 Control register 2 */
#define CCR	0x090	/* Cursor Control register */

#define CMDCR	0x100	/* Command Control register */
#define PRSR	0x104	/* Panel Read Status register */

#define PXA_LCDDMA_CHANS	7
#define DMA_FDADR		0x00	/* Frame Descriptor Address register */
#define DMA_FSADR		0x04	/* Frame Source Address register */
#define DMA_FIDR		0x08	/* Frame ID register */
#define DMA_LDCMD		0x0c	/* Command register */

/* LCD Buffer Strength Control register */
#define BSCNTR	0x04000054

/* Bitfield masks */
#define LCCR0_ENB	(1 << 0)
#define LCCR0_CMS	(1 << 1)
#define LCCR0_SDS	(1 << 2)
#define LCCR0_LDM	(1 << 3)
#define LCCR0_SOFM0	(1 << 4)
#define LCCR0_IUM	(1 << 5)
#define LCCR0_EOFM0	(1 << 6)
#define LCCR0_PAS	(1 << 7)
#define LCCR0_DPD	(1 << 9)
#define LCCR0_DIS	(1 << 10)
#define LCCR0_QDM	(1 << 11)
#define LCCR0_PDD	(0xff << 12)
#define LCCR0_BSM0	(1 << 20)
#define LCCR0_OUM	(1 << 21)
#define LCCR0_LCDT	(1 << 22)
#define LCCR0_RDSTM	(1 << 23)
#define LCCR0_CMDIM	(1 << 24)
#define LCCR0_OUC	(1 << 25)
#define LCCR0_LDDALT	(1 << 26)
#define LCCR1_PPL(x)	((x) & 0x3ff)
#define LCCR2_LPP(x)	((x) & 0x3ff)
#define LCCR3_API	(15 << 16)
#define LCCR3_BPP(x)	((((x) >> 24) & 7) | (((x) >> 26) & 8))
#define LCCR3_PDFOR(x)	(((x) >> 30) & 3)
#define LCCR4_K1(x)	(((x) >> 0) & 7)
#define LCCR4_K2(x)	(((x) >> 3) & 7)
#define LCCR4_K3(x)	(((x) >> 6) & 7)
#define LCCR4_PALFOR(x)	(((x) >> 15) & 3)
#define LCCR5_SOFM(ch)	(1 << (ch - 1))
#define LCCR5_EOFM(ch)	(1 << (ch + 7))
#define LCCR5_BSM(ch)	(1 << (ch + 15))
#define LCCR5_IUM(ch)	(1 << (ch + 23))
#define OVLC1_EN	(1 << 31)
#define CCR_CEN		(1 << 31)
#define FBR_BRA		(1 << 0)
#define FBR_BINT	(1 << 1)
#define FBR_SRCADDR	(0xfffffff << 4)
#define LCSR0_LDD	(1 << 0)
#define LCSR0_SOF0	(1 << 1)
#define LCSR0_BER	(1 << 2)
#define LCSR0_ABC	(1 << 3)
#define LCSR0_IU0	(1 << 4)
#define LCSR0_IU1	(1 << 5)
#define LCSR0_OU	(1 << 6)
#define LCSR0_QD	(1 << 7)
#define LCSR0_EOF0	(1 << 8)
#define LCSR0_BS0	(1 << 9)
#define LCSR0_SINT	(1 << 10)
#define LCSR0_RDST	(1 << 11)
#define LCSR0_CMDINT	(1 << 12)
#define LCSR0_BERCH(x)	(((x) & 7) << 28)
#define LCSR1_SOF(ch)	(1 << (ch - 1))
#define LCSR1_EOF(ch)	(1 << (ch + 7))
#define LCSR1_BS(ch)	(1 << (ch + 15))
#define LCSR1_IU(ch)	(1 << (ch + 23))
#define LDCMD_LENGTH(x)	((x) & 0x001ffffc)
#define LDCMD_EOFINT	(1 << 21)
#define LDCMD_SOFINT	(1 << 22)
#define LDCMD_PAL	(1 << 26)

/* Route internal interrupt lines to the global IC */
static void pxa2xx_lcdc_int_update(struct pxa2xx_lcdc_s *s)
{
    int level = 0;
    level |= (s->status[0] & LCSR0_LDD)    && !(s->control[0] & LCCR0_LDM);
    level |= (s->status[0] & LCSR0_SOF0)   && !(s->control[0] & LCCR0_SOFM0);
    level |= (s->status[0] & LCSR0_IU0)    && !(s->control[0] & LCCR0_IUM);
    level |= (s->status[0] & LCSR0_IU1)    && !(s->control[5] & LCCR5_IUM(1));
    level |= (s->status[0] & LCSR0_OU)     && !(s->control[0] & LCCR0_OUM);
    level |= (s->status[0] & LCSR0_QD)     && !(s->control[0] & LCCR0_QDM);
    level |= (s->status[0] & LCSR0_EOF0)   && !(s->control[0] & LCCR0_EOFM0);
    level |= (s->status[0] & LCSR0_BS0)    && !(s->control[0] & LCCR0_BSM0);
    level |= (s->status[0] & LCSR0_RDST)   && !(s->control[0] & LCCR0_RDSTM);
    level |= (s->status[0] & LCSR0_CMDINT) && !(s->control[0] & LCCR0_CMDIM);
    level |= (s->status[1] & ~s->control[5]);

    qemu_set_irq(s->irq, !!level);
    s->irqlevel = level;
}

/* Set Branch Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_bs_set(struct pxa2xx_lcdc_s *s, int ch)
{
    int unmasked;
    if (ch == 0) {
        s->status[0] |= LCSR0_BS0;
        unmasked = !(s->control[0] & LCCR0_BSM0);
    } else {
        s->status[1] |= LCSR1_BS(ch);
        unmasked = !(s->control[5] & LCCR5_BSM(ch));
    }

    if (unmasked) {
        if (s->irqlevel)
            s->status[0] |= LCSR0_SINT;
        else
            s->liidr = s->dma_ch[ch].id;
    }
}

/* Set Start Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_sof_set(struct pxa2xx_lcdc_s *s, int ch)
{
    int unmasked;
    if (!(s->dma_ch[ch].command & LDCMD_SOFINT))
        return;

    if (ch == 0) {
        s->status[0] |= LCSR0_SOF0;
        unmasked = !(s->control[0] & LCCR0_SOFM0);
    } else {
        s->status[1] |= LCSR1_SOF(ch);
        unmasked = !(s->control[5] & LCCR5_SOFM(ch));
    }

    if (unmasked) {
        if (s->irqlevel)
            s->status[0] |= LCSR0_SINT;
        else
            s->liidr = s->dma_ch[ch].id;
    }
}

/* Set End Of Frame Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_eof_set(struct pxa2xx_lcdc_s *s, int ch)
{
    int unmasked;
    if (!(s->dma_ch[ch].command & LDCMD_EOFINT))
        return;

    if (ch == 0) {
        s->status[0] |= LCSR0_EOF0;
        unmasked = !(s->control[0] & LCCR0_EOFM0);
    } else {
        s->status[1] |= LCSR1_EOF(ch);
        unmasked = !(s->control[5] & LCCR5_EOFM(ch));
    }

    if (unmasked) {
        if (s->irqlevel)
            s->status[0] |= LCSR0_SINT;
        else
            s->liidr = s->dma_ch[ch].id;
    }
}

/* Set Bus Error Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_ber_set(struct pxa2xx_lcdc_s *s, int ch)
{
    s->status[0] |= LCSR0_BERCH(ch) | LCSR0_BER;
    if (s->irqlevel)
        s->status[0] |= LCSR0_SINT;
    else
        s->liidr = s->dma_ch[ch].id;
}

/* Set Read Status interrupt high and poke associated registers */
static inline void pxa2xx_dma_rdst_set(struct pxa2xx_lcdc_s *s)
{
    s->status[0] |= LCSR0_RDST;
    if (s->irqlevel && !(s->control[0] & LCCR0_RDSTM))
        s->status[0] |= LCSR0_SINT;
}

/* Load new Frame Descriptors from DMA */
static void pxa2xx_descriptor_load(struct pxa2xx_lcdc_s *s)
{
    struct pxa_frame_descriptor_s *desc[PXA_LCDDMA_CHANS];
    target_phys_addr_t descptr;
    int i;

    for (i = 0; i < PXA_LCDDMA_CHANS; i ++) {
        desc[i] = 0;
        s->dma_ch[i].source = 0;

        if (!s->dma_ch[i].up)
            continue;

        if (s->dma_ch[i].branch & FBR_BRA) {
            descptr = s->dma_ch[i].branch & FBR_SRCADDR;
            if (s->dma_ch[i].branch & FBR_BINT)
                pxa2xx_dma_bs_set(s, i);
            s->dma_ch[i].branch &= ~FBR_BRA;
        } else
            descptr = s->dma_ch[i].descriptor;

        if (!(descptr >= PXA2XX_SDRAM_BASE && descptr +
                    sizeof(*desc[i]) <= PXA2XX_SDRAM_BASE + phys_ram_size))
            continue;

        descptr -= PXA2XX_SDRAM_BASE;
        /* FIXME: This is broken if it spans multiple RAM regions.  */
        desc[i] = (struct pxa_frame_descriptor_s *) host_ram_addr(descptr);
        s->dma_ch[i].descriptor = desc[i]->fdaddr;
        s->dma_ch[i].source = desc[i]->fsaddr;
        s->dma_ch[i].id = desc[i]->fidr;
        s->dma_ch[i].command = desc[i]->ldcmd;
    }
}

static uint32_t pxa2xx_lcdc_read(void *opaque, target_phys_addr_t offset)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    int ch;

    switch (offset) {
    case LCCR0:
        return s->control[0];
    case LCCR1:
        return s->control[1];
    case LCCR2:
        return s->control[2];
    case LCCR3:
        return s->control[3];
    case LCCR4:
        return s->control[4];
    case LCCR5:
        return s->control[5];

    case OVL1C1:
        return s->ovl1c[0];
    case OVL1C2:
        return s->ovl1c[1];
    case OVL2C1:
        return s->ovl2c[0];
    case OVL2C2:
        return s->ovl2c[1];

    case CCR:
        return s->ccr;

    case CMDCR:
        return s->cmdcr;

    case TRGBR:
        return s->trgbr;
    case TCR:
        return s->tcr;

    case 0x200 ... 0x1000:	/* DMA per-channel registers */
        ch = (offset - 0x200) >> 4;
        if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
            goto fail;

        switch (offset & 0xf) {
        case DMA_FDADR:
            return s->dma_ch[ch].descriptor;
        case DMA_FSADR:
            return s->dma_ch[ch].source;
        case DMA_FIDR:
            return s->dma_ch[ch].id;
        case DMA_LDCMD:
            return s->dma_ch[ch].command;
        default:
            goto fail;
        }

    case FBR0:
        return s->dma_ch[0].branch;
    case FBR1:
        return s->dma_ch[1].branch;
    case FBR2:
        return s->dma_ch[2].branch;
    case FBR3:
        return s->dma_ch[3].branch;
    case FBR4:
        return s->dma_ch[4].branch;
    case FBR5:
        return s->dma_ch[5].branch;
    case FBR6:
        return s->dma_ch[6].branch;

    case BSCNTR:
        return s->bscntr;

    case PRSR:
        return 0;

    case LCSR0:
        return s->status[0];
    case LCSR1:
        return s->status[1];
    case LIIDR:
        return s->liidr;

    default:
    fail:
        cpu_abort(cpu_single_env,
                "%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
    }

    return 0;
}

static void pxa2xx_lcdc_write(void *opaque,
                target_phys_addr_t offset, uint32_t value)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    int ch;

    switch (offset) {
    case LCCR0:
        /* ACK Quick Disable done */
        if ((s->control[0] & LCCR0_ENB) && !(value & LCCR0_ENB))
            s->status[0] |= LCSR0_QD;

        if (!(s->control[0] & LCCR0_LCDT) && (value & LCCR0_LCDT))
            printf("%s: internal frame buffer unsupported\n", __FUNCTION__);

        if ((s->control[3] & LCCR3_API) &&
                (value & LCCR0_ENB) && !(value & LCCR0_LCDT))
            s->status[0] |= LCSR0_ABC;

        s->control[0] = value & 0x07ffffff;
        pxa2xx_lcdc_int_update(s);

        s->dma_ch[0].up = !!(value & LCCR0_ENB);
        s->dma_ch[1].up = (s->ovl1c[0] & OVLC1_EN) || (value & LCCR0_SDS);
        break;

    case LCCR1:
        s->control[1] = value;
        break;

    case LCCR2:
        s->control[2] = value;
        break;

    case LCCR3:
        s->control[3] = value & 0xefffffff;
        s->bpp = LCCR3_BPP(value);
        break;

    case LCCR4:
        s->control[4] = value & 0x83ff81ff;
        break;

    case LCCR5:
        s->control[5] = value & 0x3f3f3f3f;
        break;

    case OVL1C1:
        if (!(s->ovl1c[0] & OVLC1_EN) && (value & OVLC1_EN))
            printf("%s: Overlay 1 not supported\n", __FUNCTION__);

        s->ovl1c[0] = value & 0x80ffffff;
        s->dma_ch[1].up = (value & OVLC1_EN) || (s->control[0] & LCCR0_SDS);
        break;

    case OVL1C2:
        s->ovl1c[1] = value & 0x000fffff;
        break;

    case OVL2C1:
        if (!(s->ovl2c[0] & OVLC1_EN) && (value & OVLC1_EN))
            printf("%s: Overlay 2 not supported\n", __FUNCTION__);

        s->ovl2c[0] = value & 0x80ffffff;
        s->dma_ch[2].up = !!(value & OVLC1_EN);
        s->dma_ch[3].up = !!(value & OVLC1_EN);
        s->dma_ch[4].up = !!(value & OVLC1_EN);
        break;

    case OVL2C2:
        s->ovl2c[1] = value & 0x007fffff;
        break;

    case CCR:
        if (!(s->ccr & CCR_CEN) && (value & CCR_CEN))
            printf("%s: Hardware cursor unimplemented\n", __FUNCTION__);

        s->ccr = value & 0x81ffffe7;
        s->dma_ch[5].up = !!(value & CCR_CEN);
        break;

    case CMDCR:
        s->cmdcr = value & 0xff;
        break;

    case TRGBR:
        s->trgbr = value & 0x00ffffff;
        break;

    case TCR:
        s->tcr = value & 0x7fff;
        break;

    case 0x200 ... 0x1000:	/* DMA per-channel registers */
        ch = (offset - 0x200) >> 4;
        if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS))
            goto fail;

        switch (offset & 0xf) {
        case DMA_FDADR:
            s->dma_ch[ch].descriptor = value & 0xfffffff0;
            break;

        default:
            goto fail;
        }
        break;

    case FBR0:
        s->dma_ch[0].branch = value & 0xfffffff3;
        break;
    case FBR1:
        s->dma_ch[1].branch = value & 0xfffffff3;
        break;
    case FBR2:
        s->dma_ch[2].branch = value & 0xfffffff3;
        break;
    case FBR3:
        s->dma_ch[3].branch = value & 0xfffffff3;
        break;
    case FBR4:
        s->dma_ch[4].branch = value & 0xfffffff3;
        break;
    case FBR5:
        s->dma_ch[5].branch = value & 0xfffffff3;
        break;
    case FBR6:
        s->dma_ch[6].branch = value & 0xfffffff3;
        break;

    case BSCNTR:
        s->bscntr = value & 0xf;
        break;

    case PRSR:
        break;

    case LCSR0:
        s->status[0] &= ~(value & 0xfff);
        if (value & LCSR0_BER)
            s->status[0] &= ~LCSR0_BERCH(7);
        break;

    case LCSR1:
        s->status[1] &= ~(value & 0x3e3f3f);
        break;

    default:
    fail:
        cpu_abort(cpu_single_env,
                "%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
    }
}

static CPUReadMemoryFunc *pxa2xx_lcdc_readfn[] = {
    pxa2xx_lcdc_read,
    pxa2xx_lcdc_read,
    pxa2xx_lcdc_read
};

static CPUWriteMemoryFunc *pxa2xx_lcdc_writefn[] = {
    pxa2xx_lcdc_write,
    pxa2xx_lcdc_write,
    pxa2xx_lcdc_write
};

/* Load new palette for a given DMA channel, convert to internal format */
static void pxa2xx_palette_parse(struct pxa2xx_lcdc_s *s, int ch, int bpp)
{
    int i, n, format, r, g, b, alpha;
    uint32_t *dest, *src;
    s->pal_for = LCCR4_PALFOR(s->control[4]);
    format = s->pal_for;

    switch (bpp) {
    case pxa_lcdc_2bpp:
        n = 4;
        break;
    case pxa_lcdc_4bpp:
        n = 16;
        break;
    case pxa_lcdc_8bpp:
        n = 256;
        break;
    default:
        format = 0;
        return;
    }

    src = (uint32_t *) s->dma_ch[ch].pbuffer;
    dest = (uint32_t *) s->dma_ch[ch].palette;
    alpha = r = g = b = 0;

    for (i = 0; i < n; i ++) {
        switch (format) {
        case 0: /* 16 bpp, no transparency */
            alpha = 0;
            if (s->control[0] & LCCR0_CMS)
                r = g = b = *src & 0xff;
            else {
                r = (*src & 0xf800) >> 8;
                g = (*src & 0x07e0) >> 3;
                b = (*src & 0x001f) << 3;
            }
            break;
        case 1: /* 16 bpp plus transparency */
            alpha = *src & (1 << 24);
            if (s->control[0] & LCCR0_CMS)
                r = g = b = *src & 0xff;
            else {
                r = (*src & 0xf800) >> 8;
                g = (*src & 0x07e0) >> 3;
                b = (*src & 0x001f) << 3;
            }
            break;
        case 2: /* 18 bpp plus transparency */
            alpha = *src & (1 << 24);
            if (s->control[0] & LCCR0_CMS)
                r = g = b = *src & 0xff;
            else {
                r = (*src & 0xf80000) >> 16;
                g = (*src & 0x00fc00) >> 8;
                b = (*src & 0x0000f8);
            }
            break;
        case 3: /* 24 bpp plus transparency */
            alpha = *src & (1 << 24);
            if (s->control[0] & LCCR0_CMS)
                r = g = b = *src & 0xff;
            else {
                r = (*src & 0xff0000) >> 16;
                g = (*src & 0x00ff00) >> 8;
                b = (*src & 0x0000ff);
            }
            break;
        }
        switch (ds_get_bits_per_pixel(s->ds)) {
        case 8:
            *dest = rgb_to_pixel8(r, g, b) | alpha;
            break;
        case 15:
            *dest = rgb_to_pixel15(r, g, b) | alpha;
            break;
        case 16:
            *dest = rgb_to_pixel16(r, g, b) | alpha;
            break;
        case 24:
            *dest = rgb_to_pixel24(r, g, b) | alpha;
            break;
        case 32:
            *dest = rgb_to_pixel32(r, g, b) | alpha;
            break;
        }
        src ++;
        dest ++;
    }
}

static void pxa2xx_lcdc_dma0_redraw_horiz(struct pxa2xx_lcdc_s *s,
                uint8_t *fb, int *miny, int *maxy)
{
    int y, src_width, dest_width, dirty[2];
    uint8_t *src, *dest;
    ram_addr_t x, addr, new_addr, start, end;
    drawfn fn = 0;
    if (s->dest_width)
        fn = s->line_fn[s->transp][s->bpp];
    if (!fn)
        return;

    src = fb;
    src_width = (s->xres + 3) & ~3;     /* Pad to a 4 pixels multiple */
    if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
        src_width *= 3;
    else if (s->bpp > pxa_lcdc_16bpp)
        src_width *= 4;
    else if (s->bpp > pxa_lcdc_8bpp)
        src_width *= 2;

    dest = ds_get_data(s->ds);
    dest_width = s->xres * s->dest_width;

    addr = ram_offset_from_host(fb);
    start = addr + s->yres * src_width;
    end = addr;
    dirty[0] = dirty[1] = cpu_physical_memory_get_dirty(addr, VGA_DIRTY_FLAG);
    for (y = 0; y < s->yres; y ++) {
        new_addr = addr + src_width;
        for (x = addr + TARGET_PAGE_SIZE; x < new_addr;
                        x += TARGET_PAGE_SIZE) {
            dirty[1] = cpu_physical_memory_get_dirty(x, VGA_DIRTY_FLAG);
            dirty[0] |= dirty[1];
        }
        if (dirty[0] || s->invalidated) {
            fn((uint32_t *) s->dma_ch[0].palette,
                            dest, src, s->xres, s->dest_width);
            if (addr < start)
                start = addr;
            end = new_addr;
            if (y < *miny)
                *miny = y;
            if (y >= *maxy)
                *maxy = y + 1;
        }
        addr = new_addr;
        dirty[0] = dirty[1];
        src += src_width;
        dest += dest_width;
    }

    if (end > start)
        cpu_physical_memory_reset_dirty(start, end, VGA_DIRTY_FLAG);
}

static void pxa2xx_lcdc_dma0_redraw_vert(struct pxa2xx_lcdc_s *s,
                uint8_t *fb, int *miny, int *maxy)
{
    int y, src_width, dest_width, dirty[2];
    uint8_t *src, *dest;
    ram_addr_t x, addr, new_addr, start, end;
    drawfn fn = 0;
    if (s->dest_width)
        fn = s->line_fn[s->transp][s->bpp];
    if (!fn)
        return;

    src = fb;
    src_width = (s->xres + 3) & ~3;     /* Pad to a 4 pixels multiple */
    if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp)
        src_width *= 3;
    else if (s->bpp > pxa_lcdc_16bpp)
        src_width *= 4;
    else if (s->bpp > pxa_lcdc_8bpp)
        src_width *= 2;

    dest_width = s->yres * s->dest_width;
    dest = ds_get_data(s->ds) + dest_width * (s->xres - 1);

    addr = ram_offset_from_host(fb);
    start = addr + s->yres * src_width;
    end = addr;
    x = addr + TARGET_PAGE_SIZE;
    dirty[0] = dirty[1] = cpu_physical_memory_get_dirty(start, VGA_DIRTY_FLAG);
    for (y = 0; y < s->yres; y ++) {
        new_addr = addr + src_width;
        for (; x < new_addr; x += TARGET_PAGE_SIZE) {
            dirty[1] = cpu_physical_memory_get_dirty(x, VGA_DIRTY_FLAG);
            dirty[0] |= dirty[1];
        }
        if (dirty[0] || s->invalidated) {
            fn((uint32_t *) s->dma_ch[0].palette,
                            dest, src, s->xres, -dest_width);
            if (addr < start)
                start = addr;
            end = new_addr;
            if (y < *miny)
                *miny = y;
            if (y >= *maxy)
                *maxy = y + 1;
        }
        addr = new_addr;
        dirty[0] = dirty[1];
        src += src_width;
        dest += s->dest_width;
    }

    if (end > start)
        cpu_physical_memory_reset_dirty(start, end, VGA_DIRTY_FLAG);
}

static void pxa2xx_lcdc_resize(struct pxa2xx_lcdc_s *s)
{
    int width, height;
    if (!(s->control[0] & LCCR0_ENB))
        return;

    width = LCCR1_PPL(s->control[1]) + 1;
    height = LCCR2_LPP(s->control[2]) + 1;

    if (width != s->xres || height != s->yres) {
        if (s->orientation)
            gui_resize_vt(s->ds, height, width);
        else
            gui_resize_vt(s->ds, width, height);
        s->invalidated = 1;
        s->xres = width;
        s->yres = height;
    }
}

static void pxa2xx_update_display(void *opaque)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    uint8_t *fb;
    target_phys_addr_t fbptr;
    int miny, maxy;
    int ch;
    if (!(s->control[0] & LCCR0_ENB))
        return;

    pxa2xx_descriptor_load(s);

    pxa2xx_lcdc_resize(s);
    miny = s->yres;
    maxy = 0;
    s->transp = s->dma_ch[2].up || s->dma_ch[3].up;
    /* Note: With overlay planes the order depends on LCCR0 bit 25.  */
    for (ch = 0; ch < PXA_LCDDMA_CHANS; ch ++)
        if (s->dma_ch[ch].up) {
            if (!s->dma_ch[ch].source) {
                pxa2xx_dma_ber_set(s, ch);
                continue;
            }
            fbptr = s->dma_ch[ch].source;
            if (!(fbptr >= PXA2XX_SDRAM_BASE &&
                    fbptr <= PXA2XX_SDRAM_BASE + phys_ram_size)) {
                pxa2xx_dma_ber_set(s, ch);
                continue;
            }
            fbptr -= PXA2XX_SDRAM_BASE;
            /* FIXME: This is broken if it spans multiple RAM regions.  */
            fb = host_ram_addr(fbptr);

            if (s->dma_ch[ch].command & LDCMD_PAL) {
                memcpy(s->dma_ch[ch].pbuffer, fb,
                                MAX(LDCMD_LENGTH(s->dma_ch[ch].command),
                                sizeof(s->dma_ch[ch].pbuffer)));
                pxa2xx_palette_parse(s, ch, s->bpp);
            } else {
                /* Do we need to reparse palette */
                if (LCCR4_PALFOR(s->control[4]) != s->pal_for)
                    pxa2xx_palette_parse(s, ch, s->bpp);

                /* ACK frame start */
                pxa2xx_dma_sof_set(s, ch);

                s->dma_ch[ch].redraw(s, fb, &miny, &maxy);
                s->invalidated = 0;

                /* ACK frame completed */
                pxa2xx_dma_eof_set(s, ch);
            }
        }

    if (s->control[0] & LCCR0_DIS) {
        /* ACK last frame completed */
        s->control[0] &= ~LCCR0_ENB;
        s->status[0] |= LCSR0_LDD;
    }

    if (s->orientation)
        dpy_update(s->ds, miny, 0, maxy, s->xres);
    else
        dpy_update(s->ds, 0, miny, s->xres, maxy);
    pxa2xx_lcdc_int_update(s);

    qemu_irq_raise(s->vsync_cb);
}

static void pxa2xx_invalidate_display(void *opaque)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    s->invalidated = 1;
}

static void pxa2xx_screen_dump(void *opaque, const char *filename)
{
    /* TODO */
}

static void pxa2xx_lcdc_orientation(void *opaque, int angle)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;

    if (angle) {
        s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_vert;
    } else {
        s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_horiz;
    }

    s->orientation = angle;
    s->xres = s->yres = -1;
    pxa2xx_lcdc_resize(s);
}

static void pxa2xx_lcdc_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    int i;

    qemu_put_be32(f, s->irqlevel);
    qemu_put_be32(f, s->transp);

    for (i = 0; i < 6; i ++)
        qemu_put_be32s(f, &s->control[i]);
    for (i = 0; i < 2; i ++)
        qemu_put_be32s(f, &s->status[i]);
    for (i = 0; i < 2; i ++)
        qemu_put_be32s(f, &s->ovl1c[i]);
    for (i = 0; i < 2; i ++)
        qemu_put_be32s(f, &s->ovl2c[i]);
    qemu_put_be32s(f, &s->ccr);
    qemu_put_be32s(f, &s->cmdcr);
    qemu_put_be32s(f, &s->trgbr);
    qemu_put_be32s(f, &s->tcr);
    qemu_put_be32s(f, &s->liidr);
    qemu_put_8s(f, &s->bscntr);

    for (i = 0; i < 7; i ++) {
        qemu_put_betl(f, s->dma_ch[i].branch);
        qemu_put_byte(f, s->dma_ch[i].up);
        qemu_put_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer));

        qemu_put_betl(f, s->dma_ch[i].descriptor);
        qemu_put_betl(f, s->dma_ch[i].source);
        qemu_put_be32s(f, &s->dma_ch[i].id);
        qemu_put_be32s(f, &s->dma_ch[i].command);
    }
}

static int pxa2xx_lcdc_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_lcdc_s *s = (struct pxa2xx_lcdc_s *) opaque;
    int i;

    s->irqlevel = qemu_get_be32(f);
    s->transp = qemu_get_be32(f);

    for (i = 0; i < 6; i ++)
        qemu_get_be32s(f, &s->control[i]);
    for (i = 0; i < 2; i ++)
        qemu_get_be32s(f, &s->status[i]);
    for (i = 0; i < 2; i ++)
        qemu_get_be32s(f, &s->ovl1c[i]);
    for (i = 0; i < 2; i ++)
        qemu_get_be32s(f, &s->ovl2c[i]);
    qemu_get_be32s(f, &s->ccr);
    qemu_get_be32s(f, &s->cmdcr);
    qemu_get_be32s(f, &s->trgbr);
    qemu_get_be32s(f, &s->tcr);
    qemu_get_be32s(f, &s->liidr);
    qemu_get_8s(f, &s->bscntr);

    for (i = 0; i < 7; i ++) {
        s->dma_ch[i].branch = qemu_get_betl(f);
        s->dma_ch[i].up = qemu_get_byte(f);
        qemu_get_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer));

        s->dma_ch[i].descriptor = qemu_get_betl(f);
        s->dma_ch[i].source = qemu_get_betl(f);
        qemu_get_be32s(f, &s->dma_ch[i].id);
        qemu_get_be32s(f, &s->dma_ch[i].command);
    }

    s->bpp = LCCR3_BPP(s->control[3]);
    s->xres = s->yres = s->pal_for = -1;

    return 0;
}

#define BITS 8
#include "pxa2xx_template.h"
#define BITS 15
#include "pxa2xx_template.h"
#define BITS 16
#include "pxa2xx_template.h"
#define BITS 24
#include "pxa2xx_template.h"
#define BITS 32
#include "pxa2xx_template.h"

struct pxa2xx_lcdc_s *pxa2xx_lcdc_init(target_phys_addr_t base, qemu_irq irq,
                DisplayState *ds)
{
    int iomemtype;
    struct pxa2xx_lcdc_s *s;

    s = (struct pxa2xx_lcdc_s *) qemu_mallocz(sizeof(struct pxa2xx_lcdc_s));
    s->invalidated = 1;
    s->irq = irq;

    pxa2xx_lcdc_orientation(s, graphic_rotate);

    iomemtype = cpu_register_io_memory(0, pxa2xx_lcdc_readfn,
                    pxa2xx_lcdc_writefn, s);
    cpu_register_physical_memory(base, 0x00100000, iomemtype);

    s->ds = gui_get_graphic_console(NULL,
                                    pxa2xx_update_display,
                                    pxa2xx_invalidate_display,
                                    pxa2xx_screen_dump, s);

    switch (ds_get_bits_per_pixel(s->ds)) {
    case 0:
        s->dest_width = 0;
        break;
    case 8:
        s->line_fn[0] = pxa2xx_draw_fn_8;
        s->line_fn[1] = pxa2xx_draw_fn_8t;
        s->dest_width = 1;
        break;
    case 15:
        s->line_fn[0] = pxa2xx_draw_fn_15;
        s->line_fn[1] = pxa2xx_draw_fn_15t;
        s->dest_width = 2;
        break;
    case 16:
        s->line_fn[0] = pxa2xx_draw_fn_16;
        s->line_fn[1] = pxa2xx_draw_fn_16t;
        s->dest_width = 2;
        break;
    case 24:
        s->line_fn[0] = pxa2xx_draw_fn_24;
        s->line_fn[1] = pxa2xx_draw_fn_24t;
        s->dest_width = 3;
        break;
    case 32:
        s->line_fn[0] = pxa2xx_draw_fn_32;
        s->line_fn[1] = pxa2xx_draw_fn_32t;
        s->dest_width = 4;
        break;
    default:
        fprintf(stderr, "%s: Bad color depth\n", __FUNCTION__);
        exit(1);
    }

    register_savevm("pxa2xx_lcdc", 0, 0,
                    pxa2xx_lcdc_save, pxa2xx_lcdc_load, s);

    return s;
}

void pxa2xx_lcd_vsync_notifier(struct pxa2xx_lcdc_s *s, qemu_irq handler)
{
    s->vsync_cb = handler;
}